DOI QR코드

DOI QR Code

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries

리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구

  • Dong-Myeong Moon (Department of Material Science and Chemical Engineering, Hanyang University) ;
  • Da-Eun Hyun (Material Technology Center, Korea Testing Laboratory) ;
  • Ji-Hui Oh (Material Technology Center, Korea Testing Laboratory) ;
  • Jwa-Bin Jeon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Yong-Nam Kim (Material Technology Center, Korea Testing Laboratory) ;
  • Kyoung-Hoon Jeong (Technical Department, Daehan Ceramics Co., Ltd.) ;
  • Jong-Kun Lee (Technical Department, Daehan Ceramics Co., Ltd.) ;
  • Sang-Mo Koo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Dong-Won Lee (Material Technology Center, Korea Testing Laboratory) ;
  • Jong-Min Oh (Department of Electronic Materials Engineering, Kwangwoon University)
  • 문동명 (한양대학교 재료화학공학부) ;
  • 현다은 (한국산업기술시험원 재료기술센터) ;
  • 오지희 (한국산업기술시험원 재료기술센터) ;
  • 전좌빈 (광운대학교 전자재료공학과) ;
  • 김용남 (한국산업기술시험원 재료기술센터) ;
  • 정경훈 (대한세라믹스 기술부) ;
  • 이종근 (대한세라믹스 기술부) ;
  • 구상모 (광운대학교 전자재료공학과) ;
  • 이동원 (한국산업기술시험원 재료기술센터) ;
  • 오종민 (광운대학교 전자재료공학과)
  • Received : 2023.09.20
  • Accepted : 2023.10.04
  • Published : 2023.11.01

Abstract

Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).

Keywords

Acknowledgement

본 연구는 산업통상자원부 전략 핵심소재 자립화 기술사업(No.2001914), 산업통상자원부 한국산업기술진흥원 산업혁신인재성장지원사업(P0012451), 과학기술정보통신부 한국연구재단 기초연구사업(No.RS-2023-00212985)의 지원 및 2023년도 광운대학교 우수연구자 지원 사업의 지원을 받아 수행된 연구임.

References

  1. K. Xu, Chem. Rev., 104, 4303 (2004). doi: https://doi.org/10.1021/cr030203g
  2. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). doi: https://doi.org/10.1038/451652a
  3. N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, Angew. Chem. Int. Ed., 51, 9994 (2012). doi: https://doi.org/10.1002/anie.201201429
  4. P. Arora and Z. Zhang, Chem. Rev., 104, 4419 (2004). doi: https://doi.org/10.1021/cr020738u
  5. C. Shi, J. Dai, X. Shen, L. Peng, C. Li, X. Wang, P. Zhang, and J. Zhao, J. Membr. Sci., 517, 91 (2016). doi: https://doi.org/10.1016/j.memsci.2016.06.035
  6. C. Shi, P. Zhang, L. Chen, P. Yang, and J. Zhao, J. Power Sources, 270, 547 (2014). doi: https://doi.org/10.1016/j.jpowsour.2014.07.142
  7. S. W. Kim, J. H. Seok, B.H.D. Kim, H. M. Cho, and K. Y. Cho, J. Korean Electrochem. Soc., 17, 7 (2014). doi: https://doi.org/10.5229/JKES.2014.17.1.7
  8. Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Energy Environ. Mater., 4, 336 (2021). doi: https://doi.org/10.1002/eem2.12129
  9. F. Meng, J. Gao, M. Zhang, D. Li, and X. Liu, Batteries Supercaps, 4, 146 (2021). doi: https://doi.org/10.1002/batt.202000169
  10. H. Zhang, C. E. Lin, M. Y. Zhou, A. E. John, and B. K. Zhu, Electrochim. Acta, 187, 125 (2016). doi: https://doi.org/10.1016/j.electacta.2015.11.028
  11. Y. E. Miao, G. N. Zhu, H. Hou, Y. Y. Xia, and T. Liu, J. Power Sources, 226, 82 (2013). doi: https://doi.org/10.1016/j.jpowsour.2012.10.027
  12. Y. Liu, X. Ma, K. Sun, K. Yang, and F. Chen, J. Solid State Electrochem., 22, 581 (2018). doi: https://doi.org/10.1007/s10008-017-3761-6
  13. S. S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K. S. Han, Electrochim. Acta, 50, 339 (2004). doi: https://doi.org/10.1016/j.electacta.2004.03.057
  14. J. C. Barbosa, D. M. Correia, R. Goncalves, V. de Z. Bermudez, M. M. Silva, S. Lanceros-Mendez, and C. M. Costa, J. Colloid Interface Sci., 582, 376 (2021). doi: https://doi.org/10.1016/j.jcis.2020.08.046
  15. D. Wu, L. Deng, Y. Sun, K. S. Teh, C. Shi, Q. Tan, J. Zhao, D. Sun, and L. Lin, RSC Adv., 7, 24410 (2017). doi: https://doi.org/10.1039/C7RA02681A
  16. K. J. Kim, Y. H. Kim, J. H. Song, Y. N. Jo, J. S. Kim and Y. J. Kim, J. Power Sources, 195, 6075 (2010). doi: https://doi.org/10.1016/J.JPOWSOUR.2009.12.056
  17. Y. K. Ahn, Y. K. Kwon, and K. J. Kim, Int. J. Energy Res., 44, 6651 (2020). doi: https://doi.org/10.1002/er.5401
  18. S. Y. Jin, J. Manuel, X. Zhao, W. H. Park, and J. H. Ahn, J. Ind. Eng. Chem., 45, 15 (2017). doi: https://doi.org/10.1016/j.jiec.2016.08.021
  19. K. J. Kim, M. S. Park, T. Yim, J. S. Yu, and Y. J. Kim, J. Appl. Electrochem., 44, 345 (2014). doi: https://doi.org/10.1007/s10800-014-0661-7
  20. K. J. Kim, M. S. Park, H. Kim, and Y. J. Kim, Jpn. J. Appl. Phys., 51, 09MB03 (2012). doi: https://doi.org/10.1143/jjap.51.09MB03
  21. X. Wei, Q. Wang, Z. Song, Z. Yue, T. Tian, C. Yin, L. Zhou, and X. Li, Solid State Ionics, 366, 115652 (2021). doi: https://doi.org/10.1016/j.ssi.2021.115652
  22. R. Xu, L. Sheng, H. Gong, Y. Kong, Y. Yang, M. Li, Y. Bai, S. Song, G. Liu, T. Wang, X. Huang, and J. He, Adv. Eng. Mater., 23, 2001009 (2021). doi: https://doi.org/10.1002/adem.202001009
  23. B. Jung, B. Lee, Y. C. Jeong, J. Lee, S. R. Yang, H. Kim, and M. Park, J. Power Sources, 427, 271 (2019). doi: https://doi.org/10.1016/j.jpowsour.2019.04.046
  24. D. Parikh, C. J. Jafta, B. P. Thapaliya, J. Sharma, H. M. Meyer, C. Silkowski, and J. Li, J. Power Sources, 507, 230259 (2021). doi: https://doi.org/10.1016/j.jpowsour.2021.230259
  25. J. H. Park, W. Park, J. H. Kim, D. Ryoo, H. S. Kim, Y. U. Jeong, D. W. Kim, and S. Y. Lee, J. Power Sources, 196, 7035 (2011). doi: https://doi.org/10.1016/j.jpowsour.2010.09.102
  26. K. J. Kim, J. H. Kim, M. S. Park, H. K. Kwon, H. Kim, and Y. J. Kim, J. Power Sources, 198, 298 (2012). doi: https://doi.org/10.1016/j.jpowsour.2011.09.086
  27. H. S. Jeong, S. C. Hong, and S. Y. Lee, J. Membr. Sci., 364, 177 (2010). doi: https://doi.org/10.1016/j.memsci.2010.08.012
  28. D. W. Lee, S. H. Lee, Y. N. Kim, and J. M. Oh, Powder Technol., 320, 125 (2017). doi: https://doi.org/10.1016/j.powtec.2017.07.027
  29. D. E. Hyun, Y. J. Jung, T. W. Kim, S. M. Koo, C. Park, H. S. Kim, S. Kim, W. H. Shin, D. W. Lee, and J. M. Oh, Ceram. Int., 49, 30147 (2023). doi: https://doi.org/10.1016/j.ceramint.2023.06.271
  30. T. Y. Kim, M. H. Kang, J. H. Kim, J. K. Hong, J. H. Yu, and J. I. Lee, J. Powder Mater, 29, 99 (2022). doi: https://doi.org/10.4150/KPMI.2022.29.2.99
  31. B. C. Hancock, K. E. Vukovinsky, B. Brolley, I. Grimsey, D. Hedden, A. Olsofsky, and R. A. Doherty, J. Pharm. Biomed. Anal., 35, 979 (2004). doi: https://doi.org/10.1016/j.jpba.2004.02.035
  32. A. B. Spierings, M. Voegtlin, T. Bauer, and K. Wegener, Prog. Addit. Manuf., 1, 9 (2016). doi: https://doi.org/10.1007/s40964-015-0001-4
  33. L. X. Liu, I. Marziano, A. C. Bentham, J. D. Litster, E. T. White, and T. Howes, Int. J. Pharm., 362, 109 (2008). doi: https://doi.org/10.1016/j.ijpharm.2008.06.023
  34. S. S. Zhang, J. Power Sources, 164, 351 (2007). doi: https://doi.org/10.1016/j.jpowsour.2006.10.065
  35. Z. Trpelkova, H. Hurychova, M. Kuentz, B. Vranikova, and Z. Sklubalova, Powder Technol., 375, 33 (2020). doi: https://doi.org/10.1016/j.powtec.2020.07.095
  36. X. Wei, Q. Wang, Z. Song, Z. Yue, T. Tian, C. Yin, L. Zhou, and X. Li, Solid State Ionics, 366, 115652 (2021). doi: https://doi.org/10.1016/j.ssi.2021.115652
  37. S. M. Park, H. J. Yu, K. H. Kim, Y. C. Kang, and W. I. Cho, J. Korean Electrochem. Soc., 20, 27 (2017). doi: https://doi.org/10.5229/JKES.2017.20.2.27
  38. Y. Li, L. Yu, W. Hu, and X. Hu, J. Mater. Chem. A, 8, 20294 (2020). doi: https://doi.org/10.1039/d0ta07511f
  39. H. S. Jeong, K. C. Kim, and S. Y. Lee, J. Korean Electrochem. Soc., 12, 324 (2009). doi: https://doi.org/10.5229/jkes.2009.12.4.324
  40. J. M. Sung, J. Y. Park, and H. W. Jung, Polymer, 45, 456 (2021). doi: https://doi.org/10.7317/pk.2021.45.3.456
  41. C.F.J. Francis, I. L. Kyratzis, and A. S. Best, Adv. Mater., 32, 1904205 (2020). doi: https://doi.org/10.1002/adma.201904205
  42. U. Kim, Y. Roh, S. Choi, C. B. Dzakpasu, and Y. M. Lee, J. Korean Electrochem. Soc., 25, 134 (2022). doi: https://doi.org/10.5229/JKES.2022.25.4.134
  43. S. G. Oh, Y. G. Lee, K. M. Kim, Y. M. Lee, S. H. Kim, Y. J. Kim, and J. M. Ko, Korean Chem. Eng. Res., 51, 330 (2013). doi: https://doi.org/10.9713/kcer.2013.51.3.330
  44. M. Park, B. H. Ra, J. Y. Bae, B. H. Kim, and W. K. Choi, Polymer, 37, 22 (2013). doi: https://doi.org/10.7317/pk.2013.37.1.22