RESTRICTED POLYNOMIAL EXTENSIONS

No-Ho Myung and Sei-Qwon Oh

Abstract

Let \mathbb{F} be a commutative ring. A restricted skew polynomial extension over \mathbb{F} is a class of iterated skew polynomial \mathbb{F}-algebras which include well-known quantized algebras such as the quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$, Weyl algebra, etc. Here we obtain a necessary and sufficient condition in order to be restricted skew polynomial extensions over \mathbb{F}. We also introduce a restricted Poisson polynomial extension which is a class of iterated Poisson polynomial algebras and observe that a restricted Poisson polynomial extension appears as semiclassical limits of restricted skew polynomial extensions. Moreover, we obtain usual as well as unusual quantized algebras of the same Poisson algebra as applications.

1. Introduction

Let \mathbb{F} be a commutative ring. Given an \mathbb{F}-endomorphism β on an \mathbb{F}-algebra R, an \mathbb{F}-linear map ν is said to be a left β-derivation on R if $\nu(a b)=\beta(a) \nu(b)+$ $\nu(a) b$ for all $a, b \in R$. For such a pair (β, ν), a free left R-module with basis $\left\{z^{i}\right\}_{i=0}^{\infty}$ becomes an \mathbb{F}-algebra with multiplication

$$
z a=\beta(a) z+\nu(a), \quad a \in R,
$$

which is a skew polynomial \mathbb{F}-algebra or an Ore extension of R and denoted by $R[z ; \beta, \nu]$. Refer to [7, Chapter 2] for details of a skew polynomial algebra.

Definition. An iterated skew polynomial \mathbb{F}-algebra

$$
A_{k}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k} ; \beta_{k}, \nu_{k}\right]
$$

is called a k-restricted skew polynomial extension over \mathbb{F} if the pairs $\left(\beta_{j}, \nu_{j}\right)$ satisfy that, for all $1 \leq i<j \leq k$,

$$
\begin{array}{ll}
\beta_{j}(1)=1, & \beta_{j}\left(x_{i}\right)=a_{j i} x_{i}, a_{j i} \in \mathbb{F}, \\
\nu_{j}(1)=0, & \nu_{j}\left(x_{i}\right)=u_{j i} \in A_{j-1} .
\end{array}
$$

Received July 9, 2020; Accepted May 7, 2021.
2010 Mathematics Subject Classification. 16S36, 17B63.
Key words and phrases. Skew polynomial algebra (Ore extension), Poisson algebra, quantization, semiclassical limit.

The second author is supported by Chungnam Nationality University Grant.
(Note that the conditions $\beta_{j}(1)=1$ and $\nu_{j}(1)=0$ in (1.1) and (1.2) are natural since β_{j} is an algebra homomorphism and ν_{j} is a derivation.)

Let $A_{k-1}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k-1} ; \beta_{k-1}, \nu_{k-1}\right]$ be a $(k-1)$-restricted skew polynomial extension over \mathbb{F} and let β_{k}, ν_{k} be \mathbb{F}-linear maps from A_{k-1} into itself. In this article, we find necessary and sufficient conditions for β_{k} and ν_{k} such that there exists a restricted skew polynomial extension $A_{k}=$ $A_{k-1}\left[x_{k} ; \beta_{k}, \nu_{k}\right]$ over \mathbb{F}. See Lemma 2.2 and Theorem 2.4. Hence, using induction on k, we get a restricted skew polynomial extension A_{k} over \mathbb{F} from the result.

Suppose that A is an \mathbb{F}-algebra and let $\hbar \in A$ be a nonzero, nonunit, central and non-zero-divisor such that $A / \hbar A$ is commutative. Then $\bar{A}:=A / \hbar A$ is a nontrivial commutative \mathbf{k}-algebra as well as a Poisson algebra with the Poisson bracket

$$
\begin{equation*}
\{\bar{a}, \bar{b}\}=\overline{\hbar^{-1}(a b-b a)} \tag{1.3}
\end{equation*}
$$

for $\bar{a}, \bar{b} \in A / \hbar A$ by [1, III.5.4]. The algebra A is called a quantization of the Poisson algebra \bar{A} and \bar{A} is called a semiclassical limit of A in $[6, \S 2]$ and [10, Definition 3]. Moreover, if $\hbar-q, q \in \mathbb{F}$, is a nonzero and nonunit, then the nontrivial algebra $A /(\hbar-q) A$ is called a deformation of A or \bar{A} in $[6, \S 2]$ and $[10$, Definition 3]. An interested reader is referred to [5], [12] and [2] for a deformation quantization.

By analogy with the restricted skew polynomial extension, we define a restricted Poisson polynomial extension for iterated Poisson polynomial algebras. See Definition 3. Here we obtain a condition for β_{k} and ν_{k} such that a restricted Poisson polynomial extension is a semiclassical limit of A_{k}. See Theorem 3.2 and Corollary 3.3. As applications, we will show that there are well-known restricted skew polynomial extensions as well as unusual restricted skew polynomial extensions such that their semiclassical limits are the same as a Poisson polynomial algebra in $\S 3$.

2. A construction of restricted skew polynomial extensions

Set $A_{1}=\mathbb{F}\left[x_{1}\right]$ and let $A_{n}, n>1$, be an iterated skew polynomial \mathbb{F}-algebra

$$
A_{n}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{n} ; \beta_{n}, \nu_{n}\right] .
$$

By monomials in A_{n} we mean finite products of x_{i} 's together with the unity 1. A monomial X is said to be standard if X is of the form

$$
X=1 \text { or } X=x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \quad\left(1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{k} \leq n\right)
$$

Note that the set of all standard monomials of A_{n} forms an \mathbb{F}-basis.
Let β and ν be \mathbb{F}-linear maps from an \mathbb{F}-algebra R into itself. The following lemma is well known, e.g. see [9, p. 177].

Lemma 2.1. The following conditions are equivalent:
(1) The \mathbb{F}-linear map $\phi: R \rightarrow M_{2}(R)$ given by

$$
\phi(r)=\left(\begin{array}{cc}
\beta(r) & \nu(r) \\
0 & r
\end{array}\right)
$$

for all $r \in R$, is an \mathbb{F}-algebra homomorphism.
(2) β and ν are an endomorphism and a left β-derivation on R, respectively.

For a $(k-1)$-restricted skew polynomial extension

$$
A_{k-1}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k-1} ; \beta_{k-1}, \nu_{k-1}\right]
$$

over \mathbb{F}, we are going to construct a k-restricted skew polynomial extension

$$
A_{k}=A_{k-1}\left[x_{k} ; \beta_{k}, \nu_{k}\right]=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k} ; \beta_{k}, \nu_{k}\right]
$$

over \mathbb{F}. Let $k=2$. Then there exists an \mathbb{F}-algebra homomorphism $\phi: \mathbb{F}\left[x_{1}\right] \rightarrow$ $M_{2}\left(\mathbb{F}\left[x_{1}\right]\right)$ defined by

$$
\phi\left(x_{1}\right)=\left(\begin{array}{cc}
\beta_{2}\left(x_{1}\right) & \nu_{2}\left(x_{1}\right) \\
0 & x_{1}
\end{array}\right)
$$

Hence β_{2} is an \mathbb{F}-algebra endomorphism and ν_{2} is a left β_{2}-derivation on $A_{1}=$ $\mathbb{F}\left[x_{1}\right]$ by Lemma 2.1 and thus there exists the skew polynomial \mathbb{F}-algebra $A_{2}=$ $A_{1}\left[x_{2} ; \beta_{2}, \nu_{2}\right]$. Henceforth we assume $k \geq 3$. The following statement gives us necessary conditions for the existence of a k-restricted skew polynomial extension $A_{k}=A_{k-1}\left[x_{k} ; \beta_{k}, \nu_{k}\right]$ over \mathbb{F}.
Lemma 2.2. Let $A_{k-1}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k-1} ; \beta_{k-1}, \nu_{k-1}\right]$ be a $(k-1)$ restricted skew polynomial extension over \mathbb{F}. If there exists a k-restricted skew polynomial extension

$$
A_{k}=A_{k-1}\left[x_{k} ; \beta_{k}, \nu_{k}\right]=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k} ; \beta_{k}, \nu_{k}\right]
$$

over \mathbb{F}, then β_{k}, ν_{k} satisfy the following conditions
(2.1) $\beta_{k}\left(u_{j i}\right)=a_{k j} a_{k i} u_{j i}$

$$
\begin{array}{ll}
\beta_{k}\left(u_{j i}\right)=a_{k j} a_{k i} u_{j i} & (1 \leq i<j<k), \\
a_{k j} x_{j} u_{k i}+u_{k j} x_{i}=a_{j i} a_{k i} x_{i} u_{k j}+a_{j i} u_{k i} x_{j}+\nu_{k}\left(u_{j i}\right) & (1 \leq i<j<k) . \tag{2.2}
\end{array}
$$

Proof. Let $1 \leq i<j \leq k-1$. Since β_{k} is an \mathbb{F}-algebra endomorphism, we have that

$$
\beta_{k}\left(x_{j} x_{i}\right)=\beta_{k}\left(\beta_{j}\left(x_{i}\right) x_{j}+\nu_{j}\left(x_{i}\right)\right)=a_{k j} a_{k i} a_{j i} x_{i} x_{j}+\beta_{k}\left(u_{j i}\right)
$$

and

$$
\begin{aligned}
\beta_{k}\left(x_{j} x_{i}\right) & =\beta_{k}\left(x_{j}\right) \beta_{k}\left(x_{i}\right)=a_{k j} a_{k i} x_{j} x_{i} \\
& =a_{k j} a_{k i}\left(\beta_{j}\left(x_{i}\right) x_{j}+\nu_{j}\left(x_{i}\right)\right)=a_{k j} a_{k i} a_{j i} x_{i} x_{j}+a_{k j} a_{k i} u_{j i}
\end{aligned}
$$

by (1.1), (1.2). Hence we get (2.1).
Similarly, since ν_{k} is a left β_{k}-derivation, we have that

$$
\nu_{k}\left(x_{j} x_{i}\right)=\beta_{k}\left(x_{j}\right) \nu_{k}\left(x_{i}\right)+\nu_{k}\left(x_{j}\right) x_{i}=a_{k j} x_{j} u_{k i}+u_{k j} x_{i}
$$

and

$$
\begin{aligned}
\nu_{k}\left(x_{j} x_{i}\right) & =\nu_{k}\left(\beta_{j}\left(x_{i}\right) x_{j}+\nu_{j}\left(x_{i}\right)\right)=\nu_{k}\left(a_{j i} x_{i} x_{j}+u_{j i}\right) \\
& =a_{j i}\left(\beta_{k}\left(x_{i}\right) \nu_{k}\left(x_{j}\right)+\nu_{k}\left(x_{i}\right) x_{j}\right)+\nu_{k}\left(u_{j i}\right) \\
& =a_{j i} a_{k i} x_{i} u_{k j}+a_{j i} u_{k i} x_{j}+\nu_{k}\left(u_{j i}\right)
\end{aligned}
$$

by (1.1), (1.2). Hence we get (2.2).
Lemma 2.3. Let $A_{k-1}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k-1} ; \beta_{k-1}, \nu_{k-1}\right]$ be a $(k-1)$ restricted skew polynomial extension over \mathbb{F} and let β_{k}, ν_{k} be \mathbb{F}-linear maps from A_{k-1} into itself subject to the conditions (1.1), (1.2). If β_{k} and ν_{k} satisfy (2.1) and (2.2), then the following conditions hold.

$$
\begin{align*}
\beta_{k}\left(x_{j}\right) \beta_{k}\left(x_{i}\right) & =\beta_{k} \beta_{j}\left(x_{i}\right) \beta_{k}\left(x_{j}\right)+\beta_{k} \nu_{j}\left(x_{i}\right) \tag{2.3}\\
\beta_{k}\left(x_{j}\right) \nu_{k}\left(x_{i}\right)+\nu_{k}\left(x_{j}\right) x_{i} & =\beta_{k} \beta_{j}\left(x_{i}\right) \nu_{k}\left(x_{j}\right)+\nu_{k} \beta_{j}\left(x_{i}\right) x_{j}+\nu_{k} \nu_{j}\left(x_{i}\right) \tag{2.4}
\end{align*}
$$

Proof. Since A_{k-1} is a $(k-1)$-restricted skew polynomial extension over \mathbb{F}, the equations (2.3) and (2.4) follow from (2.1) and (2.2), respectively, by (1.1), (1.2).

In the following theorem, we see that (2.1) and (2.2) are sufficient conditions for the existence of the restricted skew polynomial extension $A_{k}=$ $A_{k-1}\left[x_{k} ; \beta_{k}, \nu_{k}\right]$ over \mathbb{F}.

Theorem 2.4. Let $A_{k-1}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k-1} ; \beta_{k-1}, \nu_{k-1}\right]$ be a $(k-1)$ restricted skew polynomial extension over \mathbb{F}. Given \mathbb{F}-linear maps β_{k}, ν_{k} from A_{k-1} into itself subject to the conditions (1.1), (1.2), if β_{k} and ν_{k} satisfy the conditions (2.1), (2.2), then there exists a k-restricted skew polynomial extension

$$
A_{k}=A_{k-1}\left[x_{k} ; \beta_{k}, \nu_{k}\right]=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k} ; \beta_{k}, \nu_{k}\right]
$$

over \mathbb{F}.
Proof. It is enough to show that there exist an \mathbb{F}-algebra endomorphism β_{k} on A_{k-1} and a left β_{k}-derivation ν_{k} subject to the conditions (1.1) and (1.2). Note that the set of all standard monomials forms an \mathbb{F}-basis of A_{k-1}. For any standard monomials $x_{i_{1}} \cdots x_{i_{r}} \in A_{k-1}$, define \mathbb{F}-linear maps β_{k} and ν_{k} from A_{k-1} into itself by

$$
\begin{align*}
& \text { (2.5) } \beta_{k}(1)=1, \quad \beta_{k}\left(x_{i_{1}} \cdots x_{i_{r}}\right)=\left(a_{k i_{1}} x_{i_{1}}\right) \cdots\left(a_{k i_{r}} x_{i_{r}}\right), \\
& \text { (2.6) } \nu_{k}(1)=0, \quad \nu_{k}\left(x_{i_{1}} \cdots x_{i_{r}}\right)=\sum_{\ell=1}^{r}\left(a_{k i_{1}} x_{i_{1}}\right) \cdots\left(a_{k i_{\ell-1}} x_{i_{\ell-1}}\right) u_{k i_{\ell}}\left(x_{i_{\ell+1}} \cdots x_{i_{r}}\right), \tag{2.6}
\end{align*}
$$

where $a_{k i_{\ell}} \in \mathbb{F}$ and $u_{k i_{\ell}} \in A_{k-1}$ for $\ell=1, \ldots, r$. Observe that these \mathbb{F}-linear maps β_{k} and ν_{k} satisfy (1.1) and (1.2). We claim that the map β_{k} defined by (2.5) is an \mathbb{F}-algebra endomorphism and the map ν_{k} defined by (2.6) is a left β_{k}-derivation by using Lemma 2.1.

Let $\mathbb{F}\left\langle S_{k-1}\right\rangle$ be the free \mathbb{F}-algebra on the set $S_{k-1}=\left\{x_{1}, \ldots, x_{k-1}\right\}$. Define an \mathbb{F}-algebra homomorphism $f: \mathbb{F}\left\langle S_{k-1}\right\rangle \rightarrow M_{2}\left(A_{k-1}\right)$ by

$$
f\left(x_{i}\right)=\left(\begin{array}{cc}
\beta_{k}\left(x_{i}\right) & \nu_{k}\left(x_{i}\right) \\
0 & x_{i}
\end{array}\right) \quad(1 \leq i<k)
$$

Let us show that

$$
f\left(\nu_{j}\left(x_{i}\right)\right)=\left(\begin{array}{cc}
\beta_{k} \nu_{j}\left(x_{i}\right) & \nu_{k} \nu_{j}\left(x_{i}\right) \tag{2.7}\\
0 & \nu_{j}\left(x_{i}\right)
\end{array}\right)
$$

for $1 \leq i<j<k$. For any standard monomial $X=x_{i_{1}} \cdots x_{i_{r}}$ in A_{k-1}, by (2.5) and (2.6),

$$
\begin{aligned}
\nu_{k}(X) & =\sum_{\ell=1}^{r} \beta_{k}\left(x_{i_{1}} \cdots x_{i_{\ell-1}}\right) \nu_{k}\left(x_{i_{\ell}}\right)\left(x_{i_{\ell+1}} \cdots x_{i_{r}}\right) \\
& =\sum_{\ell=1}^{r-1} \beta_{k}\left(x_{i_{1}} \cdots x_{i_{\ell-1}}\right) \nu_{k}\left(x_{i_{\ell}}\right)\left(x_{i_{\ell+1}} \cdots x_{i_{r}}\right)+\beta_{k}\left(x_{i_{1}} \cdots x_{i_{r-1}}\right) \nu_{k}\left(x_{i_{r}}\right) \\
& =\nu_{k}\left(x_{i_{1}} \cdots x_{i_{r-1}}\right) x_{i_{r}}+\beta_{k}\left(x_{i_{1}} \cdots x_{i_{r-1}}\right) \nu_{k}\left(x_{i_{r}}\right) .
\end{aligned}
$$

In particular, if $X x_{j}$ is standard (thus $i_{r} \leq j$), then

$$
\begin{equation*}
\nu_{k}\left(X x_{j}\right)=\beta_{k}(X) \nu_{k}\left(x_{j}\right)+\nu_{k}(X) x_{j} . \tag{2.8}
\end{equation*}
$$

Let us verify first that

$$
f(X)=\left(\begin{array}{cc}
\beta_{k}(X) & \nu_{k}(X) \tag{2.9}\\
0 & X
\end{array}\right)
$$

for any standard monomial $X=x_{i_{1}} \cdots x_{i_{r}}$ in A_{k-1} of length r. We proceed by induction on r. If $r=1$, then (2.9) is true trivially. Assume that $r>1$ and that (2.9) holds for any standard monomial of length $<r$. Set $Y=x_{i_{1}} \cdots x_{i_{r-1}}$. Then Y is a standard monomial of length $r-1$ and $X=Y x_{i_{r}}$. Thus (2.9) holds as follows:

$$
\begin{aligned}
f(X) & =f\left(Y x_{i_{r}}\right)=f(Y) f\left(x_{i_{r}}\right) \\
& =\left(\begin{array}{cc}
\beta_{k}(Y) & \nu_{k}(Y) \\
0 & Y
\end{array}\right)\left(\begin{array}{cc}
\beta_{k}\left(x_{i_{r}}\right) & \nu_{k}\left(x_{i_{r}}\right) \\
0 & x_{i_{r}}
\end{array}\right) \quad \text { (by induction hypothesis) } \\
& =\left(\begin{array}{cc}
\beta_{k}(Y) \beta_{k}\left(x_{i_{r}}\right) & \beta_{k}(Y) \nu_{k}\left(x_{i_{r}}\right)+\nu_{k}(Y) x_{i_{r}} \\
0 & Y x_{i_{r}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\beta_{k}(X) & \nu_{k}(X) \\
0 & X
\end{array}\right) . \quad(\text { by }(2.5),(2.8))
\end{aligned}
$$

Let $\nu_{j}\left(x_{i}\right)=\sum_{\ell} b_{\ell} X_{\ell}$, where all $b_{\ell} \in \mathbb{F}$ and X_{ℓ} are standard monomials of A_{j-1}. Since f is an \mathbb{F}-algebra homomorphism, we have

$$
\begin{align*}
f\left(\nu_{j}\left(x_{i}\right)\right) & =\sum_{\ell} b_{\ell} f\left(X_{\ell}\right) \\
& =\sum_{\ell} b_{\ell}\left(\begin{array}{cc}
\beta_{k}\left(X_{\ell}\right) & \nu_{k}\left(X_{\ell}\right) \\
0 & X_{\ell}
\end{array}\right) \quad(\text { by }(2.9)) \tag{2.9}\\
& =\left(\begin{array}{cc}
\beta_{k}\left(\sum_{\ell} b_{\ell} X_{\ell}\right) & \nu_{k}\left(\sum_{\ell} b_{\ell} X_{\ell}\right) \\
0 & \sum_{\ell} b_{\ell} X_{\ell}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\beta_{k} \nu_{j}\left(x_{i}\right) & \nu_{k} \nu_{j}\left(x_{i}\right) \\
0 & \nu_{j}\left(x_{i}\right)
\end{array}\right)
\end{align*}
$$

Thus (2.7) holds.
Note that A_{k-1} is an \mathbb{F}-algebra generated by x_{1}, \ldots, x_{k-1} with relations

$$
x_{j} x_{i}-\beta_{j}\left(x_{i}\right) x_{j}-\nu_{j}\left(x_{i}\right) \quad(1 \leq i<j<k) .
$$

Namely, A_{k-1} is isomorphic to the \mathbb{F}-algebra $\mathbb{F}\left\langle S_{k-1}\right\rangle / I$, where I is the ideal generated by

$$
x_{j} x_{i}-\beta_{j}\left(x_{i}\right) x_{j}-\nu_{j}\left(x_{i}\right) \quad(1 \leq i<j<k) .
$$

Since f is an \mathbb{F}-algebra homomorphism, it is easy to check that $I \subseteq \operatorname{ker} f$ by (2.3), (2.4) and (2.7). Hence there exists an \mathbb{F}-algebra homomorphism ϕ : $A_{k-1} \rightarrow M_{2}\left(A_{k-1}\right)$ such that

$$
\phi\left(x_{i}\right)=\left(\begin{array}{cc}
\beta_{k}\left(x_{i}\right) & \nu_{k}\left(x_{i}\right) \\
0 & x_{i}
\end{array}\right)
$$

for $1 \leq i<k$. By Lemma 2.1, β_{k} is an \mathbb{F}-algebra endomorphism on A_{k-1} and ν_{k} is a left β_{k}-derivation on A_{k-1} as claimed.

Remark 2.5. Retain the notations of Theorem 2.4. If $a_{k i} \neq 0$ for all $1 \leq i<k$, then β_{k} is a monomorphism.

Proof. Note that β_{i}, ν_{i} are \mathbb{F}-linear for all $i=1, \ldots, k$. Let $g=\sum_{i} a_{i} X_{i} \in$ A_{k-1}, where $a_{i} \in \mathbb{F}$ and X_{i} are standard monomials for all i, and suppose that $\beta_{k}(g)=0$. Then $\beta_{k}\left(X_{i}\right)=b_{i} X_{i}$ for some $0 \neq b_{i} \in \mathbb{F}$ by (2.5) and thus

$$
0=\beta_{k}(g)=\sum_{i} a_{i} b_{i} X_{i}
$$

It follows that all $a_{i}=0$ since the standard monomials of A_{k} form an \mathbb{F}-basis. Thus $g=0$.

3. Application

Let \hbar be an indeterminate throughout the section.

Example 3.1. Set $\mathbb{F}=\mathbb{C}\left[\hbar, \hbar^{-1}\right]$ and

$$
\begin{array}{lll}
a_{21}=\hbar^{2}, & a_{31}=\hbar^{-2}, & a_{32}=\hbar^{2} \\
u_{21}=-\left(\hbar^{2}-1\right), & u_{31}=-\left(\hbar^{-2}-1\right), & u_{32}=-\left(\hbar^{2}-1\right)
\end{array}
$$

By Theorem 2.4, there exists a restricted skew polynomial extension

$$
A_{3}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right]\left[x_{3} ; \beta_{3}, \nu_{3}\right]
$$

over \mathbb{F}, where

$$
\begin{array}{ll}
\beta_{2}\left(x_{1}\right)=a_{21} x_{1}=\hbar^{2} x_{1}, & \beta_{3}\left(x_{1}\right)=a_{31} x_{1}=\hbar^{-2} x_{1}, \\
\beta_{3}\left(x_{2}\right)=a_{32} x_{2}=\hbar^{2} x_{2}, & \nu_{2}\left(x_{1}\right)=u_{21}=-\left(\hbar^{2}-1\right), \\
\nu_{3}\left(x_{1}\right)=u_{31}=-\left(\hbar^{-2}-1\right), & \nu_{3}\left(x_{2}\right)=u_{32}=-\left(\hbar^{2}-1\right)
\end{array}
$$

since $\beta_{2}, \nu_{2}, \beta_{3}$ and ν_{3} satisfy (1.1), (1.2), (2.1), (2.2). Note that A_{3} is the \mathbb{F}-algebra generated by x_{1}, x_{2}, x_{3} subject to the relations
(3.1) $\hbar^{2} x_{1} x_{2}-x_{2} x_{1}=\hbar^{2}-1, \hbar^{2} x_{3} x_{1}-x_{1} x_{3}=\hbar^{2}-1, \hbar^{2} x_{2} x_{3}-x_{3} x_{2}=\hbar^{2}-1$,
which is the relation appearing in [8].
Observe that $\hbar-1$ is a nonzero, nonunit, non-zero-divisor and central element of A_{3} such that the factor $\overline{A_{3}}:=A_{3} /(\hbar-1) A_{3}$ is commutative. Hence $\overline{A_{3}}$ is a Poisson \mathbb{C}-algebra with Poisson bracket

$$
\{\bar{a}, \bar{b}\}=\overline{(\hbar-1)^{-1}(a b-b a)}
$$

for all $\bar{a}, \bar{b} \in \overline{A_{3}}$ by (1.3), which is a semiclassical limit of A_{3}. More precisely, $\overline{A_{3}}$ is Poisson isomorphic to the Poisson algebra $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ with Poisson bracket

$$
\begin{equation*}
\left\{x_{2}, x_{1}\right\}=2 x_{1} x_{2}-2, \quad\left\{x_{1}, x_{3}\right\}=2 x_{1} x_{3}-2, \quad\left\{x_{3}, x_{2}\right\}=2 x_{2} x_{3}-2 \tag{3.2}
\end{equation*}
$$

Refer to [11, Example 4.2] for the Poisson bracket (3.2).
A derivation α on a Poisson algebra R is said to be a Poisson derivation if

$$
\alpha(\{a, b\})=\{\alpha(a), b\}+\{a, \alpha(b)\}
$$

for all $a, b \in R$. Let α be a Poisson derivation on R and let δ be a derivation on R such that

$$
\delta(\{a, b\})-\{\delta(a), b\}-\{a, \delta(b)\}=\alpha(a) \delta(b)-\delta(a) \alpha(b)
$$

for all $a, b \in R$. By [14, 1.1], the commutative polynomial \mathbb{C}-algebra $R[z]$ is a Poisson algebra with Poisson bracket $\{z, a\}=\alpha(a) z+\delta(a)$ for all $a \in R$. Such a Poisson polynomial algebra $R[z]$ is denoted by $R[z ; \alpha, \delta]_{p}$ in order to distinguish it from skew polynomial algebras. If $\alpha=0$, then we write $R[z ; \delta]_{p}$ for $R[z ; 0, \delta]_{p}$ and if $\delta=0$, then we write $R[z ; \alpha]_{p}$ for $R[z ; \alpha, 0]_{p}$.
Definition. An iterated Poisson polynomial \mathbb{C}-algebra

$$
B_{k}=\mathbb{C}\left[x_{1}\right]\left[x_{2} ; \alpha_{2}, \delta_{2}\right]_{p} \cdots\left[x_{k} ; \alpha_{k}, \delta_{k}\right]_{p}
$$

is called a k-restricted Poisson polynomial extension over \mathbb{C} if the pairs $\left(\alpha_{j}, \delta_{j}\right)$ satisfy that, for $i=1, \ldots, j-1$ and $i<j \leq k$,

$$
\begin{align*}
& \alpha_{j}\left(x_{i}\right)=c_{j i} x_{i}, \text { where } c_{j i} \in \mathbb{C} \tag{3.3}\\
& \delta_{j}\left(x_{i}\right)=d_{j i} \in B_{j-1}=\mathbb{C}\left[x_{1}, \ldots, x_{j-1}\right] . \tag{3.4}
\end{align*}
$$

Let \mathbb{F} be the ring $\mathbb{C}[[\hbar]]$ of the formal power series over \mathbb{C}. Here, by using Theorem 2.4, we obtain a Poisson algebra $\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]$, which is a semiclassical limit of A_{k}, in the following.

Theorem 3.2. Let $\mathbb{F}=\mathbb{C}[[\hbar]]$ and let $A_{k}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{k} ; \beta_{k}, \nu_{k}\right]$ be a restricted skew polynomial extension over \mathbb{F} where

$$
\beta_{j}\left(x_{i}\right)=a_{j i} x_{i},\left(a_{j i} \in \mathbb{F}\right), \nu_{j}\left(x_{i}\right) \in A_{j-1}
$$

for $1 \leq i<j \leq k$. Suppose that

$$
\begin{equation*}
a_{j i}-1 \in \hbar \mathbb{F}, \quad \nu_{j}\left(x_{i}\right) \in \hbar A_{k} \tag{3.5}
\end{equation*}
$$

for all $1 \leq i<j \leq k$. Then $\bar{A}_{k}=A_{k} / \hbar A_{k}$ is Poisson isomorphic to a restricted Poisson polynomial extension

$$
\mathbb{C}\left[x_{1}\right]\left[x_{2} ; \alpha_{2}, \delta_{2}\right]_{p} \cdots\left[x_{k} ; \alpha_{k}, \delta_{k}\right]_{p}
$$

over \mathbb{C}, where

$$
\begin{equation*}
\alpha_{j}\left(x_{i}\right)=c_{j i} x_{i}=\left(\left.\frac{d a_{j i}}{d \hbar}\right|_{\hbar=0}\right) x_{i}, \quad \delta_{j}\left(x_{i}\right)=d_{j i}=\left.\frac{d \nu_{j}\left(x_{i}\right)}{d \hbar}\right|_{\hbar=0} \tag{3.6}
\end{equation*}
$$

for all $1 \leq i<j \leq k$. (Derivatives are formal derivatives of power series in \hbar.)
Proof. Note that A_{k} is generated by x_{1}, \ldots, x_{k} and that $\hbar \in \mathbb{F}$ is a nonzero central element of A_{k}. Since

$$
\begin{align*}
x_{j} x_{i}-x_{i} x_{j} & =\beta_{j}\left(x_{i}\right) x_{j}+\nu_{j}\left(x_{i}\right)-x_{i} x_{j} \\
& =\left(a_{j i}-1\right) x_{i} x_{j}+\nu_{j}\left(x_{i}\right) \in \hbar A_{k} \quad(i<j) \tag{3.7}
\end{align*}
$$

by (3.5), \bar{A}_{k} is a commutative \mathbb{C}-algebra $\mathbb{C}\left[x_{1}, \ldots, x_{k}\right]$. Moreover we have

$$
\begin{aligned}
\left\{\bar{x}_{j}, \bar{x}_{i}\right\} & =\overline{\hbar^{-1}\left(x_{j} x_{i}-x_{i} x_{j}\right)} \\
& =\overline{\left(\frac{a_{j i}-1}{\hbar}\right) x_{i} x_{j}+\left(\frac{\nu_{j}\left(x_{i}\right)}{\hbar}\right)} \quad(\text { by }(3.7)) \\
& =\left(\left.\frac{d a_{j i}}{d \hbar}\right|_{\hbar=0}\right) \bar{x}_{i} \bar{x}_{j}+\overline{\left(\left.\frac{d \nu_{j}\left(x_{i}\right)}{d \hbar}\right|_{\hbar=0}\right)} \quad(\text { by }(3.5))
\end{aligned}
$$

for all $1 \leq i<j \leq k$. Hence the result follows.
Corollary 3.3. Let $\mathbb{F}=\mathbb{C}[[\hbar]]$. The restricted skew polynomial extension A_{k} in Theorem 3.2 is a quantization of the restricted Poisson polynomial extension

$$
B_{k}=\mathbb{C}\left[x_{1}\right]\left[x_{2} ; \alpha_{2}, \delta_{2}\right]_{p} \cdots\left[x_{k} ; \alpha_{k}, \delta_{k}\right]_{p}
$$

in Theorem 3.2.

Proof. The result follows by the proof of Theorem 3.2.
Example 3.4. Here we obtain a quantization of the Poisson algebra $B_{3}=$ $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ with the Poisson bracket (3.2). Note that B_{3} is a restricted Poisson polynomial extension

$$
B_{3}=\mathbb{C}\left[x_{1}\right]\left[x_{2} ; \alpha_{2}, \delta_{2}\right]_{p}\left[x_{3} ; \alpha_{3}, \delta_{3}\right]_{p}
$$

over \mathbb{C}, where

$$
\begin{aligned}
\alpha_{2} & =2 x_{1} \frac{\partial}{\partial x_{1}}, & \delta_{2} & =-2 \frac{\partial}{\partial x_{1}} \\
\alpha_{3} & =-2 x_{1} \frac{\partial}{\partial x_{1}}+2 x_{2} \frac{\partial}{\partial x_{2}}, & \delta_{3} & =2 \frac{\partial}{\partial x_{1}}-2 \frac{\partial}{\partial x_{2}}
\end{aligned}
$$

Set $\mathbb{F}=\mathbb{C}[[\hbar]]$ and

$$
\begin{array}{lll}
a_{21}=e^{2 \hbar}, & a_{31}=e^{-2 \hbar}, & a_{32}=e^{2 \hbar} \\
u_{21}=-\sin (2 \hbar), & u_{31}=\sin (2 \hbar), & u_{32}=-\sin (2 \hbar)
\end{array}
$$

By Theorem 2.4, there exists a restricted skew polynomial extension

$$
A_{3}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right]\left[x_{3} ; \beta_{3}, \nu_{3}\right]
$$

over \mathbb{F}, where

$$
\begin{array}{ll}
\beta_{2}\left(x_{1}\right)=a_{21} x_{1}=e^{2 \hbar} x_{1}, & \beta_{3}\left(x_{1}\right)=a_{31} x_{1}=e^{-2 \hbar} x_{1} \\
\beta_{3}\left(x_{2}\right)=a_{32} x_{2}=e^{2 \hbar} x_{2}, & \nu_{2}\left(x_{1}\right)=u_{21}=-\sin (2 \hbar) \\
\nu_{3}\left(x_{1}\right)=u_{31}=\sin (2 \hbar), & \nu_{3}\left(x_{2}\right)=u_{32}=-\sin (2 \hbar)
\end{array}
$$

since $\beta_{2}, \nu_{2}, \beta_{3}$ and ν_{3} satisfy (1.1), (1.2), (2.1), (2.2).
Moreover A_{3} is a quantization of B_{3} by Corollary 3.3 since $a_{j i}, u_{j i}$ satisfy (3.5) and (3.6). Note that A_{3} is the \mathbb{F}-algebra generated by x_{1}, x_{2}, x_{3} subject to the relations
$e^{2 \hbar} x_{1} x_{2}-x_{2} x_{1}=\sin (2 \hbar), e^{2 \hbar} x_{3} x_{1}-x_{1} x_{3}=e^{2 \hbar} \sin (2 \hbar), e^{2 \hbar} x_{2} x_{3}-x_{3} x_{2}=\sin (2 \hbar)$,
which is different from (3.1).
Remark 3.5. Note that the quantized algebras in Example 3.1 and Example 3.4 are distinct quantizations of the Poisson algebra $\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ with the Poisson bracket (3.2).

Let us find quantizations of the Poisson Weyl algebra. The Poisson Weyl algebra is the Poisson polynomial algebra $B_{2 k}=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{2 k-1}, x_{2 k}\right]$ with Poisson bracket

$$
\{f, g\}=\sum_{i=1}^{k}\left(-\frac{\partial f}{\partial x_{2 i-1}} \frac{\partial g}{\partial x_{2 i}}+\frac{\partial g}{\partial x_{2 i-1}} \frac{\partial f}{\partial x_{2 i}}\right)
$$

cf., $[4,1.1 . \mathrm{A}]$ and $[13,1.3]$. Namely, the Poisson bracket is

$$
\left\{x_{j}, x_{i}\right\}= \begin{cases}1, & \text { if } j=2 \ell, i=2 \ell-1 \\ 0, & \text { otherwise }\end{cases}
$$

for $j>i$. Hence $B_{2 k}$ is a restricted Poisson polynomial extension

$$
B_{2 k}=\mathbb{C}\left[x_{1}\right]\left[x_{2} ; \delta_{2}\right]_{p} \cdots\left[x_{2 k-1}\right]_{p}\left[x_{2 k} ; \delta_{2 k}\right]_{p}
$$

over \mathbb{C}, where

$$
\delta_{2 \ell}\left(x_{i}\right)= \begin{cases}1, & \text { if } i=2 \ell-1 \\ 0, & \text { if } i \neq 2 \ell-1\end{cases}
$$

Example 3.6 (Moyal-Weyl quantization). Set $\mathbb{F}=\mathbb{C}[[\hbar]]$ and

$$
a_{j i}=1, u_{j i}= \begin{cases}\hbar, & \text { if } j=2 \ell, i=2 \ell-1 \tag{3.8}\\ 0, & \text { otherwise }\end{cases}
$$

for all $1 \leq i<j \leq 2 k$. By Theorem 2.4, there exists the restricted skew polynomial extension

$$
A_{2 k}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \nu_{2}\right] \cdots\left[x_{2 k-1}\right]\left[x_{2 k} ; \nu_{2 k}\right]
$$

over \mathbb{F}, where

$$
\beta_{j}\left(x_{i}\right)=a_{j i} x_{i}=x_{i}, \quad(1 \leq i<j \leq 2 k), \nu_{2 \ell}\left(x_{i}\right)=u_{2 \ell i}= \begin{cases}\hbar, & \text { if } i=2 \ell-1 \\ 0, & \text { if } i \neq 2 \ell-1\end{cases}
$$

since all β_{j} and ν_{j} satisfy (1.1), (1.2), (2.1), (2.2). By Corollary $3.3, A_{2 k}$ is a quantization of the Poisson Weyl algebra $B_{2 k}$, since all $a_{j i}$ and $u_{j i}$ satisfy (3.5) and

$$
\left.\frac{d a_{j i}}{d \hbar}\right|_{\hbar=0}=0,\left.\quad \frac{d u_{j i}}{d \hbar}\right|_{\hbar=0}= \begin{cases}1, & \text { if } j=2 \ell, i=2 \ell-1 \\ 0, & \text { otherwise }\end{cases}
$$

Note that $A_{2 k}$ is an \mathbb{F}-algebra generated by $x_{1}, x_{2}, \ldots, x_{2 k}$ subject to the relations

$$
x_{j} x_{i}-x_{i} x_{j}= \begin{cases}\hbar, & \text { if } j=2 \ell, i=2 \ell-1 \tag{3.9}\\ 0, & \text { otherwise }\end{cases}
$$

which is the so-called Moyal-Weyl quantization [3, §20.1].
Example 3.7. Here we obtain a quantization of the Poisson Weyl algebra $B_{2 k}$ appearing in quantum physics. Set $\mathbb{F}=\mathbb{C}[[\hbar]]$ and
(3.10) $\quad a_{j i}=\left\{\begin{array}{ll}\cos \hbar, & \text { if } i+j \text { is odd, } \\ \sec \hbar, & \text { if } i+j \text { is even, }\end{array} \quad u_{j i}= \begin{cases}\sin \hbar, & \text { if } j=2 \ell, i=2 \ell-1, \\ 0, & \text { otherwise }\end{cases}\right.$
for all $1 \leq i<j \leq 2 k$. Note that $a_{j i}, u_{j i} \in \mathbb{F}$ satisfy (3.5) and

$$
\left.\frac{d a_{j i}}{d \hbar}\right|_{\hbar=0}=0,\left.\frac{d u_{j i}}{d \hbar}\right|_{\hbar=0}= \begin{cases}1, & \text { if } j=2 \ell, i=2 \ell-1 \\ 0, & \text { otherwise }\end{cases}
$$

by elementary calculus.

We will show that there exists a restricted skew polynomial extension

$$
A_{2 k}=\mathbb{F}\left[x_{1}\right]\left[x_{2} ; \beta_{2}, \nu_{2}\right] \cdots\left[x_{2 k-1} ; \beta_{2 k-1}\right]\left[x_{2 k} ; \beta_{2 k}, \nu_{2 k}\right]
$$

over \mathbb{F}, where

$$
\beta_{j}\left(x_{i}\right)=a_{j i} x_{i}, \nu_{j}\left(x_{i}\right)=u_{j i}, \quad(1 \leq i<j \leq 2 k)
$$

For all $1 \leq i<j \leq 2 k$, since all β_{j} and ν_{j} satisfy (1.1) and (1.2), it is enough to show that all β_{j} and ν_{j} satisfy (2.1) and (2.2). Assume that there exists a restricted skew polynomial extension $A_{2 k-2}$ over \mathbb{F}. Note that, for any positive integers i, j, ℓ,

$$
\begin{align*}
& i+j \text { is odd if and only if } \\
& (\ell+j \text { is odd and } \ell+i \text { is even }) \text { or }(\ell+j \text { is even and } \ell+i \text { is odd }) . \tag{3.11}
\end{align*}
$$

Observe that \mathbb{F}-linear maps $\beta_{2 k-1}$ and $\nu_{2 k-1}$ satisfy (2.2) trivially since $\nu_{2 k-1}\left(u_{j i}\right)=0$ and $u_{2 k-1, i}=0$ for all $1 \leq i<2 k-1$ and that they also satisfy (2.1) by (3.11) since $\beta_{2 k-1}\left(u_{j i}\right)=u_{j i}$. Hence there exists a restricted skew polynomial extension $A_{2 k-2}\left[x_{2 k-1} ; \beta_{2 k-1}\right]$ over \mathbb{F} by Theorem 2.4. For \mathbb{F}-linear maps $\beta_{2 k}$ and $\nu_{2 k}$, they satisfy (2.1) and (2.2) by (3.11) since $\beta_{2 k}\left(u_{j i}\right)=u_{j i}$ and $\nu_{2 k}\left(u_{j i}\right)=0$ and thus there exists $A_{2 k}=A_{2 k-2}\left[x_{2 k-1} ; \beta_{2 k-1}\right]\left[x_{2 k} ; \beta_{2 k}, \nu_{2 k}\right]$ by Theorem 2.4. Moreover $A_{2 k}$ is a quantization of the Poisson Weyl algebra $B_{2 k}$ by Corollary 3.3 since $a_{j i}, u_{j i}$ satisfy (3.5) and (3.6).

Note that $A_{2 k}$ is an \mathbb{F}-algebra generated by $x_{1}, x_{2}, \ldots, x_{2 k-1}, x_{2 k}$ subject to the relations

$$
\begin{align*}
x_{2 \ell} x_{2 \ell-1}-(\cos \hbar) x_{2 \ell-1} x_{2 \ell} & =\sin \hbar, & & (\ell=1, \ldots, k), \\
x_{j} x_{i}-(\sec \hbar) x_{i} x_{j} & =0, & & (i<j, i+j \text { is even }), \\
x_{j} x_{i}-(\cos \hbar) x_{i} x_{j} & =0, & & \binom{i<j, i+j \text { is odd },}{\text { if } j=2 \ell, \text { then } i \neq 2 \ell-1} . \tag{3.12}
\end{align*}
$$

In particular, we obtain a deformation, a \mathbb{C}-algebra generated by x_{1}, x_{2}, \ldots, $x_{2 k-1}, x_{2 k}$ subject to the relations

$$
x_{j} x_{i}+x_{i} x_{j}=0(j>i)
$$

by setting $\hbar=\pi+2 n \pi(n \in \mathbb{Z})$ in the relation (3.12) in which x_{i}^{2} is a central element for $i=1, \ldots, 2 k$. In (3.9), we obtain a deformation, a \mathbb{C}-algebra W generated by $x_{1}, x_{2}, \ldots, x_{2 k-1}, x_{2 k}$ subject to the relations

$$
x_{j} x_{i}-x_{i} x_{j}= \begin{cases}1, & \text { if } j=2 \ell, i=2 \ell-1 \\ 0, & \text { otherwise }\end{cases}
$$

by setting $\hbar=1$. This is the k-th Weyl algebra. This implies that (3.12) is a quantization different from (3.9).
Remark 3.8. Note that the quantized algebras in Example 3.6 and Example 3.7 are distinct quantizations of the Poisson Weyl algebra.

References

[1] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. https:// doi.org/10.1007/978-3-0348-8205-7
[2] D. Calaque, G. Felder, and C. A. Rossi, Deformation quantization with generators and relations, J. Algebra 337 (2011), 1-12. https://doi.org/10.1016/j.jalgebra. 2011. 03.037
[3] A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999.
[4] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
[5] E.-H. Cho and S.-Q. Oh, Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra, Lett. Math. Phys. 106 (2016), no. 7, 997-1009. https://doi.org/ 10.1007/s11005-016-0856-4
[6] K. R. Goodearl, Semiclassical limits of quantized coordinate rings, in Advances in ring theory, 165-204, Trends Math, Birkhäuser/Springer Basel AG, Basel, 2010. https:// doi.org/10.1007/978-3-0346-0286-0_12
[7] K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, second edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CB09780511841699
[8] T. Ito, P. Terwilliger, and C. Weng, The quantum algebra $U_{q}\left(s l_{2}\right)$ and its equitable presentation, J. Algebra 298 (2006), no. 1, 284-301. https://doi.org/10.1016/j. jalgebra.2005.07.038
[9] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley \& Sons), New York, 1962.
[10] D. A. Jordan, Finite-dimensional simple Poisson modules, Algebr. Represent. Theory 13 (2010), no. 1, 79-101. https://doi.org/10.1007/s10468-008-9104-7
[11] D. A. Jordan and S.-Q. Oh, Poisson brackets and Poisson spectra in polynomial algebras, in New trends in noncommutative algebra, 169-187, Contemp. Math., 562, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/conm/562/11136
[12] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf
[13] K. R. Meyer, G. R. Hall, and D. Offin, Introduction to Hamiltonian dynamical systems and the N-body problem, second edition, Applied Mathematical Sciences, 90, Springer, New York, 2009.
[14] S.-Q. Oh, Poisson polynomial rings, Comm. Algebra 34 (2006), no. 4, 1265-1277. https: //doi.org/10.1080/00927870500454463

No-Ho Myung
Department of Mathematics
Chungnam National University
Daejeon 34134, Korea
Email address: nhmyung@cnu.ac.kr
Sei-Qwon Oh
Department of Mathematics
Chungnam National University
Daejeon 34134, Korea
Email address: sqoh@cnu.ac.kr

