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Abstract. Let R be an associative unital ring with an endomorphism α and α-derivation

δ. The constant products of elements in Ore extension rings, when the coefficient ring is

reversible, is investigated. We show that if f(x) =
∑n

i=0 aix
i and g(x) =

∑m
j=0 bjx

j be non-

zero elements in Ore extension ring R[x;α, δ] such that g(x)f(x) = c ∈ R, then there exist

non-zero elements r, a ∈ R such that rf(x) = ac, when R is an (α, δ)-compatible ring which

is reversible. Among applications, we give an exact characterization of the unit elements in

R[x;α, δ], when the coeficient ring R is (α, δ)-compatible. Furthermore, it is shown that if

R is a weakly 2-primal ring which is (α, δ)-compatible, then J(R[x;α, δ]) = Ni`(R)[x;α, δ].

Some other applications and examples of rings with this property are given, with an

emphasis on certain classes of NI rings. As a consequence we obtain generalizations of the

many results in the literature. As the final part of the paper we construct examples of

rings that explain the limitations of the results obtained and support our main results.

1. Introduction and Preliminary Definitions

Throughout, unless mentioned otherwise, R denotes an associative ring with
unity. Letting R be a ring, α be an endomorphism of R and δ be an α-derivation
of R (so δ is an additive map satisfying δ(ab) = δ(a)b + α(a)δ(b)), the general
(left) Ore extension R[x;α, δ] is the ring of polynomials over R in the variable x,
with termwise addition and with coefficients written on the left of x, subject to the
skew-multiplication rule xr = α(r)x + δ(r) for r ∈ R. If α is an identity map on
R or δ = 0, then we denote R[x;α, δ] by R[x; δ] and R[x;α], respectively. We use
Ni`∗(R), Ni`∗(R), L-rad(R), Ni`(R) and J(R) to denote the prime radical, upper
nil radical, Levitzki radical, the set of all nilpotent elements of R and the Jacobson
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radical of R, respectively. Given a polynomial f(x) over a ring R, we denote by
deg(f(x)) the degree of f(x).

Recall that a ring R is reduced if it has no non-zero nilpotent element. According
to Krempa [14], an endomorphism α of a ring R is called rigid if aα(a) = 0 implies
a = 0 for a ∈ R. R is called an α-rigid ring [11] if there exists a rigid endomorphism
α of R. Note that any rigid endomorphism of a ring is a monomorphism and α-rigid
rings are reduced by Hong et al. [11]. Properties of α-rigid rings have been studied
in Krempa [14], Hirano [10] and Hong et al. [11, 12].

According to Hong et al. [12], for an endomorphism α of a ring R, an α-ideal I
is called to be an α-rigid ideal if aα(a) ∈ I implies a ∈ I for a ∈ R. Hong et al. [12]
studied connections between the α-rigid ideals of R and the related ideals of some
ring extensions.

In [9], the authors defined α-compatible rings, which are a generalization of α-
rigid rings. A ring R is called α-compatible if for each a, b ∈ R, ab = 0⇔ aα(b) = 0.
Moreover, R is said to be δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If
R is both α-compatible and δ-compatible, we say that R is (α, δ)-compatible. In [9,
Lemma 2.2], the authors showed that R is α-rigid if and only if R is α-compatible
and reduced. Thus the α-compatible ring is a generalization of an α-rigid ring to
the more general case where R is not assumed to be reduced. In [7], the author
defined α-compatible ideals, which are a generalization of α-rigid ideals. An ideal I
is called an α-compatible ideal if for each a, b ∈ R, ab ∈ I ⇔ aα(b) ∈ I. Moreover,
I is said to be a δ-compatible ideal if for each a, b ∈ R, ab ∈ I ⇒ aδ(b) ∈ I. If I is
both α-compatible and δ-compatible, we say that I is an (α, δ)-compatible ideal. In
[7, Proposition 2.4], the author showed that an ideal I is α-rigid if and only if I is
α-compatible and completely semiprime(i.e., if a2 ∈ I, then a ∈ I).

In [16], Nasr-Isfahani studied Ore extensions of 2-primal rings. He showed that
if R is an (α, δ)-compatible ring, then R is 2-primal if and only if R[x;α, δ] is 2-
primal if and only if Ni`(R)[x;α, δ] = Ni`∗(R[x;α, δ]) if and only if every minimal
(α, δ)-prime ideal of R is completely prime.

Following [1], a ring R is called reversible if ab = 0 implies ba = 0 for a, b ∈ R.
Also, following [2], a ring R is called 2-primal if Ni`∗(R) = Ni`(R). Shin in [18,
Proposition 1.11] showed that a ring R is 2-primal if and only if every minimal
prime ideal P of R is completely prime (i.e. R/P is a domain). Moreover, a ring R
is called weakly 2-primal if Ni`(R) =L−rad(R). If Ni`(R) = Ni`∗(R), then R is
called NI. It is known that the following implications holds between the mentioned
classes of rings:

reduced⇒ reversible⇒ 2-primal⇒ weakly 2-primal⇒ NI.

But the converses does not hold (see [4, 13]). Moreover, a ring is right (resp.,
left) duo if every right (resp., left) ideal is an ideal. The importance of the study
of these classes of rings in noncommutative ring theory is because of the famous
Köthe’s problem which ask whether every one-sided nil ideal of any associative ring
is contained in a two-sided nil ideal of the ring. As observed by Bell [1], these rings
fulfill the requirements of the Köthe’s Conjecture.
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In [3] Chen proved that if R is an α-compatible ring and f(x) =
∑n

i=0 aix
i and

g(x) =
∑m

j=0 bjx
j are non-zero polynomials in R[x;α] such that g(x)f(x) = c ∈ R,

then b0a0 = c and there exist non-zero elements r, a ∈ R such that rf(x) = ac.
As an application of the above result, he showed that if R is an α-compatible and
weakly 2-primal ring, then a polynomial f(x) ∈ R[x;α] is unit if and only if its
constant term is unit and other coefficients are all nilpotent. In [4] Chen and Cui
proved that if R is an α-compatible and weakly 2-primal ring, then R[x;α] is weakly
2-primal.

In this paper we prove some results which concern the constant products of
elements in Ore extension rings over reversible ring. Roughly speaking, our main
theorems give a characterization of the unit elements in Ore extension ring. We will
also pay a particular attention to stable range one property of Ore extension rings.
As the final part of the paper we construct examples of rings that support our main
results and explain the limitations of the results obtained in former sections.

2. Ore Extension of Reversible Rings with Constant Products of Ele-
ments

In this section we prove some results which concern the constant products of
elements in Ore extension rings over reversible ring. Note that the methods used for
the “unmixed” Ore extensions do not apply to the general case. We also note that
in the investigation of Ore extension rings R[x;α, δ], our results based on the twist
property in multiplication of polynomials. We start this section by the following
lemma, which will be useful in the sequel.

Lemma 2.1. Let R be an (α, δ)-compatible ring and a, b ∈ R. Then we have the
following:

(1) If ab = 0, then aαn(b) = 0 = αn(a)b for any non-negative integer n.

(2) If αk(a)b = 0 for some non-negative integer k, then ab = 0.

(3) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for any non-negative integers
m,n.

(4) If ab = 0, then α(a)α(b) = 0 = δ(a)δ(b) .

(5) If an = 0, then (α(a))n = 0 = (δ(a))n for any positive integer n.

(6) If ab = 0 then axmb = 0 for each m ≥ 0.

(7) If axmb = 0 in R[x;α, δ], for some m ≥ 0, then ab = 0.

Proof. (1), (2) and (3) are proved in [9, Lemma 2.1].
(4) Since ab = 0, then by (1) and (2) we have α(a)b = 0 = δ(a)b. Hence

α(a)α(b) = 0 = δ(a)δ(b), since R is (α, δ)-compatible.
(5), (6) and (7) follow from (4), (3) and (1), respectively. 2
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Lemma 2.2.([8, Lemma 2.2]) Let R be an (α, δ)-compatible ring, f(x) = a0+a1x+
· · · + anx

n ∈ R[x;α, δ] and c, r ∈ R. Then f(x)r = c if and only if a0r = c and
air = 0 for each 1 ≤ i ≤ n.

Lemma 2.3.([8, Lemma 2.3]) Let R be an α-rigid ring and also f(x) = a0 + a1x+
· · ·+anx

n and g(x) = b0 + b1x+ · · ·+ bmx
m be non-zero elements of R[x;α, δ] such

that f(x)g(x) = c ∈ R. Then a0b0 = c and aibj = 0, for each i, j with i+ j ≥ 1

Recall that an ideal I of R is called an α-ideal if α(I) ⊆ I; I is called an α-
invariant if α−1(I) = I; I is called a δ-ideal if δ(I) ⊆ I; I is called an (α, δ)-ideal
if it is both an α- and a δ-ideal. Clearly, each α-compatible ideal is an α-invariant
ideal, and each δ-compatible ideal is δ-ideal.

If I is an (α, δ)-ideal, then α : R/I → R/I defined by α(a) = α(a) + I is an
endomorphism and δ : R/I → R/I defined by δ(a) = δ(a) + I is an α-derivation.

Recall also that, an ideal P of R is completely prime if ab ∈ P implies a ∈ P or
b ∈ P for a, b ∈ R.

Lemma 2.4. Let R be a 2-primal ring and P a minimal prime ideal of R. If R is
an (α, δ)-compatible ring, then P is an α-invariant and a δ-ideal of R. Moreover,
P is an (α, δ)-compatible ideal of R.

Proof. Since R is 2-primal, Ni`(R) = Ni`∗(R). Then R = R/Ni`(R) is a reduced
ring. By Lemma 2.1, Ni`(R) is an (α, δ)-compatible ideal of R, and so R is (α, δ)-
compatible, by [7, Proposition 2.1]. Clearly P/Ni`(R) is a minimal prime ideal of
R. Then, by [14, Lemma 1.5], P/Ni`(R) is a collection of some right annihilators
of subsets of R. Thus P/Ni`(R) is an α-invariant and a δ-ideal of R, since R is
(α, δ)-compatible. Therefore P is an α-invariant and a δ-ideal of R.

Now, since P is completely prime, α-invariant and a δ-ideal of R, one can easily
show that P is an (α, δ)-compatible ideal of R. 2

Now we are in a position to give one of our main theorems in this paper. Recall
that following [17], an associative ring R with unity is called left McCoy when the
equation g(x)f(x) = 0 implies rf(x) = 0 for some non-zero element r ∈ R, where
f(x) and g(x) are non-zero polynomials in R[x]. Right McCoy rings are defined
dually and they satisfy dual properties. A ring R is called McCoy if it is both left
and right McCoy. This name for them was chosen by Nielsen in [17] in recognition
of McCoy’s proof in [15, Theorem 2] that commutative rings satisfy this condition.
McCoy rings are unified generalization of a reversible and right duo rings. These
rings, though may look a bit specific, were studied by many authors and are related
to important ring theory problems. Systematic studies of these rings were started in
[17] and next continued in a number of papers, generalizing the McCoy condition in
many different ways. The following two theorems are generalizations of [3, Theorems
2.4 and 2.5]. When Ni`(R) forms an ideal of a ring R, we say an element r ∈ R is
unit modulo Ni`(R) if r +Ni`(R) is unit in R/Ni`(R).

Theorem 2.5. Let R be a reversible (α, δ)-compatible ring and f(x) = a0 + a1x+
· · ·+anx

n be a non-zero element of R[x;α, δ]. If there is a non-zero element g(x) =
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b0 + b1x+ · · ·+ bmx
m ∈ R[x;α, δ] such that g(x)f(x) = c is a constant, then there

exist non-zero elements r, a ∈ R such that rf(x) = ac. In particular r = abp for
some p, 0 ≤ p ≤ m, and a is either one or a product of at most m coefficients from
f(x). Furthermore, if b0 is a unit element modulo Ni`(R), then a1, a2, . . . , an are
all nilpotent.

Proof. Let deg(f(x)) = 0. Then f(x) = a0. Hence bja0 = 0 for each 1 ≤ j ≤ m
and b0a0 = c, by Lemma 2.2. If c 6= 0, then b0 6= 0 and so r = b0 and a = 1 are
desired non-zero elements. If c = 0, then bja0 = 0 for each 0 ≤ j ≤ m. Since
g(x) 6= 0, there exists 0 ≤ s ≤ m such that bs 6= 0. Thus r = bs and a = 1 are
desired non-zero elements.

Now let deg(f(x)) = n ≥ 1. We proceed by induction on degree of g(x). If
deg(g(x)) = m = 0, then g(x) = b0 6= 0. Since g(x)f(x) = c, we have b0a0 = c
and b0ai = 0 for each 1 ≤ i ≤ n. Thus r = b0 and a = 1 are desired elements.
Assume that the conclusion is true for all polynomials of degree less that m. Let
g(x)f(x) = c and deg(g(x)) = m. We proceed by dividing the proof into two cases:

Case 1: Let b0 = b1 = · · · = bm−1 = 0. Since c = g(x)f(x) = bmx
mf(x) we

have bmai = 0 for each 0 ≤ i ≤ n, by Lemma 2.1, and so c = 0. Thus r = bm and
a = 1 are desired elements.

Case 2: Assume that there exits 0 ≤ j ≤ m − 1 such that bj 6= 0. If
bmf(x) = 0, then bmx

mf(x) = 0, by Lemma 2.1, and so c = g(x)f(x) =
(b0 + b1x + · · · + bm−1x

m−1)f(x). Since g1(x) = b0 + b1x + · · · + bm−1x
m−1 6= 0,

hence deg(g1(x)) ≤ m − 1 and g1(x)f(x) = c, so the result follows from induction
hypothesis. Now assume that bmf(x) 6= 0. Then bmx

mf(x) 6= 0, by Lemma 2.1.
Hence c = g(x)f(x) = g(x)(ai1x

i1 + · · · + aitx
it) such that g(x)aik 6= 0 for each

1 ≤ k ≤ t, where 0 ≤ i1, it ≤ n. Thus bmα
m(ait) = 0 and so bmait = 0, by Lemma

2.1. Hence aitbm = 0, since R is reversible. Thus aitc = (aitg(x))f(x). Since
aitg(x) 6= 0, deg(aitg(x)) ≤ m − 1 and (aitg(x))f(x) = aitc, hence by induction
hypothesis there exist elements 0 6= r1, a1 ∈ R such that r1f(x) = a1aitc. Thus
r = r1 and a = a1ait are desired elements.

Now we will show that the elements a1, a2, . . . , an are all nilpotent, when b0
is unit modulo Ni`(R). Since R is reversible and hence Ni`(R) is an ideal of R,
then R = R/Ni`(R) is reduced. On the other hand, since Ni`(R) is an (α, δ)-
compatible ideal of R, hence by [7, Proposition 2.1], R = R/Ni`(R) is (ᾱ, δ̄)-
compatible, and therefore R is ᾱ-rigid, by [9, Lemma 2.2]. Now from g(x)f(x) = c,
we get ḡ(x)f̄(x) = c̄ ∈ R̄, and hence by Lemma 2.3 we have b̄0ā0 = c̄ and b̄j āi = 0̄
for each i, j with i+ j ≥ 1. Now since b0 is a unit element of R, then d0b0 = 1 for
some d0 ∈ R. Multiplying b̄0āi = 0̄ from left by d̄0 we get āi = 0̄ for each i ≥ 1.
This yields that ai ∈ Ni`(R) for each i ≥ 1, completing the proof. 2

The same idea as that in the proof of Theorem 2.5, can be used to prove the
following theorem.

Theorem 2.6. Let R be a reversible (α, δ)-compatible ring and f(x) = a0 + a1x+
· · ·+anx

n be a non-zero element of R[x;α, δ]. If there is a non-zero element g(x) =
b0 + b1x+ · · ·+ bmx

m ∈ R[x;α, δ] such that f(x)g(x) = c is a constant, then there
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exist non-zero elements r, a ∈ R such that f(x)r = ca. In particular r = bpa for
some p, 0 ≤ p ≤ m, and a is either one or a product of at most m coefficients
from f(x). Furthermore, if b0 is a unit element modulo Ni`(R), then a1, . . . , an are
nilpotent.

Theorems 2.5 and 2.6, have the following immediate corollary.

Corollary 2.7. Let R be a reversible (α, δ)-compatible ring. Then f(x) ∈ R[x;α, δ]
is a right or left zero-divisor, if and only if there exists a non-zero constant r ∈ R
such that rf(x) = 0 = f(x)r.

Proof. It follows from Theorems 2.5, 2.6 and Lemma 2.2. 2

In particular, taking c = 0, α to be identity and δ equal to zero, we obtain the
following main result of [17], as another corollary of Theorem 2.5.

Corollary 2.8.([17, Theorem 2]) Let R be a reversible ring. Then R is right and
left McCoy ring.

Let δ be an α-derivation of R. For integers 0 ≤ i ≤ j, let us write f ji for the set
of all “words” in α and δ in which there are i factors of α and j− i factors of δ. For
instance, f jj = {αj}, f j0 = {δj} and f jj−1 = {αj−1δ, αj−2δα, . . . , δαj−1}. Clearly

each element of f ji is an additive map on R. Also for each a ∈ R and each integers

0 ≤ i ≤ j, we write f ji (a) = {β(a) |β ∈ f ji }.
We say also that a set S ⊆ R is locally nilpotent if for any subset {s1, . . . , sn} ⊆

S, there exists an integer t, such that any product of t elements from {s1, . . . , sn}
is zero.

Lemma 2.9 Let R be an (α, δ)-compatible ring and Ni`(R) a locally nilpotent ideal
of R. Then Ni`(R)[x;α, δ] is a nil ideal of R.

Proof. Since R is (α, δ)-compatible ideal of R, Ni`(R) is an (α, δ)-compatible ideal
of R, by Lemma 2.1. Hence Ni`(R)[x;α, δ] is an ideal of R[x;α, δ]. Let f(x) = a0 +
a1x+ · · ·+ amx

m ∈ Ni`(R)[x;α, δ]. Assume that M = {a0, a1, . . . , am} ⊆ Ni`(R).
Since Ni`(R) is locally nilpotent, there exists a positive integer t such that any
product of t elements from M is zero. Let N =

⋃
f ji (ar), where 0 ≤ r ≤ m and

0 ≤ i ≤ j are integers. Then any product of t elements of N is zero, by Lemma 2.1.
Thus (f(x))t = 0, since each coefficient of (f(x))t is a finite sum of the product of
t elements from N . Therefore Ni`(R)[x;α, δ] is a nil ideal of R[x;α, δ]. 2

We continue by proving the second main result of this paper, which investigates
the equivalences of the weakly 2-primal property of Ore extension ring with the
coefficent ring R, when R is an (α, δ)-compatible ring.

Theorem 2.10. Let R be an (α, δ)-compatible ring. Then R is a weakly 2-primal
ring if and only if R[x;α, δ] is a weakly 2-primal ring. In this case R[x;α, δ] is a
weakly semicommutative ring.

Proof. For the forward direction, since R is weakly 2-primal, we have L− rad(R) =
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Ni`(R). We will show that L − rad(R[x;α, δ]) = Ni`(R[x;α, δ]). It is enough to
show that Ni`(R[x;α, δ]) ⊆ L− rad(R[x;α, δ]), since the reverse inclusion is obvi-
ous. First we show that Ni`(R[x;α, δ]) = Ni`(R)[x;α, δ] = L − rad(R)[x;α, δ].
By Lemma 2.9, we have Ni`(R)[x;α, δ] is a nil ideal of R[x;α, δ], and hence
Ni`(R)[x;α, δ] ⊆ Ni`(R[x;α, δ]). For the reverse inclusion, assume that f(x) =∑m

i=0 aix
i is a nilpotent element with the nilpotency index t. Therefore we get

amα
m(am)α2m . . . α(t−1)m(am) = 0, since it is the leading coefficient of (f(x))t = 0.

Then atm = 0, by Lemma 2.1, and so am ∈ Ni`(R). Since Ni`(R) is an
(α, δ)-compatible ideal, f ji (am) ⊆ Ni`(R) for each integers 0 ≤ i ≤ j. Thus
0 = (f(x))t = (a0 + a1x + · · · + am−1x

m−1)t + h(x), where h(x) ∈ Ni`(R)[x;α, δ].
Then (a0 + a1x+ · · ·+ am−1x

m−1)t ∈ Ni`(R)[x;α, δ]. Then f(x) ∈ Ni`(R[x;α, δ]),
since Ni`(R)[x;α, δ]) ⊆ Ni`(R[x;α, δ]). Now by induction hypothesis on degree
of f(x) we conclude that a0, a1, . . . , am−1 ∈ Ni`(R), which implies that f(x) ∈
Ni`(R)[x;α, δ]. Therefore Ni`(R[x;α, δ]) = Ni`(R)[x;α, δ] = L− rad(R)[x;α, δ].

Next we show that L − rad(R)[x;α, δ] is a locally nilpotent ideal of R[x;α, δ].
Assume that M = {f1(x), . . . , fk(x)} be a subset of L − rad(R)[x;α, δ]. Write
fi(x) = ai0 + ai1x+ · · ·+ aimx

m, where aij is in L− rad(R) for all i = 1, 2, · · · , k
and j = 0, 1, . . . , n. Let N = {ai0, ai1, . . . , aim | i = 1, 2, . . . , k}. Then N is a
finite subset of L − rad(R) and since L − rad(R) is locally nilpotent, there exists
a positive integer t such that any product of t elements from N is zero. Assume
that W =

⋃
f ji (ars), where 1 ≤ r ≤ k, 0 ≤ s ≤ m and 0 ≤ i ≤ j are non-negative

integers. Then by Lemma 2.1, any product of t elements from W is zero, which
implies that any product of t elements from M is zero. Therefore L−rad(R)[x;α, δ]
is a locally nilpotent ideal of R[x;α, δ]. The backward direction is clear, since each
subring of a weakly 2-primal ring is weakly 2-primal.

Moreover it is clear that the ring R[x;α, δ] is weakly semicommutative, since
R[x;α, δ]/Ni`(R[x;α, δ]) is a reduced ring, and the proof is complete. 2

Corollary 2.11. Let R be a reversible ring which is (α, δ)-compatible. Then a
polynomial f(x) ∈ R[x;α, δ] is unit if and only if its constant term is a unit and
the other coefficionts are nilpotent.

Proof. Let R̄ = R/Ni`(R). Then R̄ is ᾱ-rigid, by [9, Lemma 2.2]. For the forward
direction, let f(x) = a0 + a1x+ · · ·+ anx

n ∈ R[x;α, δ] is a unit. Then there exists
g(x) ∈ R[x;α, δ] such that f(x)g(x) = 1 = g(x)f(x). Hence f̄(x)ḡ(x) = 1. Then ā0
is a unit element of R̄, by Lemma 2.3, and so a1, . . . , an are nilpotent, by Theorem
2.5.

For the reverse implication, let a0 is a unit and a1, . . . , an are nilpotent. Then
a1x+ · · ·+anx

n ∈ ni`(R)[x;α, δ] = L− rad(R[x;α, δ]) ⊆ J(R[x;α, δ]), by Theorem
2.10. Thus f(x) = a0 + a1x+ · · ·+ anx

n is a unit of R[x;α, δ]. 2

We denote the unit group of R by U(R).

Corollary 2.12. Let R be an α-rigid ring. Then U(R[x;α, δ]) = U(R).

Corollary 2.13. Let R be a NI ring. If Ni`(R) is an (α, δ)-compatible ideal of R,
then U(R[x;α, δ]) ⊆ U(R) +Ni`(R)[x;α, δ].
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Proof. Since R is NI, hence Ni`(R) is an ideal of R and then R = R/Ni`(R) is
reduced. Since Ni`(R) is an (α, δ)-compatible ideal of R, then the ring R is (α, δ)-
compatible, by [7, Proposition 2.1]. Hence R is α-rigid, by [9, Lemma 2.2]. Now,
the result follows from Corollary 2.12. 2

Corollary 2.14. Let R be a weakly 2-primal ring which is (α, δ)-compatible. Then
U(R[x;α, δ]) = U(R) +Ni`(R)[x;α, δ] = U(R) +Ni`(R[x;α, δ]).

Proof. Since R is (α, δ)-compatible, Ni`(R) is (α, δ)-compatible, by Lemma 2.1.
Since a weakly 2-primal ring is NI, we have U(R[x;α, δ]) ⊆ U(R) +Ni`(R)[x;α, δ],
by Corollary 2.13. Since R is weakly 2-primal, Ni`(R)[x;α, δ] = Ni`(R[x;α, δ]).
Thus U(R) + Ni`(R)[x;α, δ] ⊆ U(R[x;α, δ]). Therefore U(R[x;α, δ]) = U(R) +
Ni`(R)[x;α, δ]. 2

Corollary 2.15. Let R be a weakly 2-primal ring which is (α, δ)-compatible. Then
J(R[x;α, δ]) = Ni`(R)[x;α, δ].

Proof. Following Theorem 2.10, we get

Ni`(R)[x;α, δ] = Ni`(R[x;α, δ]) = L− rad(R)[x;α, δ] = L− rad(R[x;α, δ]).

Thus the result follows from Corollary 2.14. 2

Our next result concerns with stable range 1 property of Ore extension rings.
Recall that an element a in any ring R is said to have (right) stable range 1 (written
Sr(a) = 1) if aR + bR = R (for any b ∈ R) implies that a + br ∈ U(R) for some
r ∈ R. If Sr(a) = 1 for all a ∈ R, then a ring R is said to have stable range 1,
written Sr(R) = 1. It is well known that this property is left-right symmetric.

Proposition 2.16. If Ni`(R) is an (α, δ)-compatible ideal of R, then we have
Sr(R[x;α, δ]) > 1.

Proof. We will begin by assuming, for a contradiction, that Sr(R[x;α, δ]) = 1. Now,
since x(−x)+1+x2 = 1, then there exists f(x) ∈ R[x;α, δ] such that x+(1+x2)f(x)
is a unit in R[x;α, δ]. For each a ∈ R we have x2a = δ2(a) + [αδ(a) + δα(a)]x +
α2(a)x2. Write f(x) = a0 + a1x+ · · ·+ anx

n. Then

x+ (1 + x2)f(x) = [δ2(a0) + a0]

+ [δ2(a1) + αδ(a0) + δα(a0) + a1 + 1]x

+ [δ2(a2) + αδ(a1) + δα(a1) + α2(a0) + a2]x2

+ [δ2(a3) + αδ(a2) + δα(a2) + α2(a1) + a3]x3

...

+ [δ2(an−1) + αδ(an−2) + δα(an−2) + α2(an−3) + an−1]xn−1

+ [δ2(an) + αδ(an−1) + δα(an−1) + α2(an−2) + an]xn

+ [αδ(an) + δα(an) + α2(an−1)]xn+1

+ [α2(an)]xn+2.
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Since Ni`(R) is an ideal of R, hence R is weakly 2-primal and so by Corollary 2.14,
the constant term of x+ (1 +x2)f(x) is unit and other coefficients are all nilpotent.
Then nilpotency of α2(an) and Lemma 2.1 imply that an is nilpotent. Since Ni`(R)
is an α-invariant and a δ-ideal, we have αδ(an)+δα(an) ∈ Ni`(R). Now nilpotency
of [αδ(an) + δα(an) +α2(an−1)] and Lemma 2.1 implies that an−1 ∈ Ni`(R). By a
similar argument, one can show that a0, a1, . . . , an ∈ Ni`(R). Then [δ2(a0) + a0] ∈
Ni`(R), which is a contradiction, since it is the constant term of x+ (1 + x2)f(x).
Therefore Sr(R[x;α, δ]) > 1, as desired. 2

3. The Examples

Below we construct examples of rings which help us to support our main results
and also explain the limitations of the obtained results. The class of NI rings
which are (α, δ)-compatible are quite large and important. For some other classes
of examples, we direct the reader to see [6]. As a first example, we present some
classes of rings with this property.

Example 3.1. Let S be any reduced ring and consider the reversible and hence
NI ring R = {(a, b) | a, b ∈ S} with addition pointwise and multiplication given
by (a, b)(c, d) = (ac, ad + bc). Let α : R → R be an automorphism defined by
α((a, b)) = (a,−b) and δ : R→ R be an α-derivation defined by δ((a, b)) = (a, b)−
α((a, b)) = (0,−b). We will show that R is (α, δ)-compatible. To see this, let
(a, b)(c, d) = 0. Thus ac = ad+ bc = 0. Therefore ca = 0, since S is reduced. Now,
multiplying ad+bc = 0 from left by c, we get cad+cbc = 0 and then cbc = 0. Hence
(bc)2 = bcbc = 0 and so bc = ad = 0, since S is reduced. Then (a, b)α((c, d)) =
(ac, bc− ad) = (0, 0). Similarly, one can see that (a, b)α((c, d)) = (0, 0) implies that
(a, b)(c, d) = (0, 0). Thus R is α-compatible. On the other hand, let (a, b)(c, d) = 0.
Then similar computations as above show that (a, b)δ((c, d)) = 0. Therefore R is
(α, δ)-compatible, as desired.

Let R be a ring and σ denotes an endomorphism of R with σ(1) = 1. In
[5], the authors introduced skew triangular matrix ring as a set of all triangular
matrices with addition point-wise and a new multiplication subject to the condition
Eijr = σj−i(r)Eij . So (aij)(bij) = (cij), where cij = aiibij + ai,i+1σ(bi+1,j) + · · ·+
aijσ

j−i(bjj), for each i ≤ j and denoted it by Tn(R, σ).

The subring of the skew triangular matrices with constant main diagonal is
denoted by S(R,n, σ); and the subring of the skew triangular matrices with constant
diagonals is denoted by T (R,n, σ). We can denote A = (aij) ∈ T (R,n, σ) by
(a11, . . . , a1n). Then T (R,n, σ) is a ring with addition point-wise and multiplication
given by:

(a0, . . . , an−1)(b0, . . . , bn−1) = (a0b0, a0 ∗ b1 +a1 ∗ b0, . . . , a0 ∗ bn−1 + · · ·+an−1 ∗ b0),

with ai ∗ bj = aiσ
i(bj), for each i and j. Therefore, clearly one can see that

T (R,n, σ) ∼= R[x;σ]/(xn), where (xn) is the ideal generated by xn in R[x;σ].
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We consider the following two subrings of S(R,n, σ), as follows:

A(R,n, σ) =


bn2 c∑
j=1

n−j+1∑
i=1

ajEi,i+j−1 +

n∑
j=bn2 c+1

n−j+1∑
i=1

ai,i+j−1Ei,i+j−1

 ;

B(R,n, σ) = {A+ rE1k |A ∈ A(R,n, σ) and r ∈ R} n = 2k ≥ 4.

Let α and σ be endomorphisms of a ring R and δ is an α-derivation, with
ασ = σα and δσ = σδ. The endomorphism α of R is extended to the endomorphism
ᾱ : Tn(R, σ)→ Tn(R, σ) defined by ᾱ((aij)) = (α(aij)) and the α-derivation δ of R
is also extended to δ̄ : Tn(R, σ)→ Tn(R, σ) defined by δ̄((aij)) = (δ(aij)).

Example 3.2. α be a rigid endomorphism of a ring R, δ and α-derivation and σ
an endomorphism of R such that ασ = σα and σδ = δσ. If R is α-rigid, then the
ring T (R,n, σ)[x; ᾱ, δ̄] is a reversible ring.

Proof. We break the proof in to some parts.

Claim 1: If R is a (α, δ) compatible and (α, δ)-skew Armendariz, then R is a
reversible ring if and only if R[x;α, δ] is reversible.
Proof. We only need to prove the necessity. For this, let f(x) =

∑m
i=0 aix

i and
g(x) =

∑n
j=0 bjx

j ∈ R[x;α, δ] such that f(x)g(x) = 0. Then aix
ibjx

j = 0, for each
i and j, by (α, δ)-skew Armendariz property of R. Then by Lemma 2.1, we have
aibj = 0, for each i and j. Since R is reversible bjai = 0 and hence bjα

k(ai) = 0,
for each k ≥ 0 and bjδ

l(ai) = 0, for each l ≥ 0, since R is (α, δ) compatible. Then
g(x)f(x) = 0 and therefore R[x;α, δ] is reversible.

Claim 2: Let R be a σ-rigid ring and A = (aij), B = (bij) ∈ A(R,n, σ) such that
AB = 0, then aikbkj = 0, for each 1 ≤ i, j, k ≤ n.
Proof. We proceed by induction on n. The case n = 1 is clear and hence the
base case of our induction is established. So, we may assume n > 1 and that the
claim is true for all smaller values by inductive assumption. Let A = (aij) and
B = (bij) in A(R,n, σ) such that AB = 0. Consider the following elements in
A(R,n, σ): A′ = (a′ij), A

′′ = (a′′ij), B
′ = (b′ij), B

′′ = (b′′ij), where a′ij = aij , a
′′
ij =

ai+1,j+1, b
′
ij = bij , b

′′
ij = bi+1,j+1, for all 1 ≤ i, j ≤ n− 1. Now from AB = 0, we get

A′B′ = 0 = A′′B′′. Thus by induction hypothesis, we have

aikbkj = 0, alnbnn = 0, alkbkn = 0,

for all 1 ≤ i, j, k ≤ n−1 and 2 ≤ l ≤ n. Now it is sufficient to show that a1kbkn = 0,
for each k. From the entry 1n in AB = 0, we have that

a11b1n + a12σ(b2n) + · · ·+ a1nσ
n−1(bnn) = 0.(3.1)

Since A,B ∈ A(R,n, σ), we have that aij = ai+1,j+1, for 1 ≤ i ≤ j ≤ bn2 c and
bkn = bk−1,n−1 for dn2 e ≤ k ≤ n, where bxc denotes the largest integer less than
or equal to x and also dxe denotes the smallest integer greater than or equal to x.
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Since R is σ-rigid, we have σj−1(bjn)a11 = σj−1(bjn)ajj = 0, for all 1 < j ≤ n.
Thus multiplying (3.1) by a11 on the right, we obtain a11b1na11 = 0. Since R is
reduced, we get a11b1n = 0. Therefore

a12σ(b2n) + a13σ
2(b3n) + · · ·+ a1nσ

n−1(bnn) = 0.(3.2)

Since R is σ-rigid, σj−1(bjn)a12 = σj−1(bjn)aj−1,j = 0, for all 2 < j ≤ n if 2 ≤ bn2 c.
Thus, multiplying (3.2) by a12 on the right, we obtain a12σ(b2n)a12 = 0. Since R
is reduced, we get a12σ(b2n) = 0. Therefore

a13σ
2(b3n) + · · ·+ a1nσ

n−1(bnn) = 0,(3.3)

and also, by σ-compatibility of R, we get a12b2n = 0. Repeating in this way, we get
a1kbkn = 0, for 1 ≤ k ≤ bn2 c and also

a1,bn2 c+1σ
bn2 c(bbn2 c+1,n) + · · ·+ a1nσ

n−1(bnn) = 0.(3.4)

Since R is σ-rigid, we get σn−1(bnn)a1k = σn−1(bkk)a1k = 0, for all 1 ≤ k < n.
Thus, multiplying (3.4) by σn−1(bnn) on the left, we obtain σn−1(bnn)a1nσ

n−1(bnn) =
0. Using the reduced property of a ring R, we get a1nσ

n−1(bnn) = 0. Therefore

a1,bn2 c+1σ
bn2 c(bbn2 c+1,n) + · · ·+ a1,n−1σ

n−2(bn−1,n) = 0(3.5)

and also using the σ-compatibility of R, we get a1nbnn = 0. By continuing in this
way, we can show that a1kbkn = 0, for all dn2 e ≤ k ≤ n. Thus if n is even, we are
done. Also, if n is odd, we obtain that

a1,bn2 c+1σ
bn2 c(bbn2 c+1,n) = 0,

and by σ-compatibility of R, we get

a1,bn2 c+1bbn2 c+1,n = 0.

Therefore aikbkj = 0, for all 1 ≤ i, j, k ≤ n, as desired.
Now, by Claim 2, one can see easily that T (R,n, σ) is reversible and (ᾱ, δ̄)-

compatible. Therefore by Claim 1, it is sufficient to prove that T (R,n, σ) is
(ᾱ, δ̄)-skew Armendariz ring. For, consider the map ϕ : T (R,n, σ)[x; ᾱ, δ̄] →
T (R[x;α, δ], n, σ̄) defined by ϕ(

∑m
k=0Akx

k) = (fij), where Ak = (a
(k)
ij ) and

fij =
∑m

k=0 a
(k)
ij x

k, for each m and 1 ≤ i, j ≤ n. It is easy to show that ϕ is

an isomorphism. Let f =
∑r

k=0Akx
k and g =

∑s
l=0Blx

l ∈ T (R,n, σ)[x; ᾱ, δ̄] and

fg = 0, where Ak = (a
(k)
ij ) and Bl = (b

(l)
ij ). So we have (fij)(gij) = 0, where

fij =
∑r

k=0 a
(k)
ij x

k and gij =
∑s

l=0 b
(l)
ij x

l. Since R is σ-rigid, R[x;α, δ] is σ̄-rigid.

This is because, if f(x) =
∑m

i=0 aix
i ∈ R[x;α, δ] and f(x)σ̄(f(x)) = 0, then we

have amα
m(σ(am)) = 0 and consequently amσ(αm(am)) = 0, since ασ = σα. Thus

amα
m(am) = 0, since R is σ-rigid and so am = 0, since R is α-rigid. Hence f(x) = 0
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and hence R[x;α, δ] is σ̄-rigid. Thus fitgtj = 0, for each 1 ≤ i, j, t ≤ n and easy
calculations show that Akx

kBlx
l = 0, for each k and l, showing that T (R,n, σ) is

(ᾱ, δ̄)-skew Armendariz ring, and the result follows. 2

The following example shows that in Theorems 2.5 and 2.6, the hypothesis that
“R is (α, δ)-compatible” can not be dropped.

Example 3.3.

(1) Let R0 be any reduced ring. Then for a reversible ring R = R0[x], consider
the endomorphism α : R → R given by α(f(x)) = f(0) and α-derivation
δ : R → R given by δ(f(x)) = xf(x) − α(f(x))x. Then one can see easily
that the ring R is δ-compatible but R is not α-compatible. Now considering
the elements F (y) = a0 + a1y and G(y) = b0 + b1y in R[y;α, δ], where
a0 = b0 = x, a1 = 0 and b1 = −x, we get G(y)F (y) = x2 − x3 = c ∈ R but
b0a0 = x2 6= c.

(2) Let S and T be any reduced rings. Suppose R = S ⊕ T with the usual
addition and multiplication. Then for reversible ring R, let α : R→ R be an
endomorphism defined by α((a, b)) = (b, a) and δ : R→ R be an α-derivation
defined by δ((a, b)) = (a − b, 0). Then it can be easily seen that the ring R
is neither α-compatible nor δ-compatible. Let f(x) = (−1, 0) + (1, 0)x and
g(x) = (1, 0) + (−1, 0)x be non-zero elements in R[x;α, δ]. Then f(x)g(x) =
(0, 0), but (−1, 0)(1, 0) = (−1, 0) 6= (0, 0).

It is well known that when R is an NI ring and (α, δ)-compatible, then Ni`(R) is
an (α, δ)-compatible ideal of R. But, the following example shows that the converse
is not true in general.

Example 3.4. Let Z4 be the ring of integers modulo 4. Consider the reversible and
hence NI ring R = {(a, b) | a, b ∈ Z4} with addition pointwise and multiplication
given by (a, b)(c, d) = (ac, ad + bc). Let α : R → R be an endomorphism defined
by α((a, b)) = (a, 2b). We will show that R is not α-compatible ring. To see
this, let r = (2, 0) and s = (0, 1) in R, then rs = (0, 2) 6= (0, 0) whereas rα(s) =
(2, 0)(0, 2) = (0, 0). Thus R is not α-compatible. On the other hand, sinceNi`(R) =
{(0, b), (2, b)| b ∈ Z4}, easy calculations show that Ni`(R) is an α-compatible ideal
of R.
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