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THE HEIGHT OF A CLASS OF

TERNARY CYCLOTOMIC POLYNOMIALS

Bin Zhang

Abstract. Let A(n) denote the largest absolute value of the coefficients
of n-th cyclotomic polynomial Φn(x) and let p < q < r be odd primes.
In this note, we give an infinite family of cyclotomic polynomials Φpqr(x)
with A(pqr) = 3, without fixing p.

1. Introduction

The n-th cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏

1≤k≤n

gcd(k,n)=1

(x− e
2πik
n ) =

φ(n)
∑

j=0

a(n, j)xj ,

where φ is the Euler totient function. Let the height of Φn(x), written as
A(n), be the maximum absolute value of the coefficients of Φn(x). Using basic
properties of such polynomials, the height of Φn(x) can be shown to depend
only on the set of odd primes dividing n. If n has at most two different odd
prime factors, then A(n) = 1. So the easiest case that we can expect non-trivial
behavior of the coefficients of Φn(x) is the ternary case, where n is a product
of three distinct odd primes. In the remainder of this paper, we assume that
p < q < r are odd primes (unless otherwise specified).

Recently there has been much progress in our understanding of the coeffi-
cients of Φpqr(x), but a number of interesting questions remain open. Various
authors have studied the upper bounds for A(pqr). Instead we can give condi-
tions on p, q, r so that A(pqr) is small.
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In 1978, Beiter [4] gave a characterization of q and r such that A(3qr) = 1.
Bachman [1] was the first to provide an infinite family of cyclotomic polynomials
Φpqr(x) with A(pqr) = 1. Specifically, he showed that if

(1.1) p ≥ 5, q ≡ −1 (mod p) and r ≡ +1 (mod pq),

then A(pqr) = 1. This result was generalized by Flanagan [8] and improved
by Kaplan [11]. There have been also studies of Φpqr(x) with A(pqr) = 1,
see [6, 7, 10, 16]. In [11], Kaplan established the following periodicity of the
function A(pqr).

Proposition 1.1 (Kaplan). Let p < q < r be odd primes. Then for any prime

s > q such that s ≡ ±r (mod pq), A(pqr) = A(pqs).

Without fixing p, the first infinite family of ternary cyclotomic polynomials
Φpqr(x) with height exactly 2 was given by Elder [7], which showed that if

q 6≡ 1 (mod p) and r ≡ ±2 (mod pq),

then A(pqr) = 2 (see Zhang [15] for another proof of this result).
We now turn our attention to the ternary cyclotomic polynomials with height

3. Many such results can be found in the literature, for instance:
(1) In 1971, Möller [13] showed that a(pqr, (p−1)(qr+1)/2) = (p+1)/2 in the

case p ≥ 5, q ≡ 2 (mod p) and 2r ≡ −1 (mod pq). Considering Möller’s result
with p = 5 and using the general fact A(5qr) ≤ 3 (established independently
by Beiter [3] and Bloom [5]), we obtain that A(5qr) = 3 when q ≡ 2 (mod 5)
and 2r ≡ −1 (mod 5q). We refer the reader to the paper of Gallot, Moree and
Wilms [9] which gives a more detailed description of A(5qr).

(2) Given any triplet of odd primes p0 < q0 < r0 such that A(p0q0r0) = 3,
we can use Proposition 1.1 to produce an infinite family of Φp0q0r(x) satisfying
A(p0q0r) = 3: For any prime r ≡ ±r0 (mod p0q0), A(p0q0r) = 3.

(3) In 2011, Gallot, Moree and Wilms [9] proved that if p ≥ 5 and 2p− 1 is
a prime, then for appropriate r, A(p(2p− 1)r) = 3.

Note that we do not know whether there are infinitely many prime-pairs
(p, 2p − 1). We remark that as far as we are aware, there were no published
results on the existence of an infinite family of ternary cyclotomic polynomials
Φpqr(x) with A(pqr) = 3, without fixing p. It is for this reason that we write
this paper to establish the following result.

Theorem 1.2. For every prime p ≡ 1 (mod 3), there exist infinitely many

pairs of primes q and r, p < q < r, such that A(pqr) = 3. In particular, this is

certainly true for any q and r of the form

q ≡ 2p+ 2 (mod 3p) and r ≡ ±3 (mod pq).

Remark 1.3. (1) Note that gcd(2p + 2, 3p) = 1 when p ≡ 1 (mod 3). The
existence of infinitely many triples of primes (p, q, r) satisfying the condition
of Theorem 1.2 is guaranteed by Dirichlet’s theorem on primes in arithmetic
progressions.
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(2) As far as we can see, this is the first infinite family of ternary cyclotomic
polynomials Φpqr(x) with height exactly 3, without fixing p.

2. Preliminaries

In this section, we introduce several lemmas which are useful to prove our
theorem.

Lemma 2.1. Let p < q be odd primes, and let s and t be positive integers such

that pq + 1 = ps+ qt. Then

a(pq, j) =











1 if j = up+ vq with 0 ≤ u ≤ s− 1, 0 ≤ v ≤ t− 1;

−1 if j = up+ vq + 1 with 0 ≤ u ≤ q − s− 1, 0 ≤ v ≤ p− t− 1;

0 otherwise.

Proof. See Lam and Leung [12] or Thangadurai [14]. �

Lemma 2.2. Let p < q be odd primes with q ≡ 2 (mod p). Then

a(pq, j) =











1 if j = up+ vq with 0 ≤ u ≤ pq−2p−q+2
2p , 0 ≤ v ≤ p−1

2 ;

−1 if j = up+ vq + 1 with 0 ≤ u ≤ pq−2p+q−2
2p , 0 ≤ v ≤ p−3

2 ;

0 otherwise.

Proof. A consequence of the fact pq + 1 = p · pq−q+2
2p + q · p+1

2 and Lemma

2.1. �

Lemma 2.3. Let p < q < r be odd primes. Let n ≥ 0 be an integer and f(i)
be the unique value 0 ≤ f(i) ≤ pq − 1 such that

rf(i) + i ≡ n (mod pq).

Put

a∗(pq,m) =

{

a(pq,m) if rm ≤ n;

0 otherwise.

Then

a(pqr, n) =

p−1
∑

i=0

a∗(pq, f(i))−

q+p−1
∑

j=q

a∗(pq, f(j)).

Proof. See Kaplan [11]. �

Lemma 2.4. Let p < q < r be odd primes and w be an integer such that

0 < w ≤ pq − 1 and r ≡ ±w (mod pq). Then

A(pqr) ≤ w.

Proof. See Zhao and Zhang [17], Bachman and Moree [2] or Elder [7]. �
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3. Proof of Theorem 1.2

By Proposition 1.1, we only consider primes r such that r ≡ 3 (mod pq).
On considering Lemma 2.4 with w = 3, we know that, to prove Theorem 1.2,
it suffices to specify a coefficient a(pqr, n) which equals 3 or −3 for any triple
(p, q, r) of the form p ≡ 1 (mod 3), q ≡ 2p+ 2 (mod 3p) and r ≡ 3 (mod pq).
Now according to the values of p, we distinguish the following two parts to give
the desired coefficients.

• Part 1: p = 7.

For primes 7 < q < r satisfying q ≡ 16 (mod 21) and r ≡ 3 (mod 7q), we
claim that

a(7qr,
7qr + 2r

3
+ q + 5) = 3.

Let n = (7qr+2r)/3+q+5. In order to use Lemma 2.3, we need to determine
for which l will rf(l) > n. Note that rf(l) + l ≡ n (mod 7q), where 0 ≤ l ≤ 6
and q ≤ l ≤ q + 6.

For i = 0, 1, 2, we have

rf(3i) + 3i ≡ (7qr + 2r)/3 + q + 5 (mod 7q);

rf(q + 3i) + q + 3i ≡ (7qr + 2r)/3 + q + 5 (mod 7q).

It follows from r ≡ 3 (mod 7q) that

3f(3i) ≡ q + 7− 3i (mod 7q);

3f(q + 3i) ≡ 7− 3i (mod 7q).

Since 0 ≤ f(l) ≤ 7q − 1, we obtain

f(3i) =
8q + 7

3
− i and f(q + 3i) =

14q + 7

3
− i.

For j = 0, 1, we get

rf(3j + 1) + 3j + 1 ≡ (7qr + 2r)/3 + q + 5 (mod 7q);

rf(q + 3j + 1) + q + 3j + 1 ≡ (7qr + 2r)/3 + q + 5 (mod 7q);

rf(3j + 2) + 3j + 2 ≡ (7qr + 2r)/3 + q + 5 (mod 7q);

rf(q + 3j + 2) + q + 3j + 2 ≡ (7qr + 2r)/3 + q + 5 (mod 7q).

Similarly, by using r ≡ 3 (mod 7q) and 0 ≤ f(l) ≤ 7q − 1, we infer that

f(3j + 1) = 5q + 2− j, f(q + 3j + 1) = 2− j;

f(3j + 2) =
q + 5

3
− j, f(q + 3j + 2) =

7q + 5

3
− j.

Then one readily verifies that rf(l) < n whenever l ∈ I1 := {2, 5, q + 1, q + 4,
q + 5}, and rf(l) > n whenever l ∈ I2 := {0, 1, 3, 4, 6, q, q+ 2, q + 3, q + 6}. So

a∗(7q, f(l)) =

{

a(7q, f(l)) if l ∈ I1;

0 if l ∈ I2.
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By Lemma 2.3, it follows that

a(7qr, n) =

6
∑

i=0

a∗(7q, f(i))−

6
∑

j=0

a∗(7q, f(q + j))

= a(7q, f(2)) + a(7q, f(5))− a(7q, f(q + 1))− a(7q, f(q + 4))

− a(7q, f(q + 5)).

Observe that

f(2) =
q + 5

21
· 7 + 0 · q and 0 ≤

q + 5

21
≤

7q − 2 · 7− q + 2

2 · 7
;

f(q + 4) = 0 · p+ 0 · q + 1;

f(q + 5) =
4q − 1

21
· 7 + 1 · q + 1 and 0 ≤

4q − 1

21
≤

7q − 2 · 7 + q − 2

2 · 7
.

Considering Lemma 2.2 with p = 7, we have

a(7q, f(2)) = 1 and a(7q, f(q + 4)) = a(7q, f(q + 5)) = −1.

Note that f(5) = (q + 2)/3 and f(q + 1) = 2. By using Lemma 2.2, it is
straightforward to show that a(7q, f(5)) = a(7q, f(q + 1)) = 0. Hence

a(7qr, n) = 1 + 0− 0− (−1)− (−1) = 3.

• Part 2: p > 7.

For primes 7 < p < q < r such that p ≡ 1 (mod 3), q ≡ 2p + 2 (mod 3p)
and r ≡ 3 (mod pq), we will show that

a(pqr,
pqr + 2r

3
+ qr + p+ q − 2) = 3.

Let n = (pqr + 2r)/3 + qr + p + q − 2. For the purpose of using Lemma
2.3, we first need to determine for which l will rf(l) > n. As in the proof
of Part 1, by substituting n into congruence rf(l) + l ≡ n (mod pq), where
l ∈ [0, p− 1] ∪ [q, q + p− 1], we have

rf(3i) + 3i ≡ (pqr + 2r)/3 + qr + p+ q − 2 (mod pq),

rf(q + 3i) + q + 3i ≡ (pqr + 2r)/3 + qr + p+ q − 2 (mod pq)

for 0 ≤ i ≤ p−1
3 . From this and r ≡ 3 (mod pq) it follows that

3f(3i) ≡ p+ 4q − 3i (mod pq);

3f(q + 3i) ≡ p+ 3q − 3i (mod pq).

Therefore, by 0 ≤ f(l) ≤ pq − 1, we have

f(3i) =
pq + p+ q

3
+ q − i and f(q + 3i) =

2pq + p

3
+ q − i.

For 0 ≤ j ≤ p−4
3 , we have the following congruences

rf(3j + 1) + 3j + 1 ≡ (pqr + 2r)/3 + qr + p+ q − 2 (mod pq);

rf(q + 3j + 1) + q + 3j + 1 ≡ (pqr + 2r)/3 + qr + p+ q − 2 (mod pq);
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rf(3j + 2) + 3j + 2 ≡ (pqr + 2r)/3 + qr + p+ q − 2 (mod pq);

rf(q + 3j + 2) + q + 3j + 2 ≡ (pqr + 2r)/3 + qr + p+ q − 2 (mod pq).

It follows from r ≡ 3 (mod pq) and 0 ≤ f(l) ≤ pq − 1 that

f(3j + 1) =
2pq + p+ q − 1

3
+ q − j, f(q + 3j + 1) =

p− 1

3
+ q − j;

f(3j + 2) =
p+ q − 2

3
+ q − j, f(q + 3j + 2) =

pq + p− 2

3
+ q − j.

Then it is easy to check that rf(l) < n whenever l ∈ I3 := {2, 5, . . . , p − 2}∪
{q + 1, q + 4, . . . , q + p − 3} ∪ {q + p − 2}, and rf(l) > n whenever l ∈ I4 :=
{0, 3, . . . , p− 1} ∪ {1, 4, . . . , p− 3} ∪ {q, q+ 3, . . . , q+ p− 1} ∪ {q+2, q+ 5, . . .,
q + p− 5}. Thus

a∗(pq, f(l)) =

{

a(pq, f(l)) if l ∈ I3;

0 if l ∈ I4.

So, by Lemma 2.3,

(3.1)
a(pqr, n) =

p−4

3
∑

j=0

a(pq, f(3j + 2))−

p−4

3
∑

j=0

a(pq, f(q + 3j + 1))

− a(pq, f(q + p− 2)).

On noting that f(2) = p+q−2
3p p + q, f(5) = p+4q−8

3p p + 1, f(8) = p+4q−8
3p p,

f(q+p−3) = q+1 and f(q+p−2) = pq+q−2
6p p+ p+5

6 q+1, we infer from Lemma

2.2 that a(pq, f(2)) = a(pq, f(8)) = 1 and a(pq, f(5)) = a(pq, f(q + p − 3)) =
a(pq, f(q + p− 2)) = −1. Then the equality (3.1) becomes

(3.2) a(pqr, n) = 3 +

p−4

3
∑

j=3

a(pq, f(3j + 2))−

p−7

3
∑

j=0

a(pq, f(q + 3j + 1)).

Let 3 ≤ j ≤ p−4
3 . Now we claim that a(pq, f(3j +2)) 6= −1. If the assertion

would not hold, by Lemma 2.2, then there exist non-negative integers u and v

such that

(3.3) f(3j + 2) =
p+ q − 2

3
+ q − j = up+ vq + 1.

Note that 0 < f(3j + 2) < 2q. So v = 0 or 1. On the other hand, taking the
latest equality of (3.3) modulo p gives

(3.4) 2v + j − 1 ≡ 0 (mod p),

thus

j ± 1 ≡ 0 (mod p),
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which is impossible, since 3 ≤ j ≤ p−4
3 .

Let 0 ≤ j ≤ p−7
3 . Analogously, we show that a(pq, f(q + 3j + 1)) 6= 1. If

otherwise, by Lemma 2.2, then there exist u, v ∈ Z≥0 satisfying

(3.5) f(q + 3j + 1) =
p− 1

3
+ q − j = up+ vq.

According to 0 < f(q + 3j + 1) < 2q, we also have v = 0 or 1. On taking (3.5)
modulo p, we obtain

(3.6) 6v + 3j − 5 ≡ 0 (mod p).

Since 0 ≤ j ≤ p−7
3 , congruence (3.6) is invalid for both v = 0 and v = 1, a

contradiction.
Finally, by Lemma 2.2 and (3.2), we deduce that a(pqr, n) ≥ 3, and then,

by Lemma 2.4, a(pqr, n) = 3. This completes the proof of Theorem 1.2.
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