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RESTRICTED POLYNOMIAL EXTENSIONS

No-Ho Myung and Sei-Qwon Oh

Abstract. Let F be a commutative ring. A restricted skew polyno-

mial extension over F is a class of iterated skew polynomial F-algebras

which include well-known quantized algebras such as the quantum alge-
bra Uq(sl2), Weyl algebra, etc. Here we obtain a necessary and sufficient

condition in order to be restricted skew polynomial extensions over F.
We also introduce a restricted Poisson polynomial extension which is a

class of iterated Poisson polynomial algebras and observe that a restricted

Poisson polynomial extension appears as semiclassical limits of restricted
skew polynomial extensions. Moreover, we obtain usual as well as unusual

quantized algebras of the same Poisson algebra as applications.

1. Introduction

Let F be a commutative ring. Given an F-endomorphism β on an F-algebra
R, an F-linear map ν is said to be a left β-derivation on R if ν(ab) = β(a)ν(b)+
ν(a)b for all a, b ∈ R. For such a pair (β, ν), a free left R-module with basis
{zi}∞i=0 becomes an F-algebra with multiplication

za = β(a)z + ν(a), a ∈ R,

which is a skew polynomial F-algebra or an Ore extension of R and denoted by
R[z;β, ν]. Refer to [7, Chapter 2] for details of a skew polynomial algebra.

Definition. An iterated skew polynomial F-algebra

Ak = F[x1][x2;β2, ν2] · · · [xk;βk, νk]

is called a k-restricted skew polynomial extension over F if the pairs (βj , νj)
satisfy that, for all 1 ≤ i < j ≤ k,

βj(1) = 1, βj(xi) = ajixi, aji ∈ F,(1.1)

νj(1) = 0, νj(xi) = uji ∈ Aj−1.(1.2)
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(Note that the conditions βj(1) = 1 and νj(1) = 0 in (1.1) and (1.2) are natural
since βj is an algebra homomorphism and νj is a derivation.)

Let Ak−1 = F[x1][x2;β2, ν2] · · · [xk−1;βk−1, νk−1] be a (k − 1)-restricted
skew polynomial extension over F and let βk, νk be F-linear maps from Ak−1
into itself. In this article, we find necessary and sufficient conditions for βk
and νk such that there exists a restricted skew polynomial extension Ak =
Ak−1[xk;βk, νk] over F. See Lemma 2.2 and Theorem 2.4. Hence, using induc-
tion on k, we get a restricted skew polynomial extension Ak over F from the
result.

Suppose that A is an F-algebra and let ~ ∈ A be a nonzero, nonunit, central
and non-zero-divisor such that A/~A is commutative. Then A := A/~A is a
nontrivial commutative k-algebra as well as a Poisson algebra with the Poisson
bracket

(1.3) {a, b} = ~−1(ab− ba)

for a, b ∈ A/~A by [1, III.5.4]. The algebra A is called a quantization of the
Poisson algebra A and A is called a semiclassical limit of A in [6, §2] and
[10, Definition 3]. Moreover, if ~ − q, q ∈ F, is a nonzero and nonunit, then
the nontrivial algebra A/(~ − q)A is called a deformation of A or A in [6, §2]
and [10, Definition 3]. An interested reader is referred to [5], [12] and [2] for a
deformation quantization.

By analogy with the restricted skew polynomial extension, we define a re-
stricted Poisson polynomial extension for iterated Poisson polynomial algebras.
See Definition 3. Here we obtain a condition for βk and νk such that a restricted
Poisson polynomial extension is a semiclassical limit of Ak. See Theorem 3.2
and Corollary 3.3. As applications, we will show that there are well-known
restricted skew polynomial extensions as well as unusual restricted skew poly-
nomial extensions such that their semiclassical limits are the same as a Poisson
polynomial algebra in §3.

2. A construction of restricted skew polynomial extensions

Set A1 = F[x1] and let An, n > 1, be an iterated skew polynomial F-algebra

An = F[x1][x2;β2, ν2] · · · [xn;βn, νn].

By monomials in An we mean finite products of xi’s together with the unity 1.
A monomial X is said to be standard if X is of the form

X = 1 or X = xi1xi2 · · ·xik (1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n).

Note that the set of all standard monomials of An forms an F-basis.
Let β and ν be F-linear maps from an F-algebra R into itself. The following

lemma is well known, e.g. see [9, p. 177].

Lemma 2.1. The following conditions are equivalent:
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(1) The F-linear map φ : R→M2(R) given by

φ(r) =

(
β(r) ν(r)

0 r

)
for all r ∈ R, is an F-algebra homomorphism.

(2) β and ν are an endomorphism and a left β-derivation on R, respectively.

For a (k − 1)-restricted skew polynomial extension

Ak−1 = F[x1][x2;β2, ν2] · · · [xk−1;βk−1, νk−1]

over F, we are going to construct a k-restricted skew polynomial extension

Ak = Ak−1[xk;βk, νk] = F[x1][x2;β2, ν2] · · · [xk;βk, νk]

over F. Let k = 2. Then there exists an F-algebra homomorphism φ : F[x1]→
M2(F[x1]) defined by

φ(x1) =

(
β2(x1) ν2(x1)

0 x1

)
.

Hence β2 is an F-algebra endomorphism and ν2 is a left β2-derivation on A1 =
F[x1] by Lemma 2.1 and thus there exists the skew polynomial F-algebra A2 =
A1[x2;β2, ν2]. Henceforth we assume k ≥ 3. The following statement gives
us necessary conditions for the existence of a k-restricted skew polynomial
extension Ak = Ak−1[xk;βk, νk] over F.

Lemma 2.2. Let Ak−1 = F[x1][x2;β2, ν2] · · · [xk−1;βk−1, νk−1] be a (k − 1)-
restricted skew polynomial extension over F. If there exists a k-restricted skew
polynomial extension

Ak = Ak−1[xk;βk, νk] = F[x1][x2;β2, ν2] · · · [xk;βk, νk]

over F, then βk, νk satisfy the following conditions

βk(uji) = akjakiuji (1 ≤ i < j < k),(2.1)

akjxjuki + ukjxi = ajiakixiukj + ajiukixj + νk(uji) (1 ≤ i < j < k).(2.2)

Proof. Let 1 ≤ i < j ≤ k− 1. Since βk is an F-algebra endomorphism, we have
that

βk(xjxi) = βk(βj(xi)xj + νj(xi)) = akjakiajixixj + βk(uji)

and

βk(xjxi) = βk(xj)βk(xi) = akjakixjxi

= akjaki(βj(xi)xj + νj(xi)) = akjakiajixixj + akjakiuji

by (1.1), (1.2). Hence we get (2.1).
Similarly, since νk is a left βk-derivation, we have that

νk(xjxi) = βk(xj)νk(xi) + νk(xj)xi = akjxjuki + ukjxi
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and
νk(xjxi) = νk(βj(xi)xj + νj(xi)) = νk(ajixixj + uji)

= aji(βk(xi)νk(xj) + νk(xi)xj) + νk(uji)

= ajiakixiukj + ajiukixj + νk(uji)

by (1.1), (1.2). Hence we get (2.2). �

Lemma 2.3. Let Ak−1 = F[x1][x2;β2, ν2] · · · [xk−1;βk−1, νk−1] be a (k − 1)-
restricted skew polynomial extension over F and let βk, νk be F-linear maps
from Ak−1 into itself subject to the conditions (1.1), (1.2). If βk and νk satisfy
(2.1) and (2.2), then the following conditions hold.

(2.3) βk(xj)βk(xi) = βkβj(xi)βk(xj) + βkνj(xi),

(2.4) βk(xj)νk(xi) + νk(xj)xi = βkβj(xi)νk(xj) + νkβj(xi)xj + νkνj(xi).

Proof. Since Ak−1 is a (k − 1)-restricted skew polynomial extension over F,
the equations (2.3) and (2.4) follow from (2.1) and (2.2), respectively, by (1.1),
(1.2). �

In the following theorem, we see that (2.1) and (2.2) are sufficient con-
ditions for the existence of the restricted skew polynomial extension Ak =
Ak−1[xk;βk, νk] over F.

Theorem 2.4. Let Ak−1 = F[x1][x2;β2, ν2] · · · [xk−1;βk−1, νk−1] be a (k − 1)-
restricted skew polynomial extension over F. Given F-linear maps βk, νk from
Ak−1 into itself subject to the conditions (1.1), (1.2), if βk and νk satisfy the
conditions (2.1), (2.2), then there exists a k-restricted skew polynomial exten-
sion

Ak = Ak−1[xk;βk, νk] = F[x1][x2;β2, ν2] · · · [xk;βk, νk]

over F.

Proof. It is enough to show that there exist an F-algebra endomorphism βk
on Ak−1 and a left βk-derivation νk subject to the conditions (1.1) and (1.2).
Note that the set of all standard monomials forms an F-basis of Ak−1. For any
standard monomials xi1 · · ·xir ∈ Ak−1, define F-linear maps βk and νk from
Ak−1 into itself by

βk(1) = 1, βk(xi1 · · ·xir ) = (aki1xi1) · · · (akirxir ),(2.5)

νk(1) = 0, νk(xi1 · · ·xir )=

r∑
`=1

(aki1xi1) · · · (aki`−1
xi`−1

)uki`(xi`+1
· · ·xir ),(2.6)

where aki` ∈ F and uki` ∈ Ak−1 for ` = 1, . . . , r. Observe that these F-linear
maps βk and νk satisfy (1.1) and (1.2). We claim that the map βk defined by
(2.5) is an F-algebra endomorphism and the map νk defined by (2.6) is a left
βk-derivation by using Lemma 2.1.
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Let F〈Sk−1〉 be the free F-algebra on the set Sk−1 = {x1, . . . , xk−1}. Define
an F-algebra homomorphism f : F〈Sk−1〉 →M2(Ak−1) by

f(xi) =

(
βk(xi) νk(xi)

0 xi

)
(1 ≤ i < k).

Let us show that

(2.7) f(νj(xi)) =

(
βkνj(xi) νkνj(xi)

0 νj(xi)

)
for 1 ≤ i < j < k. For any standard monomial X = xi1 · · ·xir in Ak−1, by
(2.5) and (2.6),

νk(X) =

r∑
`=1

βk(xi1 · · ·xi`−1
)νk(xi`)(xi`+1

· · ·xir )

=

r−1∑
`=1

βk(xi1 · · ·xi`−1
)νk(xi`)(xi`+1

· · ·xir ) + βk(xi1 · · ·xir−1)νk(xir )

= νk(xi1 · · ·xir−1
)xir + βk(xi1 · · ·xir−1

)νk(xir ).

In particular, if Xxj is standard (thus ir ≤ j), then

(2.8) νk(Xxj) = βk(X)νk(xj) + νk(X)xj .

Let us verify first that

(2.9) f(X) =

(
βk(X) νk(X)

0 X

)
for any standard monomial X = xi1 · · ·xir in Ak−1 of length r. We proceed
by induction on r. If r = 1, then (2.9) is true trivially. Assume that r > 1 and
that (2.9) holds for any standard monomial of length < r. Set Y = xi1 · · ·xir−1

.
Then Y is a standard monomial of length r − 1 and X = Y xir . Thus (2.9)
holds as follows:

f(X) = f(Y xir ) = f(Y )f(xir )

=

(
βk(Y ) νk(Y )

0 Y

)(
βk(xir ) νk(xir )

0 xir

)
(by induction hypothesis)

=

(
βk(Y )βk(xir ) βk(Y )νk(xir ) + νk(Y )xir

0 Y xir

)
=

(
βk(X) νk(X)

0 X

)
. (by (2.5), (2.8))
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Let νj(xi) =
∑

` b`X`, where all b` ∈ F and X` are standard monomials of
Aj−1. Since f is an F-algebra homomorphism, we have

f(νj(xi)) =
∑
`

b`f(X`)

=
∑
`

b`

(
βk(X`) νk(X`)

0 X`

)
(by (2.9))

=

(
βk(
∑

` b`X`) νk(
∑

` b`X`)
0

∑
` b`X`

)
=

(
βkνj(xi) νkνj(xi)

0 νj(xi)

)
.

Thus (2.7) holds.
Note that Ak−1 is an F-algebra generated by x1, . . . , xk−1 with relations

xjxi − βj(xi)xj − νj(xi) (1 ≤ i < j < k).

Namely, Ak−1 is isomorphic to the F-algebra F〈Sk−1〉/I, where I is the ideal
generated by

xjxi − βj(xi)xj − νj(xi) (1 ≤ i < j < k).

Since f is an F-algebra homomorphism, it is easy to check that I ⊆ kerf by
(2.3), (2.4) and (2.7). Hence there exists an F-algebra homomorphism φ :
Ak−1 →M2(Ak−1) such that

φ(xi) =

(
βk(xi) νk(xi)

0 xi

)
for 1 ≤ i < k. By Lemma 2.1, βk is an F-algebra endomorphism on Ak−1 and
νk is a left βk-derivation on Ak−1 as claimed. �

Remark 2.5. Retain the notations of Theorem 2.4. If aki 6= 0 for all 1 ≤ i < k,
then βk is a monomorphism.

Proof. Note that βi, νi are F-linear for all i = 1, . . . , k. Let g =
∑

i aiXi ∈
Ak−1, where ai ∈ F and Xi are standard monomials for all i, and suppose that
βk(g) = 0. Then βk(Xi) = biXi for some 0 6= bi ∈ F by (2.5) and thus

0 = βk(g) =
∑
i

aibiXi.

It follows that all ai = 0 since the standard monomials of Ak form an F-basis.
Thus g = 0. �

3. Application

Let ~ be an indeterminate throughout the section.
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Example 3.1. Set F = C[~, ~−1] and

a21 = ~2, a31 = ~−2, a32 = ~2,
u21 = −(~2 − 1), u31 = −(~−2 − 1), u32 = −(~2 − 1).

By Theorem 2.4, there exists a restricted skew polynomial extension

A3 = F[x1][x2;β2, ν2][x3;β3, ν3]

over F, where

β2(x1) = a21x1 = ~2x1, β3(x1) = a31x1 = ~−2x1,
β3(x2) = a32x2 = ~2x2, ν2(x1) = u21 = −(~2 − 1),

ν3(x1) = u31 = −(~−2 − 1), ν3(x2) = u32 = −(~2 − 1)

since β2, ν2, β3 and ν3 satisfy (1.1), (1.2), (2.1), (2.2). Note that A3 is the
F-algebra generated by x1, x2, x3 subject to the relations

(3.1) ~2x1x2−x2x1 = ~2−1, ~2x3x1−x1x3 = ~2−1, ~2x2x3−x3x2 = ~2−1,

which is the relation appearing in [8].
Observe that ~−1 is a nonzero, nonunit, non-zero-divisor and central element

of A3 such that the factor A3 := A3/(~− 1)A3 is commutative. Hence A3 is a
Poisson C-algebra with Poisson bracket

{a, b} = (~− 1)−1(ab− ba)

for all a, b ∈ A3 by (1.3), which is a semiclassical limit of A3. More precisely, A3

is Poisson isomorphic to the Poisson algebra C[x1, x2, x3] with Poisson bracket

(3.2) {x2, x1} = 2x1x2 − 2, {x1, x3} = 2x1x3 − 2, {x3, x2} = 2x2x3 − 2.

Refer to [11, Example 4.2] for the Poisson bracket (3.2). �

A derivation α on a Poisson algebra R is said to be a Poisson derivation if

α({a, b}) = {α(a), b}+ {a, α(b)}

for all a, b ∈ R. Let α be a Poisson derivation on R and let δ be a derivation
on R such that

δ({a, b})− {δ(a), b} − {a, δ(b)} = α(a)δ(b)− δ(a)α(b)

for all a, b ∈ R. By [14, 1.1], the commutative polynomial C-algebra R[z] is
a Poisson algebra with Poisson bracket {z, a} = α(a)z + δ(a) for all a ∈ R.
Such a Poisson polynomial algebra R[z] is denoted by R[z;α, δ]p in order to
distinguish it from skew polynomial algebras. If α = 0, then we write R[z; δ]p
for R[z; 0, δ]p and if δ = 0, then we write R[z;α]p for R[z;α, 0]p.

Definition. An iterated Poisson polynomial C-algebra

Bk = C[x1][x2;α2, δ2]p · · · [xk;αk, δk]p
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is called a k-restricted Poisson polynomial extension over C if the pairs (αj , δj)
satisfy that, for i = 1, . . . , j − 1 and i < j ≤ k,

αj(xi) = cjixi, where cji ∈ C,(3.3)

δj(xi) = dji ∈ Bj−1 = C[x1, . . . , xj−1].(3.4)

Let F be the ring C[[~]] of the formal power series over C. Here, by using
Theorem 2.4, we obtain a Poisson algebra C[x1, . . . , xk], which is a semiclassical
limit of Ak, in the following.

Theorem 3.2. Let F = C[[~]] and let Ak = F[x1][x2;β2, ν2] · · · [xk;βk, νk] be a
restricted skew polynomial extension over F where

βj(xi) = ajixi, (aji ∈ F), νj(xi) ∈ Aj−1,

for 1 ≤ i < j ≤ k. Suppose that

(3.5) aji − 1 ∈ ~F, νj(xi) ∈ ~Ak

for all 1 ≤ i < j ≤ k. Then Ak = Ak/~Ak is Poisson isomorphic to a restricted
Poisson polynomial extension

C[x1][x2;α2, δ2]p · · · [xk;αk, δk]p

over C, where

(3.6) αj(xi) = cjixi =

(
daji
d~
|~=0

)
xi, δj(xi) = dji =

dνj(xi)

d~
|~=0

for all 1 ≤ i < j ≤ k. (Derivatives are formal derivatives of power series in ~.)

Proof. Note that Ak is generated by x1, . . . , xk and that ~ ∈ F is a nonzero
central element of Ak. Since

(3.7)
xjxi − xixj = βj(xi)xj + νj(xi)− xixj

= (aji − 1)xixj + νj(xi) ∈ ~Ak (i < j)

by (3.5), Ak is a commutative C-algebra C[x1, . . . , xk]. Moreover we have

{xj , xi} = ~−1(xjxi − xixj)

=

(
aji − 1

~

)
xixj +

(
νj(xi)

~

)
(by (3.7))

=

(
daji
d~
|~=0

)
xixj +

(
dνj(xi)

d~
|~=0

)
(by (3.5))

for all 1 ≤ i < j ≤ k. Hence the result follows. �

Corollary 3.3. Let F = C[[~]]. The restricted skew polynomial extension Ak

in Theorem 3.2 is a quantization of the restricted Poisson polynomial extension

Bk = C[x1][x2;α2, δ2]p · · · [xk;αk, δk]p

in Theorem 3.2.
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Proof. The result follows by the proof of Theorem 3.2. �

Example 3.4. Here we obtain a quantization of the Poisson algebra B3 =
C[x1, x2, x3] with the Poisson bracket (3.2). Note that B3 is a restricted Poisson
polynomial extension

B3 = C[x1][x2;α2, δ2]p[x3;α3, δ3]p

over C, where

α2 = 2x1
∂

∂x1
, δ2 = −2

∂

∂x1
,

α3 = −2x1
∂

∂x1
+ 2x2

∂

∂x2
, δ3 = 2

∂

∂x1
− 2

∂

∂x2
.

Set F = C[[~]] and

a21 = e2~, a31 = e−2~, a32 = e2~,

u21 = − sin(2~), u31 = sin(2~), u32 = − sin(2~).

By Theorem 2.4, there exists a restricted skew polynomial extension

A3 = F[x1][x2;β2, ν2][x3;β3, ν3]

over F, where

β2(x1) = a21x1 = e2~x1, β3(x1) = a31x1 = e−2~x1,

β3(x2) = a32x2 = e2~x2, ν2(x1) = u21 = − sin(2~),

ν3(x1) = u31 = sin(2~), ν3(x2) = u32 = − sin(2~).

since β2, ν2, β3 and ν3 satisfy (1.1), (1.2), (2.1), (2.2).
Moreover A3 is a quantization of B3 by Corollary 3.3 since aji, uji satisfy

(3.5) and (3.6). Note that A3 is the F-algebra generated by x1, x2, x3 subject
to the relations

e2~x1x2−x2x1 =sin(2~), e2~x3x1−x1x3 =e2~ sin(2~), e2~x2x3−x3x2 =sin(2~),

which is different from (3.1). �

Remark 3.5. Note that the quantized algebras in Example 3.1 and Example 3.4
are distinct quantizations of the Poisson algebra C[x1, x2, x3] with the Poisson
bracket (3.2).

Let us find quantizations of the Poisson Weyl algebra. The Poisson Weyl
algebra is the Poisson polynomial algebra B2k = C[x1, x2, . . . , x2k−1, x2k] with
Poisson bracket

{f, g} =

k∑
i=1

(
− ∂f

∂x2i−1

∂g

∂x2i
+

∂g

∂x2i−1

∂f

∂x2i

)
,
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cf., [4, 1.1.A] and [13, 1.3]. Namely, the Poisson bracket is

{xj , xi} =

{
1, if j = 2`, i = 2`− 1,

0, otherwise

for j > i. Hence B2k is a restricted Poisson polynomial extension

B2k = C[x1][x2; δ2]p · · · [x2k−1]p[x2k; δ2k]p

over C, where

δ2`(xi) =

{
1, if i = 2`− 1,

0, if i 6= 2`− 1.

Example 3.6 (Moyal-Weyl quantization). Set F = C[[~]] and

(3.8) aji = 1, uji =

{~, if j = 2`, i = 2`− 1,

0, otherwise

for all 1 ≤ i < j ≤ 2k. By Theorem 2.4, there exists the restricted skew
polynomial extension

A2k = F[x1][x2; ν2] · · · [x2k−1][x2k; ν2k]

over F, where

βj(xi) = ajixi = xi, (1 ≤ i < j ≤ 2k), ν2`(xi) = u2`i =

{~, if i = 2`− 1,

0, if i 6= 2`− 1,

since all βj and νj satisfy (1.1), (1.2), (2.1), (2.2). By Corollary 3.3, A2k is a
quantization of the Poisson Weyl algebra B2k, since all aji and uji satisfy (3.5)
and

daji
d~
|~=0 = 0,

duji
d~
|~=0 =

{
1, if j = 2`, i = 2`− 1,

0, otherwise.

Note that A2k is an F-algebra generated by x1, x2, . . . , x2k subject to the
relations

(3.9) xjxi − xixj =

{~, if j = 2`, i = 2`− 1,

0, otherwise,

which is the so-called Moyal-Weyl quantization [3, §20.1]. �

Example 3.7. Here we obtain a quantization of the Poisson Weyl algebra B2k

appearing in quantum physics. Set F = C[[~]] and

(3.10) aji =

{
cos ~, if i+ j is odd,

sec ~, if i+ j is even,
uji =

{
sin ~, if j = 2`, i = 2`− 1,

0, otherwise

for all 1 ≤ i < j ≤ 2k. Note that aji, uji ∈ F satisfy (3.5) and

daji
d~
|~=0 = 0,

duji
d~
|~=0 =

{
1, if j = 2`, i = 2`− 1,

0, otherwise

by elementary calculus.
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We will show that there exists a restricted skew polynomial extension

A2k = F[x1][x2;β2, ν2] · · · [x2k−1;β2k−1][x2k;β2k, ν2k]

over F, where

βj(xi) = ajixi, νj(xi) = uji, (1 ≤ i < j ≤ 2k).

For all 1 ≤ i < j ≤ 2k, since all βj and νj satisfy (1.1) and (1.2), it is enough
to show that all βj and νj satisfy (2.1) and (2.2). Assume that there exists a
restricted skew polynomial extension A2k−2 over F. Note that, for any positive
integers i, j, `,

(3.11)
i+ j is odd if and only if

(`+ j is odd and `+ i is even) or (`+ j is even and `+ i is odd).

Observe that F-linear maps β2k−1 and ν2k−1 satisfy (2.2) trivially since
ν2k−1(uji) = 0 and u2k−1,i = 0 for all 1 ≤ i < 2k− 1 and that they also satisfy
(2.1) by (3.11) since β2k−1(uji) = uji. Hence there exists a restricted skew
polynomial extension A2k−2[x2k−1;β2k−1] over F by Theorem 2.4. For F-linear
maps β2k and ν2k, they satisfy (2.1) and (2.2) by (3.11) since β2k(uji) = uji
and ν2k(uji) = 0 and thus there exists A2k = A2k−2[x2k−1;β2k−1][x2k;β2k, ν2k]
by Theorem 2.4. Moreover A2k is a quantization of the Poisson Weyl algebra
B2k by Corollary 3.3 since aji, uji satisfy (3.5) and (3.6).

Note that A2k is an F-algebra generated by x1, x2, . . . , x2k−1, x2k subject to
the relations

(3.12)

x2`x2`−1 − (cos ~)x2`−1x2` = sin ~, (` = 1, . . . , k),

xjxi − (sec ~)xixj = 0, (i < j, i+ j is even),

xjxi − (cos ~)xixj = 0,

(
i < j, i+ j is odd,

if j = 2`, then i 6= 2`− 1

)
.

In particular, we obtain a deformation, a C-algebra generated by x1, x2, . . .,
x2k−1, x2k subject to the relations

xjxi + xixj = 0 (j > i),

by setting ~ = π + 2nπ (n ∈ Z) in the relation (3.12) in which x2i is a central
element for i = 1, . . . , 2k. In (3.9), we obtain a deformation, a C-algebra W
generated by x1, x2, . . . , x2k−1, x2k subject to the relations

xjxi − xixj =

{
1, if j = 2`, i = 2`− 1,

0, otherwise,

by setting ~ = 1. This is the k-th Weyl algebra. This implies that (3.12) is a
quantization different from (3.9). �

Remark 3.8. Note that the quantized algebras in Example 3.6 and Example 3.7
are distinct quantizations of the Poisson Weyl algebra.
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