• Title/Summary/Keyword: cohomology group

Search Result 47, Processing Time 0.032 seconds

GOTTLIEB GROUPS AND SUBGROUPS OF THE GROUP OF SELF-HOMOTOPY EQUIVALENCES

  • Kim, Jae-Ryong;Oda, Nobuyuki;Pan, Jianzhong;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1047-1063
    • /
    • 2006
  • Let $\varepsilon_#(X)$ be the subgroups of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix homotopy groups through the dimension of X and $\varepsilon_*(X) $ be the subgroup of $\varepsilon(X)$ that fix homology groups for all dimension. In this paper, we establish some connections between the homotopy group of X and the subgroup $\varepsilon_#(X)\cap\varepsilon_*(X)\;of\;\varepsilon(X)$. We also give some relations between $\pi_n(W)$, as well as a generalized Gottlieb group $G_n^f(W,X)$, and a subset $M_{#N}^f(X,W)$ of [X, W]. Finally we establish a connection between the coGottlieb group of X and the subgroup of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix cohomology groups.

ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

  • Yu, Ho-Seog
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group G = <${\sigma}$> of order n. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume III(A/L) is finite. Let M(x) be a companion matrix of 1+x+${\cdots}$+$x^{n-1}$ and let $A^x$ be the twist of $A^{n-1}$ defined by $f^{-1}{\circ}f^{\sigma}$ = M(x) where $f:A^{n-1}{\rightarrow}A^x$ is an isomorphism defined over L. In this paper we compute [III(A/K)][III($A^x$/K)]/[III(A/L)] in terms of cohomology, where [X] is the order of an finite abelian group X.

Existence of subpolynomial algebras in $H^*(BG,Z/p)$

  • Lee, Hyang-Sook;Shin, Dong-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • Let G be a finiteg oroup. We denote BG a classifying space of G, which a contractible universal principal G bundle EG. The stable type of BG does not determine G up to isomorphism. A simple example [due to N. Minami]is given by $Q_{4p} \times Z/2$ and $D_{2p} \times Z/4$ where ps is an odd prime, $Q_{4p} is the generalized quarternion group of order 4p and $D_{2p}$ is the dihedral group of order 2p. However the paper [6] gives us a necessary and sufficient condition for $BG_1$ and $BG_2$ to be stably equivalent localized et pp. The local stable type of BG depends on the conjegacy classes of homomorphisms from the p-groups Q into G. This classification theorem simplifies if G has a normal sylow p-subgroup. Then the stable homotopy type depends on the Weyl group of the sylow p-subgroup.

  • PDF

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

ON THE IDEAL CLASS GROUPS OF REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 1996
  • Let $F_0$ be the maximal real subfield of $\mathbb{Q}({\zeta}_q+{\zeta}_q^{-1})$ and $F_{\infty}={\cup}_{n{\geq}0}F_n$ be its basic $\mathbb{Z}_p$-extension. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $F_n$. The aim of this paper is to examine the injectivity of the natural $mapA_n{\rightarrow}A_m$ induced by the inclusion $F_n{\rightarrow}F_m$ when $m>n{\geq}0$. By using cyclotomic units of $F_n$ and by applying cohomology theory, one gets the following result: If $p$ does not divide the order of $A_1$, then $A_n{\rightarrow}A_m$ is injective for all $m>n{\geq}0$.

  • PDF

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.