GALOIS POLYNOMIALS

Ji-Eun Lee* and Ki-Suk Lee**

Abstract

We associate a positive integer n and a subgroup H of the group $G(n)$ with a polynomial $J_{n, H}(x)$, which is called the Galois polynomial. It turns out that $J_{n, H}(x)$ is a polynomial with integer coefficients for any n and H. In this paper, we provide an equivalent condition for a subgroup H to provide the Galois polynomial which is irreducible over \mathbb{Q}.

1. Introduction

Let n be a positive integer and ζ_{n} be the n-th primitive root of unity, that is $\zeta_{n}=e^{\frac{2 \pi i}{n}}$. It is well known that the n-th Cyclotomic polynomial $\Phi_{n}(x)$ is equal to

$$
\Phi_{n}(x)=\prod_{k \in G(n)}\left(x-\zeta_{n}^{k}\right)
$$

where $G(n)$ is the multiplicative group of invertible integers modulo n.
Suppose H be a subgroup of $G=G(n)$ and $G / H=\left\{h_{1} H, h_{2} H, \cdots, h_{l} H\right\}$ be its corresponding quotient group. For each $k=1, \cdots, l$, define $a_{k}=$ $\sum_{h \in H} \zeta^{h_{k} h}$. We now consider the monic polynomial having a_{1}, \cdots, a_{l} as its roots, denoted by $J_{n, H}(x)$. Then the polynomial

$$
J_{n, H}(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{l}\right)
$$

is called Galois polynomial.
In this paper, the irreducibility of Galois polynomials is studied. If n is square-free, $J_{n, H}(x)$ is irreducible over \mathbb{Q} for any subgroup H ([1], Theorem3.6). However, it is not always true if n has a squared factor.

Received February 14, 2019; Accepted March 15, 2019.
2010 Mathematics Subject Classification: Primary 12D05, 12E05, 12F05, 12F10.
Key words and phrases: n-th cyclotomic polynomial, Galois irreducible polynomial, semi-cyclotomic polynomial.
${ }^{* *}$ The corresponding author, Ki-Suk Lee.

Here, we modify Evans' criterion([5]) and prove the condition of H to get an irreducible Galois polynomial when n is general.

2. Irreducibility of Galois polynomials

Throughout the paper, r is the product of the distinct prime factors of n, or twice that, according as $8 \nmid n$ or $8 \mid n$. Let H be a subgroup of $G(n)$ and define $\eta=\sum_{h \in H} \sigma_{h}(\zeta)$. Write $n=p^{\alpha} \cdot m$ where p is the largest prime factor of $n>1$ with $p \nmid m, \alpha \geq 1$.

In this section, we study the irreducibility of $J_{n, H}(x)$ when n is general. If n is not square-free, the condition of H to get an irreducible Galois polynomial is not simple. We will show that if no nontrivial element of $H \equiv 1(\bmod r)$, the Galois polynomial $J_{n, H}(x)$ is irreducible. First, we prove the following Lemma which will be used proving main Theorem.

Lemma 2.1. Suppose that $k \in Z$ with $p \nmid k$ and that $p^{B} \|(x-1)$ where $B \geq 1$, but $B>1$ when $p=2$. Then $p^{A+B} \|\left(x^{k p^{A}}-1\right)$ for each integer $A \geq 0$.

Proof. We can write $x=m p^{B}+1$ with $p \nmid m$ and prove the Lemma by induction on A.
When $A=0$,

$$
\begin{aligned}
x^{k}-1 & =\left(m p^{B}+1\right)^{k}-1 \\
& =\left(m p^{B}\right)^{k}+{ }_{k} C_{1}\left(m p^{B}\right)^{k-1}+\cdots+{ }_{k} C_{k-1}\left(m p^{B}\right)+1-1 \\
& =m p^{B}\left\{\left(m p^{B}\right)^{k-1}+\cdots+{ }_{k} C_{k-2}\left(m p^{B}\right)+{ }_{k} C_{k-1}\right\} \\
& =m p^{B}\left\{\left(m p^{B}\right)^{k-1}+\cdots+{ }_{k} C_{k-2}\left(m p^{B}\right)+k\right\} .
\end{aligned}
$$

Since $p \nmid k, p^{B} \mid\left(x^{k}-1\right)$ and $p^{B+1} \nmid\left(x^{k}-1\right)$, that is $p^{B} \|\left(x^{k}-1\right)$. When $A=1$,

$$
\begin{aligned}
x^{k p}-1 & =\left(m p^{B}+1\right)^{k p}-1 \\
& =\left(m p^{B}\right)^{k p}+k p\left(m p^{B}\right)^{k p-1}+\cdots+k p\left(m p^{B}\right)+1-1 \\
& =\left\{\left(m p^{B}\right)^{k p}+k p\left(m p^{B}\right)^{k p-1} \cdots+{ }_{k p} C_{2}\left(m p^{B}\right)^{2}+k m p^{B+1}\right\} .
\end{aligned}
$$

Since $p \nmid k m, p^{B+1} \| k m p^{B+1}$. Therefore $p^{B+1} \|\left(x^{k p}-1\right)$.

Now, assume that Lemma is true for A, we will show that it is true for $A+1$.

$$
x^{k p^{A+1}}-1=\left(x^{k p^{A}}-1\right)\left(x^{k p^{A}(p-1)}+x^{k p^{A}(p-2)}+\cdots+x^{k p^{A}}+1\right)
$$

As we assumed, $p^{A+B} \|\left(x^{k p^{A}}-1\right)$, we will check if $p \|\left(x^{k p^{A}(p-1)}+\right.$ $\left.x^{k p^{A}(p-2)}+\cdots+x^{k p^{A}}+1\right)$.

$$
\begin{gathered}
x^{k p^{A}(p-1)}=\left(1+m p^{B}\right)^{k p^{A}(p-1)}=\cdots+k p^{A}(p-1) m p^{B}+1, \\
x^{k p^{A}(p-2)}=\left(1+m p^{B}\right)^{k p^{A}(p-2)}=\cdots+k p^{A}(p-2) m p^{B}+1, \\
\vdots \\
x^{k p^{A}}=\left(1+m p^{B}\right)^{k p^{A}}=\cdots+k p^{A} m p^{B}+1 .
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
x^{k p^{A}(p-1)}+x^{k p^{A}(p-2)}+\cdots+x^{k p^{A}}+1 & =\cdots+k\left(\frac{(p-1) p}{2}\right) m p^{A+B}+p \\
& =p\left(\cdots+k\left(\frac{(p-1) p}{2}\right) m p^{A+B-1}+1\right)
\end{aligned}
$$

So we get $p^{A+B+1} \|\left(x^{k p^{A+1}}-1\right)$.

Lemma 2.2. Let $x \in Z, x \equiv 1(\bmod r)$ and $x \neq 1(\bmod n)$. Then for some $d>0$ and some prime t such that $t^{2} \mid n, x^{d} \equiv 1\left(\bmod \frac{n}{t}\right)$ and $x^{d} \neq 1(\bmod n)$.

Proof. We proceed by induction on the number of distinct prime factors of n. Since $t^{2} \mid n$ is a condition, we may assume $n=p^{\alpha}, a \geq 2$ for the first step of induction. Then $x=p^{\alpha-1}+1$ and $d=1$ will work. Now, we assume that $n=p^{\alpha} \cdot m$ with $(p, m)=1$ and consider two cases; when $p^{\alpha} \mid(x-1)$ and $p^{\alpha} \nmid(x-1)$.
Case 1: $p^{\alpha} \mid(x-1)$
Since $x \equiv 1\left(\bmod r_{0}\right)$ and $x \neq 1(\bmod m)$, the induction hypothesis yields some $d>0$ and some prime t such that $t^{2} \mid m$, $x^{d} \equiv 1(\bmod m / t)$, and $x^{d} \neq 1(\bmod m)$. Thus $x^{d} \equiv 1\left(\bmod \frac{n}{t}\right)$ and $x^{d} \neq 1(\bmod n)$.
Case 2: $p^{\alpha} \nmid(x-1)$
Since $x \equiv 1(\bmod r)$, we have $p^{B} \|(x-1)$. where $\alpha>B \geq 1$ and $B>1$ when $p=2$. Since p is the largest prime factor of n, $p \nmid \phi(m)$. Define $d=\phi(m) p^{A}$, where $A=\alpha-B-1$. Note that $A \geq 0$. By Lemma 2.1, $p^{\alpha-1} \|\left(x^{d}-1\right)$. Also $x^{d} \equiv 1(\bmod m)$ since
$\phi(m) \mid d$. Therefore $x^{d} \equiv 1\left(\bmod \frac{n}{t}\right)$ and $x^{d} \neq 1(\bmod n)$ holds with $t=p$. Finally note that $p^{2} \mid n$ since $\alpha>B \geq 1$.

Lemma 2.3. If no nontrivial element of H is $\equiv 1(\bmod r)$ and $H=$ $G(n)$, then $\eta= \pm 1$.

Proof. If no nontrivial element of H is $\equiv 1(\bmod r)$ and $H=G(n), n$ is square free. The Ramanujan's sum $\sum_{x \in G} \zeta_{n}^{x}$ equals $\mu(n)$, where μ is the Möbius function. Since n is square free, $\mu(n)= \pm 1$, so $\eta= \pm 1$.

THEOREM 2.4. Suppose that no nontrivial element of H is $\equiv 1(\bmod r)$. Then $\eta \neq \sigma_{c}(\eta)$ for all $c \in G-H$.

Proof. We proceed by induction on the number of distinct prime factors of n. For the first step, let p be any prime number. If $n=p$, we get $\eta \neq \sigma_{c}(\eta)$ since Galois polynomial $J_{n, H}(x)$ is always irreducible since all roots of $J_{n, H}(x)$ are distinct([1], Theorem2.5). If $n=p^{k}$, with $k \geq 2$, we get $\eta \neq \sigma_{c}(\eta)([4]$, Theorem3.7).

Now, we consider when n has more than one prime factor. We may write $n=p^{\alpha} \cdot m$, where $(p, m)=1$. Let the subgroup $I \subset H$ defined by

$$
I=\left\{x \in H: x \equiv 1\left(\bmod p^{\alpha}\right)\right\}
$$

Reduction $(\bmod m)$ maps I isomorphically onto a subgroup $J \subset G_{m}$. Write

$$
H=\bigcup_{i=1}^{k} x_{i} I
$$

a disjoint union of cosets with $x_{1}=1$. Then
$R:=\sigma_{m+p^{\alpha}}(\eta)=\sum_{h \in H} \zeta_{m}^{h} \zeta_{p^{\alpha}}^{h}=\sum_{i=1}^{k} \sigma_{x_{i}}\left\{\zeta_{p^{\alpha}} \sum_{x \in I} \sigma_{x}\left(\zeta_{m}\right)\right\}=\sum_{i=1}^{k} \sigma_{x_{i}}\left(\delta \zeta_{p^{\alpha}}\right)$,
where $\eta=\sum_{h \in H} \sigma_{h}\left(\zeta_{n}\right)$ and $\delta=\sum_{x \in I} \sigma_{x}\left(\zeta_{m}\right)$.
Since $\delta=\sum_{x \in I} \sigma_{x}\left(\zeta_{m}\right)=\sum_{x \in J} \sigma_{x}\left(\zeta_{m}\right)$, and m has one less distinct prime factors than n, by induction hypothesis, $\tau_{w}(\delta) \neq \delta$ for all $w \in$ $G_{m}-J$.

For $1 \leq i \leq k$, write

$$
x_{i}=p s_{i}+r_{i}, c x_{i}=p s_{i}^{\prime}+r_{i}^{\prime}\left(0<r_{i}, r_{i}^{\prime}<p\right)
$$

We proceed to show that

$$
r_{1}, \cdots, r_{k} \text { are distinct and } r_{1}^{\prime}, \cdots, r_{k}^{\prime} \text { are distinct. }
$$

If $x_{i} \equiv x_{j}(\bmod p)$ with $i \neq j$, then $x:=x_{i} x_{j}^{-1} \equiv 1(\bmod p)$. Since the cosets are different, $x \neq 1\left(\bmod p^{\alpha}\right)$. Thus

$$
p^{B} \|(x-1) \text { with } 1 \leq B<\alpha
$$

By Lemma 2.1,

$$
x^{p^{\alpha-B}} \equiv 1\left(\bmod p^{\alpha}\right)
$$

Since $x^{\varphi(r)} \equiv 1(\bmod r)$ and $x^{\varphi(r)} \in H, x^{\varphi(r)} \equiv 1(\bmod n)$. Therefore $x^{\varphi(r)} \equiv 1\left(\bmod p^{\alpha}\right)$. Since the exponents $p^{\alpha-B}$ and $\varphi(r)$ are relatively prime, $x \equiv 1\left(\bmod p^{\alpha}\right)$. This is a contradiction. So, similarly we can prove that $r_{1}^{\prime}, \cdots, r_{k}^{\prime}$ are different. If $c x_{i} \equiv c x_{j}(\bmod p)$, then $x_{i} \equiv$ $x_{j}(\bmod p)$.

We will prove that $\eta \neq \sigma_{c}(\eta)$ if $c \in G-H$. Suppose that $\eta=\sigma_{c}(\eta)$. We want to show that $c \in H$. If $\eta=\sigma_{c}(\eta)$, then R is $\sigma_{c}(R)$.

$$
\begin{aligned}
& \sum_{i=1}^{k} \sigma_{x_{i}}(\delta) \zeta_{p^{\alpha}}^{x_{i}}=R=\sigma_{c}(R)=\sum_{i=1}^{k} \sigma_{c x_{i}}(\delta) \zeta_{p^{\alpha}}^{c x_{i}} \\
& \sum_{i=1}^{k}\left(\zeta_{p^{\alpha}}^{p s_{i}} \sigma_{x_{i}}(\delta)\right) \zeta_{p^{\alpha}}^{r_{i}}=\sum_{i=1}^{k}\left(\zeta_{p^{\alpha}}^{p s_{i}^{\prime}} \sigma_{c x_{i}}(\delta)\right) \zeta_{p^{\alpha}}^{r_{i}^{\prime}}
\end{aligned}
$$

Since $\zeta_{p^{\alpha}}, \zeta_{p^{\alpha}}^{2}, \cdots, \zeta_{p^{\alpha}}^{p-1}$ comprise a part of a basis for $\mathbb{Q}\left(\zeta_{n}\right)$ over $\mathbb{Q}\left(\zeta_{n}^{p}\right), r_{i}^{\prime}=r_{1}=1$ for some i, and

$$
\zeta_{p^{\alpha}}^{p s_{1}} \sigma_{x_{1}}(\delta)=\zeta_{p^{\alpha}}^{p s_{i}^{\prime}} \sigma_{c x_{i}}(\delta)
$$

Note that $x_{1}=1, r_{1}=1$, and $s_{1}=0$. Then we get $\delta=\zeta_{p^{\alpha}}^{d-1} \sigma_{d}(\delta)$, where

$$
d:=c x_{i}=p s_{i}^{\prime}+1
$$

So, $\sigma_{d}(\delta)=\zeta_{p^{\alpha}}^{1-d} \delta$.
Assume for the purpose of contradiction that $d \neq 1\left(\bmod p^{\alpha}\right)$. Then $p^{B} \|(1-d)$ for some B with $1 \leq B<\alpha$, and $B>1$ when $p=2$. Define

$$
d_{A}=d^{\varphi(m) p^{A}}, \text { where } A=\alpha-B-1
$$

By Lemma 2.1,

$$
\begin{equation*}
p^{\alpha-1} \|\left(d_{A}-1\right) \tag{2.1}
\end{equation*}
$$

Since $d^{\varphi(m)} \equiv 1(\bmod m), m$ divides $d_{A}-1$. Consequently $m p^{\alpha-1} \|\left(d_{A}-\right.$ 1). Applying σ_{d} successively to $\sigma_{d}(\delta)=\zeta_{p^{\alpha}}^{1-d} \delta$, we get $\sigma_{d^{A}}(\delta)=\delta \zeta_{p^{\alpha}}^{1-d_{A}}$.

Therefore, $\delta \equiv \delta \zeta_{p^{\alpha}}^{1-d_{A}}$, and $\delta\left(1-\zeta_{p^{\alpha}}^{1-d_{A}}\right)=0$. This implies that $1-d_{A} \equiv 0\left(\bmod p^{\alpha}\right)$, which contradicts to (2.1). So we have that $d \equiv 1\left(\bmod p^{\alpha}\right)$.

Reduction $(\bmod m)$ maps d to an element $y \in G_{m}$. Since $y \equiv$ $d(\bmod m)$ and $\delta \in \mathbb{Q}\left(\zeta_{m}\right)$, we get

$$
\tau_{y}(\delta)=\sigma_{d}(\delta)
$$

Also, $d \equiv 1\left(\bmod p^{\alpha}\right)$ implies that $\sigma_{d}(\delta)=\zeta_{p^{\alpha}}^{1-d} \delta$ is equal to δ. Therefore $\tau_{y} \delta=\delta$ and m has one less prime factors than n, we get by induction assumption, $y \in J$. Since I and J are isomorphic, there exists $h \in I$ such that $h \equiv y(\bmod m)$. This implies that $d \equiv h(\bmod m)$. Also have $h \equiv 1\left(\bmod p^{\alpha}\right)$ because $h \in I$. Since $d \equiv h \equiv 1\left(\bmod p^{\alpha}\right)$ and $d \equiv h(\bmod m)$, we get $d \equiv h(\bmod n)$. Therefore $d=h$ in G_{n} and d is in H, since h is in I. Finally we get $c \in H$, because $d=c x_{i}$ and $x_{i} \in H$.

Theorem 2.5. No nontrivial element of H is $\equiv 1(\bmod r)$ if and only if $\eta \neq 0$.

Proof.
\Longrightarrow If $G=H$, then $\eta \neq 0$ by Lemma2.3. If $G \neq H$, then $\eta \neq 0$ by Theorem2.4.
\Longleftarrow If there exists a nontrivial element of H which is $\equiv 1(\bmod r)$, then by Lemma2.2, there exist integers d, t with t prime such that $t^{2} \mid n, x^{d} \equiv 1\left(\bmod \frac{n}{t}\right)$ and $x^{d} \neq 1(\bmod n)$. Define $K=\{h \in$ $\left.H \left\lvert\, h \equiv 1\left(\bmod \frac{n}{t}\right)\right.\right\}$. And express η by using the cosets of K in H. Then we can show that $\eta=0$.

Theorem 2.6. If $\eta \neq 0$, then η has degree $e=|G \backslash H|$ over \mathbb{Q}.
Proof. Suppose that $\eta \neq 0$. By Theorem2.5, no nontrivial elements of H is $\equiv 1(\bmod r)$. Then by Theorem2.4, $\eta \neq \sigma_{c}(\eta)$ for $c \in H$. Thus η is fixed by exactly $|H|$ automorphisms σ_{c} in $\operatorname{Gal}(\mathbb{Q}(\zeta))$ so η has degree e over \mathbb{Q}.

Note: This means that Galois polynomial is irreducible if and only if $\eta \neq 0$, or equivalently if and only if no nontrivial element of H is $\equiv 1(\bmod r)$.

References

[1] M. Kwon, J. E. Lee, and K. S. Lee, Galois irreducible polynomials, Communications of the Korean Mathematics Society, 32 (2017), no. 1, 1-6.
[2] K. S. Lee, J. E. Lee and J. H. Kim , Semi-cyclotomic polynomials, Honam Mathematical Journal, 37 (2015), no. 4, 469-472.
[3] K. S. Lee and J. E. Lee, Classification of Galois Polynomials, Honam Mathematical Journal, 39 (2017), no. 2, 259-265.
[4] G. C. Shin, J. Y. Bae, and K. S. Lee , Irreducibility of Galois Polynomials, Honam Mathematical Journal, 40 (2018), no. 2, 281-291.
[5] Ronald J. Evnas, Period polynomials for generalized cyclotomic periods, Manuscripta math. 40 (1982), 217-243.
[6] J. R. Bastida and R. Lyndon, Field Extensions and Galois Theory, Encyclopedia of Mathematics and Its Application, Addison-Wesley Publishing Company, 1984.
[7] T. W. Hungerford, Abstract Algebra An Introduction, Brooks/Cole, Cengage Learning, 2014.
[8] S. Lang, Algebra, Addison-Wesley Publising Company, 1984.
[9] P. Ribenboim, Algebraic Numbers, John Wiley and Sons Inc. 1972.
[10] G. H. Hardy and Wright, E. M. Wright, An Introduction to the Theory of Numbers, Oxford: Oxford University Press, 1980.
[11] Harold G. Diamond, Frank Gerth III, and Jeffrey D. Vaaler, Guass Sums and Fourier Analysis on Multiplicative subgroups of Z_{q}, Transactions of the American Mathematical Society, 277 (1983), no. 2, 711-726.
[12] Yim su bin, Semi-cyclotomic polynomial, Master degree thesis paper, Korea National University of Education (2017).
[13] Lim sang a, The coefficients of Galois polynomial, Master degree thesis paper, Korea National University of Education (2018).
[14] Bae Jae Yun, Irreducibility of Galois polynomials when n has positive square factor, Master degree thesis paper, Korea National University of Education (2018).

**
Department of Mathematics Education
Korea National University of Education Chungbuk 363-791, Republic of Korea E-mail: dlwldms818@gmail.com
*
Department of Mathematics Education Korea National University of Education Chungbuk 363-791, Republic of Korea
E-mail: ksleeknue@gmail.com

