• Title/Summary/Keyword: commutative

Search Result 618, Processing Time 0.027 seconds

ON GRADED RADICALLY PRINCIPAL IDEALS

  • Abu-Dawwas, Rashid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1401-1407
    • /
    • 2021
  • Let R be a commutative G-graded ring with a nonzero unity. In this article, we introduce the concept of graded radically principal ideals. A graded ideal I of R is said to be graded radically principal if Grad(I) = Grad(〈c〉) for some homogeneous c ∈ R, where Grad(I) is the graded radical of I. The graded ring R is said to be graded radically principal if every graded ideal of R is graded radically principal. We study graded radically principal rings. We prove an analogue of the Cohen theorem, in the graded case, precisely, a graded ring is graded radically principal if and only if every graded prime ideal is graded radically principal. Finally we study the graded radically principal property for the polynomial ring R[X].

An Ideal-based Extended Zero-divisor Graph on Rings

  • Ashraf, Mohammad;Kumar, Mohit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.595-613
    • /
    • 2022
  • Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph 𝚪'I (R) and prove that 𝚪'I (R) is connected with diameter at most two and if 𝚪'I (R) contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph 𝚪'I (R) and the ideal-based zero-divisor graph 𝚪I (R) associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor graph 𝚪'I (R) is identical to the ideal-based zero-divisor graph 𝚪I (R) if and only if R has exactly two minimal prime-ideals which contain I.

RESTRICTED POLYNOMIAL EXTENSIONS

  • Myung, No-Ho;Oh, Sei-Qwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.865-876
    • /
    • 2021
  • Let 𝔽 be a commutative ring. A restricted skew polynomial extension over 𝔽 is a class of iterated skew polynomial 𝔽-algebras which include well-known quantized algebras such as the quantum algebra Uq(𝔰𝔩2), Weyl algebra, etc. Here we obtain a necessary and sufficient condition in order to be restricted skew polynomial extensions over 𝔽. We also introduce a restricted Poisson polynomial extension which is a class of iterated Poisson polynomial algebras and observe that a restricted Poisson polynomial extension appears as semiclassical limits of restricted skew polynomial extensions. Moreover, we obtain usual as well as unusual quantized algebras of the same Poisson algebra as applications.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

C*-ALGEBRAIC SCHUR PRODUCT THEOREM, PÓLYA-SZEGŐ-RUDIN QUESTION AND NOVAK'S CONJECTURE

  • Krishna, Krishnanagara Mahesh
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.789-804
    • /
    • 2022
  • Striking result of Vybíral [51] says that Schur product of positive matrices is bounded below by the size of the matrix and the row sums of Schur product. Vybíral used this result to prove the Novak's conjecture. In this paper, we define Schur product of matrices over arbitrary C*-algebras and derive the results of Schur and Vybíral. As an application, we state C*-algebraic version of Novak's conjecture and solve it for commutative unital C*-algebras. We formulate Pólya-Szegő-Rudin question for the C*-algebraic Schur product of positive matrices.

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

GROUP ACTIONS IN A UNIT-REGULAR RING WITH COMMUTING IDEMPOTENTS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2009
  • Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will consider some group actions on X by G, the left (resp. right) regular action and the conjugate action. In this paper, by investigating these group actions we can have some results as follows: First, if E(R), the set of all nonzero nonunit idempotents of a unit-regular ring R, is commuting, then $o_{\ell}(x)\;=\;o_r(x)$, $o_c(x)\;=\;\{x\}$ for all $x\;{\in}\;X$ where $o_{\ell}(x)$ (resp. $o_r(x)$, $o_c(x)$) is the orbit of x under the left regular (resp. right regular, conjugate) action on X by G and R is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is a cyclic group and $2\;=\;1\;+\;1\;{\in}\;G$, then G is a finite group. Finally, if R is an abelian regular ring such that G is an abelian group, then R is a commutative ring.

ON GRADED J-IDEALS OVER GRADED RINGS

  • Tamem Al-Shorman;Malik Bataineh;Ece Yetkin Celikel
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • The goal of this article is to present the graded J-ideals of G-graded rings which are extensions of J-ideals of commutative rings. A graded ideal P of a G-graded ring R is a graded J-ideal if whenever x, y ∈ h(R), if xy ∈ P and x ∉ J(R), then y ∈ P, where h(R) and J(R) denote the set of all homogeneous elements and the Jacobson radical of R, respectively. Several characterizations and properties with supporting examples of the concept of graded J-ideals of graded rings are investigated.

UN RINGS AND GROUP RINGS

  • Kanchan, Jangra;Dinesh, Udar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.83-91
    • /
    • 2023
  • A ring R is called a UN ring if every non unit of it can be written as product of a unit and a nilpotent element. We obtain results about lifting of conjugate idempotents and unit regular elements modulo an ideal I of a UN ring R. Matrix rings over UN rings are discussed and it is obtained that for a commutative ring R, a matrix ring Mn(R) is UN if and only if R is UN. Lastly, UN group rings are investigated and we obtain the conditions on a group G and a field K for the group algebra KG to be UN. Then we extend the results obtained for KG to the group ring RG over a ring R (which may not necessarily be a field).

THE HOMOLOGY REGARDING TO E-EXACT SEQUENCES

  • Ismael Akray;Amin Mahamad Zebari
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.21-38
    • /
    • 2023
  • Let R be a commutative ring with identity. Let R be an integral domain and M a torsion-free R-module. We investigate the relation between the notion of e-exactness, recently introduced by Akray and Zebari [1], and generalized the concept of homology, and establish a relation between e-exact sequences and homology of modules. We modify some applications of e-exact sequences in homology and reprove some results of homology with e-exact sequences such as horseshoe lemma, long exact sequences, connecting homomorphisms and etc. Next, we generalize two special drived functor T or and Ext, and study some properties of them.