DOI QR코드

DOI QR Code

Analysis of Photovoltaic Performance Improvement of Cu2Zn1-xCdxSn(SxSe1-x)4 Thin Film Solar Cells by Controlling Cd2+ Element Alloying Time Using CBD Method

CBD 공법을 이용하여 Cd2+ 원소 Alloying 시간을 조절한 Cu2Zn1-xCdxSn(SxSe1-x)4 박막 태양전지의 광전지 성능 향상 분석

  • Sang Woo, Park (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Suyoung, Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jun Sung, Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jin Hyeok, Kim (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
  • 박상우 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 장수영 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 장준성 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 김진혁 (전남대학교 광전자융합기술연구소 신소재공학과)
  • Received : 2022.09.15
  • Accepted : 2022.10.27
  • Published : 2022.11.27

Abstract

The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.

Keywords

Acknowledgement

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334) and Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (grant No. 2019R1A6C1010024).

References

  1. A. A. Odeh, Y. A.-Douri, R. M. Ayub and A. S. Ibraheam, J. Alloys Compd., 686, 883 (2016). 
  2. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Tasaki, T. Kato and H. Sugimoto, IEEE J. Photovoltaics, 9, 1863 (2019).  https://doi.org/10.1109/jphotov.2019.2937218
  3. M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer and X. Hao, Prog. Photovoltaics, 30, 687 (2022). 
  4. X. Lv, C. Zhu, Y. Wang, L. Wang and J. Shi, J. Alloys Compd., 874, 159898 (2021). 
  5. B. Xu, X. Qin, J. Lin, J. Chen, H. Tong, R. Qi, F. Yue, Y. Chen, P. Yang, J. Chu and L. Sun, Sol. RRL, 6, 2200256 (2022). 
  6. Y. E. Romanyuk, S. G. Haass, S. Giraldo, M. Placidi, D. Tiwari, D. J. Fermin, X. Hao, T. Schnabel, M. Kauk-Kuusik, P. Pistor, S. Lie and L. H. Wong, J. Phys.: Energy, 1, 044004 (2019). 
  7. S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Perez-Rodriguez and E. Saucedo, Adv. Mater., 31, 1806692 (2019). 
  8. R. Sun, D. Zhuang, M. Zhao, Q. Gong, M. Scarpulla, Y. Wei, G. Ren and Y. Wy, Sol. Energy Mater. Sol. Cells, 174, 494 (2018). 
  9. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B. P. Veettil, K. Sun, A. Pu, J. A. Stride, M. A. Green and X. Hao, ACS Energy Lett., 2, 930 (2017). 
  10. M. A. Contreras, M. J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward and K. Ramanathan, Thin Solid Film, 403-404, 204 (2002). 
  11. L. Sun, H. Shen, H. Huang, A. Raza, Q. Zhao and D. Hu, Mater. Sci. Semicond. Process., 120, 105356 (2020). 
  12. J. Fu, Q. Tian, Z. Zhou, D. Kou, Y. Meng, W. Zhou and S. Wu, Chem. Mater., 28, 5821 (2016). 
  13. H. Shim, J. Kim, M. G. Gang and J. H. Kim, Korean J. Mater. Res., 28, 564 (2018). 
  14. S. Jang, J. S. Jang, E. Jo, V. C. Karade, J. Kim, J. H. Moon and J. H. Kim, Korean J. Mater. Res., 31, 150 (2021). 
  15. Q. Yan, S. Cheng, X. Yu, H. Jia, J. Fu, C. Zhang, Q. Zheng and S. Wu, Sol. RRL, 4, 1900410 (2020). 
  16. M. H. Sharif, T. Enkhbat, E. Enkhbayar and J. H. Kim, ACS Appl. Energy Mater., 3, 8500 (2020). 
  17. D. Nam, S. Cho, J.-H. Sim, K.-J. Yang, D.-H. Son, D.-H. Kim, J.-K. Kang, M.-S. Kwon, C.-W. Jeon and H. Cheong, Sol. Energy Mater. Sol. Cells, 149, 226 (2016). 
  18. Z. Su, J. M. R. Tan, X. Li, X. Zeng, S. K. Batabyal and L. H. Wong, Adv. Energy Mater., 5, 1500682 (2015). 
  19. H. Laun, B. Yao, Y. Li, R. Liu, Z. Ding, Z. Zhang, H. Zhao and L. Zhang, J. Alloys Compd., 879, 160160 (2021). 
  20. Z.-Y. Xiao, Y.-F. Li and B. Yao, J. Appl. Phys., 114, 183506 (2013).