• Title/Summary/Keyword: coefficients of cyclotomic polynomial

Search Result 9, Processing Time 0.019 seconds

SEMI-CYCLOTOMIC POLYNOMIALS

  • LEE, KI-SUK;LEE, JI-EUN;Kim, JI-HYE
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.469-472
    • /
    • 2015
  • The n-th cyclotomic polynomial ${\Phi}_n(x)$ is irreducible over $\mathbb{Q}$ and has integer coefficients. The degree of ${\Phi}_n(x)$ is ${\varphi}(n)$, where ${\varphi}(n)$ is the Euler Phi-function. In this paper, we define Semi-Cyclotomic Polynomial $J_n(x)$. $J_n(x)$ is also irreducible over $\mathbb{Q}$ and has integer coefficients. But the degree of $J_n(x)$ is $\frac{{\varphi}(n)}{2}$. Galois Theory will be used to prove the above properties of $J_n(x)$.

CLASSIFICATION OF GALOIS POLYNOMIALS

  • LEE, KI-SUK;LEE, JI-EUN
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.259-265
    • /
    • 2017
  • Galois polynomials are defined as a generalization of the Cyclotomic polynomials. Galois polynomials have integer coefficients as the cyclotomic polynomials. But they are not always irreducible. In this paper, Galois polynomials are partly classified according to the type of subgroups which defines the Galois polynomial.

ON A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

  • ZHANG, BIN;ZHOU, YU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1911-1924
    • /
    • 2015
  • A cyclotomic polynomial ${\Phi}_n(x)$ is said to be ternary if n = pqr for three distinct odd primes p < q < r. Let A(n) be the largest absolute value of the coefficients of ${\Phi}_n(x)$. If A(n) = 1 we say that ${\Phi}_n(x)$ is flat. In this paper, we classify all flat ternary cyclotomic polynomials ${\Phi}_{pqr}(x)$ in the case $q{\equiv}{\pm}1$ (mod p) and $4r{\equiv}{\pm}1$ (mod pq).

GALOIS POLYNOMIALS

  • Lee, Ji-Eun;Lee, Ki-Suk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.171-177
    • /
    • 2019
  • We associate a positive integer n and a subgroup H of the group G(n) with a polynomial $J_{n,H}(x)$, which is called the Galois polynomial. It turns out that $J_{n,H}(x)$ is a polynomial with integer coefficients for any n and H. In this paper, we provide an equivalent condition for a subgroup H to provide the Galois polynomial which is irreducible over ${\mathbb{Q}}$.

IRREDUCIBILITY OF GALOIS POLYNOMIALS

  • Shin, Gicheol;Bae, Jae Yun;Lee, Ki-Suk
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.281-291
    • /
    • 2018
  • We associate a positive integer n and a subgroup H of the group $({\mathbb{Z}}/n{\mathbb{Z}})^{\times}$ with a polynomial $J_n,H(x)$, which is called the Galois polynomial. It turns out that $J_n,H(x)$ is a polynomial with integer coefficients for any n and H. In this paper, we provide an equivalent condition for a subgroup H to provide the Galois polynomial which is irreducible over ${\mathbb{Q}}$ in the case of $n=p^{e_1}_1{\cdots}p^{e_r}_r$ (prime decomposition) with all $e_i{\geq}2$.

THE MINIMAL POLYNOMIAL OF cos(2π/n)

  • Gurtas, Yusuf Z.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.667-682
    • /
    • 2016
  • In this article we show a recursive method to compute the coefficients of the minimal polynomial of cos($2{\pi}/n$) explicitly for $n{\geq}3$. The recursion is not on n but on the coefficient index. Namely, for a given n, we show how to compute ei of the minimal polynomial ${\sum_{i=0}^{d}}(-1)^ie_ix^{d-i}$ for $i{\geq}2$ with initial data $e_0=1$, $e_1={\mu}(n)/2$, where ${\mu}(n)$ is the $M{\ddot{o}}bius$ function.