• Title/Summary/Keyword: commercial power

Search Result 2,026, Processing Time 0.026 seconds

A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types (냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Lee, Hui-Won;Lee, Seung-Jae;Lee, Seung-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • As the size of buildings increases due to urbanization due to the development of industry, the need to purify the air and maintain a comfortable indoor environment is also increasing. With the development of monitoring technology for refrigeration systems, it has become possible to manage the amount of electricity consumed in buildings. In particular, refrigeration systems account for about 40% of power consumption in commercial buildings. Therefore, in order to develop the refrigeration system failure diagnosis algorithm in this study, the purpose of this study was to understand the structure of the refrigeration system, collect and analyze data generated during the operation of the refrigeration system, and quickly detect and classify failure situations with various types and severity . In particular, in order to improve the classification accuracy of failure types that are difficult to classify, a three-step diagnosis and classification algorithm was developed and proposed. A model based on SVM and LGBM was presented as a classification model suitable for each stage after a number of experiments and hyper-parameter optimization process. In this study, the characteristics affecting failure were preserved as much as possible, and all failure types, including refrigerant-related failures, which had been difficult in previous studies, were derived with excellent results.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method (CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석)

  • Sang Woo, Park;Suyoung, Jang;Jun Sung, Jang;Jin Hyeok, Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.481-488
    • /
    • 2022
  • The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

Anti-thrombosis and Anti-oxidant Activities of Edible Flower Teas (식용 꽃차 추출물의 항혈전 및 항산화 활성)

  • Lee, Yun-Seo;Kwon, Ha-Young;Hwang, Eun-Kyung;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.989-996
    • /
    • 2022
  • Some flowers have high sensual appealability due to their unique shapes, colors, smells, and tastes. Such edible flowers receive social attention as a noble ingredient of functional teas. In this study, methanol extracts of 23 commercial flower teas (CFTs) were prepared, and their color differences were compared. No tar color pigments were detected in the 23 CFT. The average content of total polyphenol of the 23 CFTs was 80.2±50.92 mg/g and the extracts of jin-dal-rae (Rhododendron mucronulatum Turcz), mae-hwa (Prunus mume), mae-mil (Fagopyrum esculentum), mok-ryun (Magnolia kobus), and sal-gu (Prunus armeniaca var. ansu Maxim) flowers showed total polyphenol contents greater than 150 mg/g. The average content of total sugar of the 23 CFTs was 187.4±166.5 mg/g and the extracts of chamomile (Chamaemelum nobile), kuk-hwa (Chrysanthemum morifolium), dong-baek (Camellia japonica L.), and won-chu-ri (Hemerocallis fulva) flowers showed total sugar contents greater than 400 mg/g. Among the 23 CFTs, the extract of jang-mi (Rosa hybrida hortorum) flower has prominent anti-thrombosis activity, and the extracts of dal-ma-ji (Oenothera lamarckiana), dong-baek, hibiscus (Hibiscus syriacus), and mae-mil flowers showed strong inhibitions against thrombin and blood coagulation factors. Also, the extracts of jang-mi, kum-jan-hwa (Tagetes erecta L.), mae-mil, mok-ryun dong-baek, and jin-dal-rae flower showed strong radical scavenging activities against DPPH, ABTS, and nitrite and reducing power. Our results suggest that the flowers of jang-mi, mae-mil, and dong-baek can be developed as promising anti-thrombosis treatments.

Analysis of Threat Factors of the Chinese Maritime Militia and the Prospect of Maritime Disputes between Korea and China (중국 해상 민병대의 위협요인 분석 및 한·중 해양 분쟁 전망)

  • Park, Byeung chan
    • Maritime Security
    • /
    • v.4 no.1
    • /
    • pp.83-113
    • /
    • 2022
  • Although China's maritime militia has not been well known despite its long history, it is recently emerging as a serious threat to maritime security, causing neighboring countries' security concerns due to the growing number of maritime disputes with China. In this regard, it is now time to clearly define the true nature of the Chinese maritime militia. A close look at the organization and roles of the Chinese maritime militia reveals that it is an organization that is systematically managed and operated by the Chinese government and the People's Liberation Army of China. Its role is to serve the purpose of "contributing to the protection and expansion of China's marine interests." In addition, the threat factors of the Chinese maritime militia were analyzed by examining the cases of maritime disputes between the Chinese maritime militia and neighboring countries. First, the Chinese maritime militia has implemented the "Gray Zone Strategy." Second, it is a systematic organization supported by the Chinese government and the People's Liberation Army. Third, it is a maritime power that cannot be ignored as the world's largest militia organization. Fourth, it has a strategic flexibility that enables the execution of the dual mission of working for a living such as commercial fishing and serving in the maritime militia. The threats of the Chinese maritime militia are not limited to Southeast Asian countries located in the South China Sea. This is also the case in Korea as the country cannot avoid maritime disputes with China such as the Ieodo issue and the boundary delimitation of the West Sea. Accordingly, this study was focused on presenting a predictable scenario and countermeasures based on the analysis through a scenario technique with respect to the two cases that are most likely to occur in Korea-China relations. Finally, beyond identifying the nature of the Chinese maritime militia, this study takes a further step to share considerations as to how the organization may operate and develop in the future and how we can cope with its moves.

  • PDF

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Sensitivity Analysis of Wake Diffusion Patterns in Mountainous Wind Farms according to Wake Model Characteristics on Computational Fluid Dynamics (전산유체역학 후류모델 특성에 따른 산악지형 풍력발전단지 후류확산 형태 민감도 분석)

  • Kim, Seong-Gyun;Ryu, Geon Hwa;Kim, Young-Gon;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.265-278
    • /
    • 2022
  • The global energy paradigm is rapidly changing by centering on carbon neutrality, and wind energy is positioning itself as a leader in renewable energy-based power sources. The success of onshore and offshore wind energy projects focuses on securing the economic feasibility of the project, which depends on securing high-quality wind resources and optimal arrangement of wind turbines. In the process of constructing the wind farm, the optimal arrangement method of wind turbines considering the main wind direction is important, and this is related to minimizing the wake effect caused by the fluid passing through the structure located on the windward side. The accuracy of the predictability of the wake effect is determined by the wake model and modeling technique that can properly simulate it. Therefore, in this paper, using WindSim, a commercial CFD model, the wake diffusion pattern is analyzed through the sensitivity study of each wake model of the proposed onshore wind farm located in the mountainous complex terrain in South Korea, and it is intended to be used as basic research data for wind energy projects in complex terrain in the future.

Introducing SEABOT: Methodological Quests in Southeast Asian Studies

  • Keck, Stephen
    • SUVANNABHUMI
    • /
    • v.10 no.2
    • /
    • pp.181-213
    • /
    • 2018
  • How to study Southeast Asia (SEA)? The need to explore and identify methodologies for studying SEA are inherent in its multifaceted subject matter. At a minimum, the region's rich cultural diversity inhibits both the articulation of decisive defining characteristics and the training of scholars who can write with confidence beyond their specialisms. Consequently, the challenges of understanding the region remain and a consensus regarding the most effective approaches to studying its history, identity and future seem quite unlikely. Furthermore, "Area Studies" more generally, has proved to be a less attractive frame of reference for burgeoning scholarly trends. This paper will propose a new tool to help address these challenges. Even though the science of artificial intelligence (AI) is in its infancy, it has already yielded new approaches to many commercial, scientific and humanistic questions. At this point, AI has been used to produce news, generate better smart phones, deliver more entertainment choices, analyze earthquakes and write fiction. The time has come to explore the possibility that AI can be put at the service of the study of SEA. The paper intends to lay out what would be required to develop SEABOT. This instrument might exist as a robot on the web which might be called upon to make the study of SEA both broader and more comprehensive. The discussion will explore the financial resources, ownership and timeline needed to make SEABOT go from an idea to a reality. SEABOT would draw upon artificial neural networks (ANNs) to mine the region's "Big Data", while synthesizing the information to form new and useful perspectives on SEA. Overcoming significant language issues, applying multidisciplinary methods and drawing upon new yields of information should produce new questions and ways to conceptualize SEA. SEABOT could lead to findings which might not otherwise be achieved. SEABOT's work might well produce outcomes which could open up solutions to immediate regional problems, provide ASEAN planners with new resources and make it possible to eventually define and capitalize on SEA's "soft power". That is, new findings should provide the basis for ASEAN diplomats and policy-makers to develop new modalities of cultural diplomacy and improved governance. Last, SEABOT might also open up avenues to tell the SEA story in new distinctive ways. SEABOT is seen as a heuristic device to explore the results which this instrument might yield. More important the discussion will also raise the possibility that an AI-driven perspective on SEA may prove to be even more problematic than it is beneficial.

  • PDF

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).