Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00584

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid  

Mustafa, Azeem (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology)
Lougou, Bachirou Guene (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology)
Shuai, Yong (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology)
Razzaq, Samia (School of Aerospace, Mechanical and Mechatronics Engineering, University of Sydney)
Wang, Zhijiang (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology)
Shagdar, Enkhbayar (Key Laboratory of Aerospace Thermophysics of MIIT, Harbin Institute of Technology)
Zhao, Jiupeng (MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.1, 2022 , pp. 148-158 More about this Journal
Abstract
The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.
Keywords
Electrochemical $CO_2$ Reduction; Carbon monoxide; Formic Acid; Techno-Economic Analysis; Sensitivity Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.-T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P.G. De Arquer, A. Kiani, J.P. Edwards, P. De Luna, O.S. Bushuyeve, Science, 2018, 360 (6390), 783-7.   DOI
2 X. Zheng, Y. Ji, J. Tang, J. Wang, B. Liu, H.-G. Steinruck, K. Lim, Y. Li, M.F. Toney, K. Chan, Nat. Catal., 2019, 2(1), 55-61.   DOI
3 Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev., 2017, 46(5), 1427-1463.   DOI
4 S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, J. Am. Chem. Soc., 2014, 136(22), 7845-7848.   DOI
5 H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, J. CO2 Util., 2017, 1(20), 208-217.
6 M. Persson, O. Jonsson, A. Wellinger, , IEA Bioenergy Task, 2007, 37, 1-34.
7 M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res., 2018, 57(6), 2165-2177.   DOI
8 J.M. Spurgeon, B. Kumar, Energy Environ. Sci., 2018, 11(6), 1536-1551.   DOI
9 G. Liu, E.D. Larson, R.H. Williams, T.G. Kreutz, X. Guo, Energy & Fuels, 2011, 25(1), 415-437.   DOI
10 X. Li, P. Anderson, H.-R.M. Jhong, M. Paster, J.F. Stubbins, P.J.A. Kenis, Energy & Fuels, 2016, 30(7), 5980-5989.   DOI
11 T. Moller, W. Ju, A. Bagger, X. Wang, F. Luo, T. Ngo Thanh, A.S. Varela, J. Rossmeisl, P. Strasser, Energy Environ. Sci., 2019, 12(2), 640-647.   DOI
12 H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, ECS Trans., 2017, 77(11), 1425-1431.   DOI
13 M. Rumayor, A. Dominguez-Ramos, P. Perez, A. Irabien, J. CO2 Util., 2019, 34, 490-499.   DOI
14 M. Finkenrath, Cost and Performance of Carbon Dioxide Capture from Power Generation, 2011.
15 I. Dimitriou, P. Garcia-Gutierrez, R.H. Elder, R.M. Cuellar-Franca, A. Azapagic, R.W.K. Allen, Energy Environ. Sci., 2015, 8(6), 1775-1789.   DOI
16 James, Brian, Colella, Whitney, Moton, Jennie, G. Saur, T. Ramsden,. United States, 2013.
17 D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc. Rev., 2014, 45(14), 3954-3988.   DOI
18 W.G. Colella, B.D. James, J.M. Moton, Strateg. Anal. Inc., 2014, 27.
19 M.R. Shaner, H.A. Atwater, N.S. Lewis, E.W. McFarland, Energy Environ. Sci., 2016, 9(7), 2354-2371.   DOI
20 M.E. Dry, Catal. Today., 2002, 71(3-4), 227-241.   DOI
21 B.D. James, J.M. Moton, W.G. Colella, Strategic Analysis, Inc., 2014, 11-16.
22 A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, H. Tan, J. Energy Chem., 2020, 49, 96-123.   DOI
23 J. Eppinger, K.-W. Huang, ACS Energy Lett., 2017, 2(1), 188-195.   DOI
24 A.K. Singh, S. Singh, A. Kumar, Catal. Sci. Technol., 2016, 6(1), 12-40.   DOI
25 N. Jonggeol, B. Seo, J. Kim, C. W. Lee, H. Lee, Y. J. Hwang, B. K. Min, D. K. Lee, H.-S. Oh, and U. Lee, Nat. Commun., 2019, 10 (1), 1-13.   DOI
26 A. Sieminski, Annual energy outlook 2015, US Energy Inf. Adm. (2015).
27 P. Ganji, R.A. Borse, J. Xie, A.G.A. Mohamed, Y. Wang, Adv. Sustain. Syst., 2020, 4(8), 1-22.
28 EIA, Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2016, U.S. Energy Information Administration, 2016.
29 L. Zhang, I. Merino-Garcia, J. Albo, C.M. Sanchez-Sanchez, Curr. Opin. Electrochem., 2020, 23, 65-73.   DOI
30 A. Mustafa, B.G. Lougou, Y. Shuai, Z. Wang, S. Razzaq, J. Zhao, H. Tan, Sustain. Energy Fuels., 2020, 4(9), 4352-69.   DOI