Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.5.283

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis  

Kim, Ji Eun (Hydrogen Research Department, Korea Institute of Energy Research)
Park, Hyeonjung (Hydrogen Research Department, Korea Institute of Energy Research)
Choi, Yong Woo (Hydrogen Research Department, Korea Institute of Energy Research)
Lee, Jae Hun (Hydrogen Research Department, Korea Institute of Energy Research)
Publication Information
Membrane Journal / v.32, no.5, 2022 , pp. 283-291 More about this Journal
Abstract
Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.
Keywords
water electrolysis; energy; anion exchange membrane; SEBS; hydrogen; technology;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Q. H. Zeng, Q. L. Liu, I. Broadwell, A. M. Zhu, Y. Xiong, and X. P. Tu, "Anion exchange membranes based on quaternized polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells", J. Membr. Sci., 349, 237 (2010).   DOI
2 M. A. Hickner, A. M. Herring, and E. B. Coughlin, "Anion exchange membranes: Current status and moving forward", J. Polym. Sci. Part B., 51, 1727 (2013).   DOI
3 J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Memb. Sci., 486, 71-88 (2015).   DOI
4 S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, and V. N. Fateev, "Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis", Int. J. Hydrog. Energy, 34, 5986- 5991 (2009).   DOI
5 W. Hu, X. Cao, F. Wang, and Y. Zhang, "A novel cathode for alkaline water electrolysis", Int. J. Hydrog. Energy, 22, 621-623 (1997).
6 B. Eriksson, H. Grimler, A. Carlson, H. Ekstrom, R. Wreland Lindstrom, G. Lindbergh, and C. Lagergren, "Quantifying water transport in anion exchange membrane fuel cells", Int. J. Hydrog. Energy, 44, 4930-4939 (1997).
7 I. Vincent, A. Kruger, and D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis", Int. J. Hydrog. Energy, 42, 10752-10761 (2017).   DOI
8 I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", Renew. Sust. Energ. Rev., 81, 1690-1704 (2018).   DOI
9 P. Joo-Wang, R. Cheol-Hwi, and H. Gab-Jin, "Study on commercially available anion exchange membrane for alkaline water eectrolysis", J. Membr. Sci., 31, 275-281 (2021).   DOI
10 L. Wang and M. A. Hickner, "Low-temperature crosslinking of anion exchange membranes", Polym. Chem., 5, 2928 (2014).   DOI
11 A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, and H. -j. Paik, "Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance", Int. J. Hydrog. Energy, 45, 27346-27358 (2020).   DOI
12 A.Y. Faid, L. Xie, A. O. Barnett, F. Seland, D. Kirk, and S. Sunde, "Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis", Int. J. Hydrog. Energy, 45, 28272-28284 (2020).   DOI
13 L. Haeryang, and K. Tae-Hyun, "Preparation and characterization of anion exchange membrane based on crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) with spacer-type conducting group", J. Membr. Sci., 27, 425-433 (2017).   DOI
14 A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. K. Choe, and C. Bae, "Systematic alkaline stability study of polymer backbones for anion exchange membrane applications", Macromolecules, 49, 3361 (2016).   DOI
15 C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, and Q. L. Liu, "Sidechain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells", J. Mater. Chem. A, 4, 13938 (2016).   DOI
16 J. Hao, X. Gao, Y. Jiang, H. Zhang, J. Luo, Z. Shao, and B. Yi, "Crosslinked high-performance anion exchange membranes based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)", J. Membr. Sci., 551, 66-75 (2018).   DOI
17 A. Sarsenbek and P. Rajkumar, "A review based on ion separation by ion exchange membrane", J. Membr. Sci., 32, 209-217 (2022).   DOI
18 K. Jae-Hun, R. Seungbo, and M. Seung-Hyeon, "The fabrication of ion exchange membrane and its application to energy systems", J. Membr. Sci., 30, 79-96 (2020).   DOI
19 Z. Wang, J. Parrondo, and V. Ramani, "Anion exchange membranes based on polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene triblock copolymers: Cation stability and fuel cell performance", J. Electrochem. Soc., 164, F1216-F1225 (2017).   DOI
20 A. Z. Al Munsur, I. Hossain, S. Y. Nam, J. E. Chae, and T.-H. Kim, "Hydrophobic-hydrophilic comb-type quaternary ammonium-functionalized SEBS copolymers for high performance anion exchange membranes", J. Membr. Sci., 599, 117829 (2020).   DOI
21 J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., 581, 82-92 (2019)   DOI
22 J. Y. Jeon, S. Park, J. Han, S. Maurya, A. D. Mohanty, D. Tian, N. Saikia, M. A. Hickner, C. Y. Ryu, M. E. Tuckerman, S. J. Paddison, Y. S. Kim, and C. Bae, "Synthesis of aromatic anion exchange membranes by friedel-crafts bromoalkylation and cross-linking of polystyrene block copolymers", Macromolecules, 52, 2139-2147 (2019).   DOI
23 G. -J. Hwang and H. Ohya, "Preparation of anionexchange membrane based on block copolymers: Part 1. Amination of the chloromethylated copolymers", J. Membr. Sci., 140, 195-203 (1998).   DOI
24 N. Li, T. Yan, Z. Li, T. Thurn-Albrecht, and W. H. Binder, "Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes", Energy Environ. Sci., 5, 7888 (2012).   DOI
25 Y. -C. Cao, X. Wu, and K. Scott, "A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts", Int. J. Hydrog. Energy, 37, 9524-9528 (2012).   DOI
26 R. Vinodh, A. Ilakkiya, S. Elamathi, and D. Sangeetha, "A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization", Mater. Sci. Eng. B., 43, 167 (2010).
27 A. D. Mohanty, C. Y. Ryu, Y. S. Kim, and C. Bae, "Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyreneb-poly(ethylene-co-butylene)-b-polystyrene triblock copolymers", Macromolecules, 48, 7085-7095 (2015).   DOI
28 Y. Shi, Z. Zhao, W. Liu, and C. Zhang, "Physically self-cross-linked sebs anion exchange membranes", Energy Fuels., 34, 16746-16755 (2020).   DOI
29 P. Dai, Z. -H. Mo, R. -W. Xu, S. Zhang, and Y.-X. Wu, "Cross-linked quaternized poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane: synthesis, characterization and properties", ACS Appl. Mater. Interfaces., 8, 20329-20341 (2016).   DOI
30 Z. Li, C. Li, C. Long, J. Sang, L. Tian, F. Wang, Z. Wang, and H. Zhu, "Elastic and durable multication-crosslinked anion exchange membrane based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)", J. Polym. Sci., 58, 2181-2196 (2020).   DOI