• Title/Summary/Keyword: compatible rings

Search Result 12, Processing Time 0.019 seconds

Ore Extension Rings with Constant Products of Elements

  • Hashemi, Ebrahim;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.603-615
    • /
    • 2019
  • Let R be an associative unital ring with an endomorphism α and α-derivation δ. The constant products of elements in Ore extension rings, when the coefficient ring is reversible, is investigated. We show that if f(x) = ∑ni=0 aixi and g(x) = ∑mj=0 bjxj be nonzero elements in Ore extension ring R[x; α, δ] such that g(x)f(x) = c ∈ R, then there exist non-zero elements r, a ∈ R such that rf(x) = ac, when R is an (α, δ)-compatible ring which is reversible. Among applications, we give an exact characterization of the unit elements in R[x; α, δ], when the coeficient ring R is (α, δ)-compatible. Furthermore, it is shown that if R is a weakly 2-primal ring which is (α, δ)-compatible, then J(R[x; α, δ]) = N iℓ(R)[x; α, δ]. Some other applications and examples of rings with this property are given, with an emphasis on certain classes of NI rings. As a consequence we obtain generalizations of the many results in the literature. As the final part of the paper we construct examples of rings that explain the limitations of the results obtained and support our main results.

THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING

  • HASHEMI EBRAHIM
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. Let R be a ring, G be an ordered monoid acting on R by $\beta$ and R be G-compatible. It is shown that R is (left principally) quasi-Baer if and only if skew monoid ring $R_{\beta}[G]$ is (left principally) quasi-Baer. If G is an abelian monoid, then R is (left principally) quasi-Baer if and only if the Cohn-Jordan extension $A(R,\;\beta)$ is (left principally) quasi-Baer if and only if left Ore quotient ring $G^{-1}R_{\beta}[G]$ is (left principally) quasi-Baer.

(Σ, ∆)-Compatible Skew PBW Extension Ring

  • Hashemi, Ebrahim;Khalilnezhad, Khadijeh;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.401-417
    • /
    • 2017
  • Ever since their introduction, skew PBW ($Poincar{\acute{e}}$-Birkhoff-Witt) extensions of rings have kept growing in importance, as researchers characterized their properties (such as primeness, Krull and Goldie dimension, homological properties, etc.) in terms of intrinsic properties of the base ring, and studied their relations with other fields of mathematics, as for example quantum mechanics theory. Many rings and algebras arising in quantum mechanics can be interpreted as skew PBW extensions. Our aim in this paper is to study skew PBW extensions of Baer, quasi-Baer, principally projective and principally quasi-Baer rings, in the case when the base ring R is not assumed to be reduced. We just impose some mild compatibleness over the base ring R, and prove that these properties are stable over this kind of extensions.

Morphological and Anatomical Evaluation of Grafted Pinus merkusii

  • Susilowati, Arida;Iswanto, Apri Heri;Wahyudi, Imam;Supriyanto, Supriyanto;Siregar, Iskandar Z
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.903-912
    • /
    • 2016
  • Morphological and anatomical evaluation of grafted P. merkusii have been undertaken to obtain the information about compatible and incompatible symptoms of 18 years old grafts based on morphological observation and microscopic analysis. Samples of compatible and incompatible grafts were obtained from previous research conducted by the Silviculture Departement Team in 1994. Result showed that compatible grafts have normal stem form and secondary growth (diameter growth), but some abnormality symptoms like undulated pattern of annual growth rings, phloem thickening and abnormality resin ducts in inner and middle parts of the union area occurred. Incompatible ones showed abnormality of the stem form, cortex-bark necrosis and swelling in the union area. Microscopic observation showed abnormality of all parts of the union, undulated pattern of annual growth rings, phloem thickening, abnormal resin ducts, low numbers and discontinuity of vascular elements in the union area.

A GENERALIZATION OF THE SYMMETRY PROPERTY OF A RING VIA ITS ENDOMORPHISM

  • Fatma Kaynarca;Halise Melis Tekin Akcin
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.373-397
    • /
    • 2024
  • Lambek introduced the concept of symmetric rings to expand the commutative ideal theory to noncommutative rings. In this study, we propose an extension of symmetric rings called strongly α-symmetric rings, which serves as both a generalization of strongly symmetric rings and an extension of symmetric rings. We define a ring R as strongly α-symmetric if the skew polynomial ring R[x; α] is symmetric. Consequently, we provide proofs for previously established outcomes regarding symmetric and strongly symmetric rings, directly derived from the results we have obtained. Furthermore, we explore various properties and extensions of strongly α-symmetric rings.

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.

ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.381-401
    • /
    • 2016
  • According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and ${\sigma}:M{\rightarrow}End(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring R * M is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and ${\sigma}:M{\rightarrow}End(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring R * M has right Property (A).

PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES

  • Nikseresht, Ashkan;Azizi, Abdulrasool
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1183-1198
    • /
    • 2013
  • We will introduce and study the notion of prime bases for weakly prime submodules and utilize them to derive some formulas on the weak radical of submodules of a module. In particular, we will show that every one dimensional integral domain weakly satisfies the radical formula and state some necessary conditions on local integral domains which are semi-compatible or satisfy the radical formula and also on Noetherian rings which weakly satisfy the radical formula.

ON CLEAN AND NIL CLEAN ELEMENTS IN SKEW T.U.P. MONOID RINGS

  • Hashemi, Ebrahim;Yazdanfar, Marzieh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.57-71
    • /
    • 2019
  • Let R be an associative ring with identity, M a t.u.p. monoid with only one unit and ${\omega}:M{\rightarrow}End(R)$ a monoid homomorphism. Let R be a reversible, M-compatible ring and ${\alpha}=a_1g_1+{\cdots}+a_ng_n$ a non-zero element in skew monoid ring $R{\ast}M$. It is proved that if there exists a non-zero element ${\beta}=b_1h_1+{\cdots}+b_mh_m$ in $R{\ast}M$ with ${\alpha}{\beta}=c$ is a constant, then there exist $1{\leq}i_0{\leq}n$, $1{\leq}j_0{\leq}m$ such that $g_{i_0}=e=h_{j_0}$ and $a_{i_0}b_{j_0}=c$ and there exist elements a, $0{\neq}r$ in R with ${\alpha}r=ca$. As a consequence, it is proved that ${\alpha}{\in}R*M$ is unit if and only if there exists $1{\leq}i_0{\leq}n$ such that $g_{i_0}=e$, $a_{i_0}$ is unit and aj is nilpotent for each $j{\neq}i_0$, where R is a reversible or right duo ring. Furthermore, we determine the relation between clean and nil clean elements of R and those elements in skew monoid ring $R{\ast}M$, where R is a reversible or right duo ring.