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A NOTE ON TERNARY CYCLOTOMIC POLYNOMIALS

Bin Zhang

Abstract. Let Φn(x) =
∑φ(n)

k=0 a(n, k)xk denote the n-th cyclotomic
polynomial. In this note, let p < q < r be odd primes, where q 6≡ 1
(mod p) and r ≡ −2 (mod pq), we construct an explicit k such that
a(pqr, k) = −2.

1. Introduction

The n-th cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏

1≤j≤n

(j,n)=1

(x − e2πij/n) =

φ(n)
∑

k=0

a(n, k)xk,

where φ is the Euler totient function. The coefficients a(n, k) are known to be
integral. Let A(n) be the largest absolute value of the coefficients of Φn(x).
We say that a cyclotomic polynomial is flat if A(n) = 1. It is easy to see
that A(n) = A(m), where n > 1 is a positive integer and m is the product
of the distinct primes dividing n. It is also easy to verify that if n is odd,
then A(2n) = A(n). Thus for the purpose of studying coefficients of Φn(x), it
suffices to consider only odd square-free integers n.

Obviously, Φp(x) =
∑p−1

i=0 xi is flat, where p is a prime. Let ω(n) be the
number of distinct odd prime factors of n. For square-free n, this number ω(n)
is the order of the cyclotomic polynomial Φn(x). The case where ω(n) = 2
has been studied by several authors (see [4, 8, 10, 13]), and our understanding
of it is rather complete. In particular, the coefficients of Φpq(x) are computed
in the following lemma. For a proof, see, for example, Lam and Leung [8] or
Thangadurai [13].
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Lemma 1.1. Let p < q be odd primes. Let s and t be positive integers such

that pq + 1 = ps+ qt written uniquely. Then we have

a(pq, i) =







1 if i=up+ vq for some 0 ≤ u ≤ s− 1, 0 ≤ v ≤ t− 1;
−1 if i=up+ vq − pq for some s ≤ u ≤ q − 1, t ≤ v ≤ p− 1;
0 otherwise.

There have been extensive studies on the coefficients of cyclotomic polyno-
mials of order three. If ω(n) = 3, then Φn(x) is also said to be ternary.

Let 3 < p < q < r be primes satisfying q ≡ 2 (mod p) and 2r ≡ −1
(mod pq). In 1936, Lehmer [9] proved that a(pqr, (p−3)(qr+1)/2) = (p−1)/2,
and in 1971, Möller [11] showed that a(pqr, (p− 1)(qr + 1)/2) = (p+ 1)/2.

In 2006, Bachman [1] first established the existence of an infinite family of
flat ternary cyclotomic polynomials.

Given odd primes p < q, in 2007, Kaplan [7] proved that A(pqr) = 1 for
every prime r ≡ ±1 (mod pq). The author also showed that

(1.1) A(pqr) = A(pqs)

whenever s > q is a prime congruent to ±r (mod pq).
Let p < q < r be odd primes. In 2010, Zhao and Zhang [14] showed that

(1.2) A(pqr) ≤ min{r, pq − r},

where r is the unique integer such that 0 ≤ r ≤ pq − 1 and r ≡ r (mod pq)
(see Bachman and Moree [2] or Elder [5] for different proofs).

In 2012, Elder [5] analyzed the coefficients of Φn(x) by considering it as a
gcd of simpler polynomials. In the case where r ≡ ±2 (mod pq), the author
used this theory to prove that A(pqr) = 1 if and only if q ≡ 1 (mod p).

There are also papers on the coefficients of inverse cyclotomic polynomi-
als (see Moree [12], Bzdȩga [3]) and on maximum gap in (inverse) cyclotomic
polynomials (see Hong, Lee, Lee and Park [6]).

In this note, we continue the discussion of ternary cyclotomic polynomials.
Our purpose here is to establish the following main result, giving a prescribed
coefficient of ternary cyclotomic polynomial Φpqr(x) which equals −2.

Theorem 1.2. Let p < q < r be odd primes, where q = kp + ℓ for some

2 ≤ ℓ ≤ p− 1, and r ≡ −2 (mod pq).
(a) If ℓ is odd, then a(pqr, pqr − pr − 2qr + p− ℓ− 2) = −2.
(b) If ℓ is even, then a(pqr, pqr − pr − 2qr + ℓr + ℓ− 2) = −2.

Together with (1.1), (1.2) and Theorem 1.2, we obtain:

Corollary 1.3. Let p < q < r be odd primes such that r ≡ ±2 (mod pq). If

q 6≡ 1 (mod p), then A(pqr) = 2.

2. Preliminaries

We will first introduce some lemmas which are useful to prove our theorem.

Lemma 2.1. The nonzero coefficients of Φpq(x) alternate between +1 and −1.
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Proof. See Lam and Leung [8]. �

Let p < q < r be odd primes and Φpqr(x) =
∑φ(pqr)

n=0 a(pqr, n)xn. Kaplan [7]
proved the following two lemmas.

Lemma 2.2. Let p < q < r be odd primes. Let n be a non-negative integer

and f(i) be the unique value 0 ≤ f(i) < pq such that

(2.1) rf(i) + i ≡ n (mod pq).

Then
p−1
∑

i=0

a(pq, f(i)) =

p−1
∑

j=0

a(pq, f(q + j)).

Lemma 2.3. Let p < q < r be odd primes. Let 0 ≤ n ≤ φ(pqr) be an integer.

Put

a∗(pq, i) =

{

a(pq, i) if ri ≤ n;
0 otherwise.

We have

a(pqr, n) =

p−1
∑

i=0

a∗(pq, f(i))−

p−1
∑

j=0

a∗(pq, f(q + j)),

where f(i) is the unique value 0 ≤ f(i) < pq such that rf(i) + i ≡ n (mod pq).

We now provide bounds for the values s and t in the equation pq+1 = ps+qt
used in the proof of main theorem.

Lemma 2.4. Let p < q be odd primes with q = kp+ ℓ for some 2 ≤ ℓ ≤ p− 1.
Let s, t be the unique integers 1 ≤ s ≤ q − 1, 1 ≤ t ≤ p − 1, such that

pq + 1 = ps+ qt. Then (i) 2 ≤ t ≤ p− 1; (ii) s ≤ q − k − 2; (iii) s ≥ k + 1.

Proof. (i) Since t = 1 if and only if q ≡ 1 (mod p), we have 2 ≤ t ≤ p− 1.
(ii) To prove this statement, we will show that ps ≤ p(q− k− 2). Note that

ℓt ≡ 1 (mod p) and t ≥ 2. So ℓt ≥ p+ 1. Then tkp+ ℓt− 1 ≥ kp+ 2p. Since

ps = pq + 1− qt = pq − (tkp+ ℓt− 1),

p(q − k − 2) = pq − kp− 2p = pq − (kp+ 2p),

we have ps ≤ p(q − k − 2), implying that s ≤ q − k − 2, as desired.
(iii) Note that t = p− 1 if and only if ℓ = p− 1. If t = p− 1, then

ps = pq + 1− qt = q + 1 = kp+ p,

implying that s = k+1. If t < p− 1, then ps = pq+1− qt ≥ 2q+1 > (k+1)p.
So s ≥ k + 1. This completes the proof of Lemma 2.4. �
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3. The Proof of Theorem 1.2(a)

For any positive integer n, by using the condition of Lemma 2.2, we have

rf(i) ≡ n− i (mod pq), 0 ≤ f(i) ≤ pq − 1.

It follows from r ≡ −2 (mod pq) that

f(i+ 1) ≡ f(i) +
pq + 1

2
(mod pq);(3.1)

f(i+ 2) ≡ f(i) + 1 (mod pq).(3.2)

In this section, let q = kp+ ℓ, 3 ≤ ℓ ≤ p− 2 and ℓ is odd. We will show that
a(pqr, n) = −2, where

n = pqr − pr − 2qr + p− ℓ− 2.

Since 3 ≤ ℓ ≤ p− 2, we have p ≥ 5 and t ≤ p− 2. For pq + 1 = ps+ qt, where
s and t are positive integers, by Lemma 2.4, we have

2 ≤ t ≤ p− 2 and s ≤ q − k − 2.

In order to use Lemma 2.3, we need to determine for which k will rf(k) > n.
We will now prove that rf(k) > n whenever k ∈ {p− ℓ, p− ℓ+ 2, . . . , p− 1} ∪
{q+1, q+3, . . . , q+ p− 2}, and rf(k) ≤ n whenever k ∈ {0, 2, . . . , p− ℓ− 2}∪
{1, 3, . . . , p− 2} ∪ {q, q + 2, . . . , q + p− 1}.

It follows from (2.1), (3.1) and (3.2) that f(p− ℓ) = pq − p− 2q + 1, f(p−

ℓ− 2) = pq− p− 2q; f(p− 2) = pq+ℓ
2 − p− 2q; f(q+ p− 1) = pq−3q

2 − p+ ℓ+1
2 ;

f(q + p− 2) = pq − p − 3q−ℓ
2 , f(q + 1) = pq − 3p+3q

2 + ℓ+3
2 . Then one readily

verifies the assertion.
Together with Lemma 2.3, we obtain that

a(pqr, n) =

p−1
∑

i=0

a∗(pq, f(i))−

p−1
∑

j=0

a∗(pq, f(q + j))

=

p−3

2
∑

i=0

a(pq, f(2i+ 1)) +

p−ℓ
2

−1
∑

i=0

a(pq, f(2i))−

p−1

2
∑

j=0

a(pq, f(q + 2j)).

Applying Lemma 2.2 to the above equation yields

a(pqr, n) =

p−3

2
∑

j=0

a(pq, f(q + 2j + 1))−

p−1

2
∑

i=0

a(pq, f(2i)) +

p−ℓ
2

−1
∑

i=0

a(pq, f(2i))

=

p−3

2
∑

j=0

a(pq, f(q + 2j + 1))−

p−1

2
∑

i= p−ℓ
2

a(pq, f(2i)).(3.3)

It is easy to see

f(p− ℓ) = (s− 1)p+ (t− 2)q and 0 ≤ t− 2 < t− 1;
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f(q + p− 2) = (q −
k

2
− 1)p+ (p− 1)q − pq and

s < q −
k

2
− 1 < q − 1.

Thus, by Lemma 1.1, we have

a(pq, f(p− ℓ)) = 1, a(pq, f(q + p− 2)) = −1.

So equation (3.3) becomes

a(pqr, n) =

p−5

2
∑

j=0

a(pq, f(q + 2j + 1))− 1−

p−1

2
∑

i= p−ℓ
2

+1

a(pq, f(2i))− 1.

On invoking Lemma 2.1 we have

min{x | x > f(p− ℓ), a(pq, x) 6= 0} = pq − p− 2q + ℓ > f(p− 1);

max{y | y < f(q + p− 2), a(pq, y) 6= 0} = pq −
kp

2
− 2p− q + 1 < f(q + 1).

By using (3.2), we have f(p−ℓ), f(p−ℓ+2), . . . , f(p−1) are consecutive integers.
So are f(q + 1), f(q+ 3), . . . , f(q + p− 2). Thus we obtain a(pq, f(2i)) = 0 for
p−ℓ
2 + 1 ≤ i ≤ p−1

2 and a(pq, f(q + 2j + 1)) = 0 for 0 ≤ j ≤ p−5
2 .

Therefore, we get

a(pqr, n) = −1− 1 = −2,

as desired.

4. The Proof of Theorem 1.2(b)

In this section, let 2 ≤ ℓ ≤ p − 1 and ℓ is even, and we will show that
a(pqr, n) = −2, where

n = pqr − pr − 2qr + ℓr + ℓ− 2.

If p = 3, q ≡ 2 (mod 3), we will prove a(3qr, qr − r) = −2. By using (2.1),
we obtain f(0) = q− 1, f(2) = q, f(1) = 5q−1

2 , f(q) = 3q− 1, f(q+2) = 0 and

f(q + 1) = 3q−1
2 .

It is clear that

rf(1) > rf(2) > n = rf(0); rf(q) > rf(q + 1) > n > rf(q + 2).

By using Lemma 2.3, we have

a(3qr, n) = a(3q, f(0))− a(3q, f(q + 2)).

Obviously, a(3q, f(q+2)) = a(3q, 0) = 1. We can rewrite f(0) = q−1 = (2q−1
3 )·

3+2·q−3q, and so by Lemma 1.1, a(3q, f(0)) = −1. Hence, a(3qr, qr−r) = −2.
In what follows, we consider the case p ≥ 5.
Proceeding as Section 3, for pq+1 = ps+ qt, q = kp+ ℓ, by Lemma 2.4, we

have
2 ≤ t ≤ p− 1 and k + 1 ≤ s ≤ q − k − 2.
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In order to use Lemma 2.3, we need to determine for which k will rf(k) > n.
We will now prove that rf(k) > n whenever k ∈ {ℓ, ℓ+ 2, . . . , p− 1} ∪ {q + 1,
q + 3, . . . , q + p− 2}, and rf(k) ≤ n whenever k ∈ {0, 2, . . . , ℓ − 2} ∪ {1, 3, . . .,
p− 2} ∪ {q, q + 2, . . . , q + p− 1}.

It follows from (2.1), (3.1) and (3.2) that f(ℓ) = pq − p− 2q + ℓ + 1, f(ℓ −

2) = pq − p − 2q + ℓ; f(p − 2) = pq−p−4q+ℓ
2 ; f(q + p − 1) = pq−p−3q+ℓ+1

2 ;

f(q + p− 2) = pq − p+3q
2 + ℓ

2 , f(q + 1) = pq − p− 3q−3
2 + ℓ

2 . Then one readily
verifies the assertion.

Note that

f(ℓ) = (s− k − 1)p+ (t− 1)q and 0 ≤ s− k − 1 < s− 1;

f(q + p− 2) = (q − 1−
k−1

2
)p+ (p− 1)q − pq and s ≤ q − 1−

k−1

2
≤ q − 1.

By Lemma 1.1, we have

(4.1) a(pq, f(ℓ)) = 1, a(pq, f(q + p− 2)) = −1.

Together with Lemma 2.3, Lemma 2.2 and (4.1), we obtain that

a(pqr, n) =

p−1
∑

i=0

a∗(pq, f(i))−

p−1
∑

j=0

a∗(pq, f(q + j))

=

p−3

2
∑

i=0

a(pq, f(2i+ 1)) +

ℓ
2
−1
∑

i=0

a(pq, f(2i))−

p−1

2
∑

j=0

a(pq, f(q + 2j))

=

p−3

2
∑

j=0

a(pq, f(q + 2j + 1))−

p−1

2
∑

i=0

a(pq, f(2i)) +

ℓ
2
−1

∑

i=0

a(pq, f(2i))

=

p−3

2
∑

j=0

a(pq, f(q + 2j + 1))−

p−1

2
∑

i= ℓ
2

a(pq, f(2i))

=

p−5

2
∑

j=0

a(pq, f(q + 2j + 1))− 1−

p−1

2
∑

i= ℓ
2
+1

a(pq, f(2i))− 1.

On invoking Lemma 2.1 we have

min{x | x > f(ℓ), a(pq, x) 6= 0} = pq − 2q + ℓ > f(p− 1);

max{y | y < f(q + p− 2), a(pq, y) 6= 0} = pq −
3p+ 3q − ℓ

2
+ 1 < f(q + 1).

By using (3.2), we have f(ℓ), f(ℓ+ 2), . . . , f(p− 1) are consecutive integers.
So are f(q + 1), f(q+ 3), . . . , f(q + p− 2). Thus we obtain a(pq, f(2i)) = 0 for
ℓ
2 + 1 ≤ i ≤ p−1

2 and a(pq, f(q + 2j + 1)) = 0 for 0 ≤ j ≤ p−5
2 .

Finally, we have

a(pqr, n) = −1− 1 = −2.
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This completes the proof of Theorem 1.2.
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