DOI QR코드

DOI QR Code

THE HEIGHT OF A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

  • Zhang, Bin (School of Mathematical Sciences Qufu Normal University)
  • Received : 2015.05.08
  • Published : 2017.01.31

Abstract

Let A(n) denote the largest absolute value of the coefficients of n-th cyclotomic polynomial ${\Phi}_n(x)$ and let p < q < r be odd primes. In this note, we give an infinite family of cyclotomic polynomials ${\Phi}_{pqr}(x)$ with A(pqr) = 3, without fixing p.

Keywords

References

  1. G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), no. 1, 53-60. https://doi.org/10.1112/S0024609305018096
  2. G. Bachman and P. Moree, On a class of ternary inclusion-exclusion polynomials, Integers 11 (2011), A8, 1-14. https://doi.org/10.1515/integ.2011.001
  3. M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial $F_{pqr}$. II, Duke Math. J. 38 (1971), 591-594. https://doi.org/10.1215/S0012-7094-71-03873-7
  4. M. Beiter, Coefficients of the cyclotomic polynomial $F_{3qr}$(x), Fibonacci Quart. 16 (1978), no. 4, 302-306.
  5. D. M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly 75 (1968), 372-377. https://doi.org/10.2307/2313417
  6. D. Broadhurst, Flat ternary cyclotomic polynomials, http://tech.groups.yahoo.com/group/primenumbers/message/20305(2009).
  7. S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1, 2012.
  8. T. J. Flanagan, On the coefficients of ternary cyclotomic polynomials, MS Thesis, University of Nevada Las Vegas, 2006.
  9. Y. Gallot, P. Moree, and R. Wilms, The family of ternary cyclotomic polynomials with one free prime, Involve 4 (2011), no. 4, 317-341. https://doi.org/10.2140/involve.2011.4.317
  10. C. G. Ji, A special family of cyclotomic polynomials of order three, Science China Math. 53 (2010), 2269-2274. https://doi.org/10.1007/s11425-010-3148-y
  11. N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), no. 1, 118-126. https://doi.org/10.1016/j.jnt.2007.01.008
  12. T. Y. Lam and K. H. Leung, On the cyclotomic polynomial ${\Phi}_{pq}$(X), Amer. Math. Monthly 103 (1996), no. 7, 562-564. https://doi.org/10.2307/2974668
  13. H. Moller, Uber die Koeffizienten des n-ten Kreisteilungspolynoms, Math. Z. 119 (1971), 33-40. https://doi.org/10.1007/BF01110941
  14. R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic Fields and Related Topics, Pune, 1999, 311-322, Bhaskaracharya Pratishthana, Pune, 2000.
  15. B. Zhang, A note on ternary cyclotomic polynomials, Bull. KoreanMath. Soc. 51 (2014), no. 4, 949-955. https://doi.org/10.4134/BKMS.2014.51.4.949
  16. B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), no. 6, 1911-1924. https://doi.org/10.4134/BKMS.2015.52.6.1911
  17. J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), no. 10, 2223-2237. https://doi.org/10.1016/j.jnt.2010.03.012