Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.11.481

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method  

Sang Woo, Park (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
Suyoung, Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
Jun Sung, Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
Jin Hyeok, Kim (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.32, no.11, 2022 , pp. 481-488 More about this Journal
Abstract
The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.
Keywords
CZTSSe; thin films; Cd alloying; photovoltaic; CBD;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer and X. Hao, Prog. Photovoltaics, 30, 687 (2022). 
2 X. Lv, C. Zhu, Y. Wang, L. Wang and J. Shi, J. Alloys Compd., 874, 159898 (2021). 
3 B. Xu, X. Qin, J. Lin, J. Chen, H. Tong, R. Qi, F. Yue, Y. Chen, P. Yang, J. Chu and L. Sun, Sol. RRL, 6, 2200256 (2022). 
4 Y. E. Romanyuk, S. G. Haass, S. Giraldo, M. Placidi, D. Tiwari, D. J. Fermin, X. Hao, T. Schnabel, M. Kauk-Kuusik, P. Pistor, S. Lie and L. H. Wong, J. Phys.: Energy, 1, 044004 (2019). 
5 S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Perez-Rodriguez and E. Saucedo, Adv. Mater., 31, 1806692 (2019). 
6 R. Sun, D. Zhuang, M. Zhao, Q. Gong, M. Scarpulla, Y. Wei, G. Ren and Y. Wy, Sol. Energy Mater. Sol. Cells, 174, 494 (2018). 
7 C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B. P. Veettil, K. Sun, A. Pu, J. A. Stride, M. A. Green and X. Hao, ACS Energy Lett., 2, 930 (2017). 
8 M. A. Contreras, M. J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward and K. Ramanathan, Thin Solid Film, 403-404, 204 (2002). 
9 L. Sun, H. Shen, H. Huang, A. Raza, Q. Zhao and D. Hu, Mater. Sci. Semicond. Process., 120, 105356 (2020). 
10 J. Fu, Q. Tian, Z. Zhou, D. Kou, Y. Meng, W. Zhou and S. Wu, Chem. Mater., 28, 5821 (2016). 
11 H. Shim, J. Kim, M. G. Gang and J. H. Kim, Korean J. Mater. Res., 28, 564 (2018). 
12 S. Jang, J. S. Jang, E. Jo, V. C. Karade, J. Kim, J. H. Moon and J. H. Kim, Korean J. Mater. Res., 31, 150 (2021). 
13 Q. Yan, S. Cheng, X. Yu, H. Jia, J. Fu, C. Zhang, Q. Zheng and S. Wu, Sol. RRL, 4, 1900410 (2020). 
14 A. A. Odeh, Y. A.-Douri, R. M. Ayub and A. S. Ibraheam, J. Alloys Compd., 686, 883 (2016). 
15 M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Tasaki, T. Kato and H. Sugimoto, IEEE J. Photovoltaics, 9, 1863 (2019).    DOI
16 M. H. Sharif, T. Enkhbat, E. Enkhbayar and J. H. Kim, ACS Appl. Energy Mater., 3, 8500 (2020). 
17 D. Nam, S. Cho, J.-H. Sim, K.-J. Yang, D.-H. Son, D.-H. Kim, J.-K. Kang, M.-S. Kwon, C.-W. Jeon and H. Cheong, Sol. Energy Mater. Sol. Cells, 149, 226 (2016). 
18 Z. Su, J. M. R. Tan, X. Li, X. Zeng, S. K. Batabyal and L. H. Wong, Adv. Energy Mater., 5, 1500682 (2015). 
19 H. Laun, B. Yao, Y. Li, R. Liu, Z. Ding, Z. Zhang, H. Zhao and L. Zhang, J. Alloys Compd., 879, 160160 (2021). 
20 Z.-Y. Xiao, Y.-F. Li and B. Yao, J. Appl. Phys., 114, 183506 (2013).