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ON A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

Bin Zhang and Yu Zhou

Abstract. A cyclotomic polynomial Φn(x) is said to be ternary if n =
pqr for three distinct odd primes p < q < r. Let A(n) be the largest
absolute value of the coefficients of Φn(x). If A(n) = 1 we say that Φn(x)
is flat. In this paper, we classify all flat ternary cyclotomic polynomials
Φpqr(x) in the case q ≡ ±1 (mod p) and 4r ≡ ±1 (mod pq).

1. Introduction

Let

Φn(x) =

n
∏

k=1

(k,n)=1

(x− e
2πik

n ) =

φ(n)
∑

j=0

a(n, j)xj

be the n-th cyclotomic polynomial, where φ is the Euler totient function. It
can be shown that a(n, j) ∈ Z. Let

A(n) = max{|a(n, j)| | 0 ≤ j ≤ φ(n)}

denote the largest absolute value of the coefficients of Φn(x). If A(n) = 1 we
say that Φn(x) is flat. It turns out that for the purpose of determining A(n),
it suffices to consider squarefree and odd integers n. Clearly, if n has at most
two distinct odd prime factors, then A(n) = 1.

However, the coefficients of ternary cyclotomic polynomials Φpqr(x), where
p < q < r are odd primes, become much more complicated, such as a(3·5·7, 7) =
−2 and a(5·7·11, 119) = −3. The investigation about the coefficients of ternary
cyclotomic polynomials have a long history and there are many references on
this subject, see, for instance, [1-17, 19, 20, 21, 23, 24]. One interesting open
problem involving this topic is to give a complete characterization of all flat
ternary cyclotomic polynomials, but this appears very difficult. Throughout

Received July 8, 2014; Revised January 4, 2015.
2010 Mathematics Subject Classification. 11B83, 11C08, 11N56.
Key words and phrases. ternary cyclotomic polynomial, flat cyclotomic polynomial, co-

efficient of cyclotomic polynomial.
This work was supported by National Natural Science Foundation of China (Grant No.

11471162), the Specialized Research Fund for the Doctoral Program of Higher Education
of China (Grant No. 20133207110012) and the Doctoral Starting up Foundation of Qufu
Normal University.

c©2015 Korean Mathematical Society

1911



1912 BIN ZHANG AND YU ZHOU

this paper, we assume that p < q < r are odd primes (unless otherwise speci-
fied).

In 1978, Beiter [5] classified all flat cyclotomic polynomials of the form
Φ3qr(x). More precisely,

Proposition 1.1 (Beiter). Let 3 < q < r be primes such that r = (wq ± 1)/h,
1 < h ≤ (q − 1)/2. Then A(3qr) = 1 if and only if one of these conditions

holds: (1) w ≡ 0 and h+ q ≡ 0 (mod 3) or (2) h ≡ 0 and w+ r ≡ 0 (mod 3).

Currently, we know several families of flat ternary cyclotomic polynomials.
In 2006, Bachman [2] showed that

(1.1) A(pqr) = 1 if p ≥ 5, q ≡ −1 (mod p) and r ≡ 1 (mod pq).

This first established the existence of an infinite family of flat ternary cyclo-
tomic polynomials. A generalization of (1.1) was later obtained by Flanagan
[12] who showed A(pqr) = 1 if p ≥ 5, q ≡ ±1 (mod p) and r ≡ ±1 (mod pq).
In 2007, Kaplan [17] improved on these results by proving that

(1.2) A(pqr) = 1 if r ≡ ±1 (mod pq).

In 2012, Elder [11] (arXiv:1207.5811v1) reproved (1.2) and derived the fol-
lowing result: Let p < q < r be odd primes and w a positive integer such that
r ≡ ±w (mod pq), p ≡ 1 (mod w) and q ≡ 1 (mod wp). Then A(pqr) = 1.

In 2010, Ji [16] showed that in the case 2r ≡ ±1 (mod pq), A(pqr) = 1 if
and only if p = 3 and q ≡ 1 (mod 3).

In this paper, we classify all flat ternary cyclotomic polynomials Φpqr(x) in
the case q ≡ ±1 (mod p) and 4r ≡ ±1 (mod pq). That is,

Theorem 1.2. Let p < q < r be odd primes such that q ≡ ±1 (mod p) and

4r ≡ ±1 (mod pq). Then A(pqr) = 1 if and only if one of these conditions

holds:
(1) p = 3, q > 7 and q ≡ −1 (mod 3) or
(2) p = 5, q > 11 and q ≡ 1 (mod 5).

2. Some lemmas

To prove Theorem 1.2, several lemmas will be useful. First we have

Lemma 2.1. Let p < q be odd primes and s, t be positive integers such that

pq + 1 = ps+ qt. Put Φpq(x) =
∑φ(pq)

j=0 a(pq, j)xj , then

a(pq, j) =



















1 if j = up+ vq for some 0 ≤ u ≤ s− 1, 0 ≤ v ≤ t− 1;

−1 if j = up+ vq + 1 for some 0 ≤ u ≤ q − s− 1,

0 ≤ v ≤ p− t− 1;

0 otherwise.

Proof. For a proof see e.g. Lam and Leung [18] or Thangadurai [22]. �
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The next two lemmas, due to Kaplan [17], play an important role in our
proof.

Lemma 2.2 (Kaplan). Let Φm(x) =
∑φ(m)

j=0 a(m, j)xj and p < q < r be odd

primes. Let n ≥ 0 be an integer and f(i) be the unique value 0 ≤ f(i) ≤ pq− 1
such that

(2.1) rf(i) + i ≡ n (mod pq).

(1) Then
p−1
∑

i=0

a(pq, f(i)) =

q+p−1
∑

j=q

a(pq, f(j)).

(2) Set

a∗(pq, l) =

{

a(pq, l) if rl ≤ n;

0 otherwise.

Then

a(pqr, n) =

p−1
∑

i=0

a∗(pq, f(i))−

q+p−1
∑

j=q

a∗(pq, f(j)).

Lemma 2.3 (Kaplan). Let p < q < r be odd primes. Then for any prime

s > q such that s ≡ ±r (mod pq), A(pqr) = A(pqs).

3. Proof of Theorem 1.2

By Lemma 2.3, it suffices to consider primes r such that 4r ≡ 1 (mod pq).
The proof will be split into the following three parts.

3.1. p ≥ 7.

We will use Lemma 2.2 to specify a coefficient a(pqr, n) which has absolute
value greater than one. Our first goal here is to show that:

Fact 1. Let 7 ≤ p < q < r be primes such that q ≡ 1 (mod p) and 4r ≡ 1
(mod pq).

(1) If p ≡ 1 (mod 4), then a(pqr, pqr + pr − 5qr + q + r + 1) = 2.
(2) If p ≡ 3 (mod 4), then a(pqr, pqr − 5qr + q + r + 1) = 2.

Proof. Let q = kp + 1. Then pq + 1 = p · (q − k) + q · 1 and we can write the
conclusion of Lemma 2.1 as
(3.1)

a(pq, j) =











1 if j = up for some 0 ≤ u ≤ q − k − 1;

−1 if j = up+ vq + 1 for some 0 ≤ u ≤ k − 1, 0 ≤ v ≤ p− 2;

0 otherwise.

(1) Let n = pqr + pr − 5qr + q + r + 1. By substituting n into congruence
(2.1) and using 0 ≤ f(i) ≤ pq − 1, we have

(3.2) f(i) = pq + p− q − 4i+ 5
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for 0 ≤ i ≤ p− 1 and q ≤ i ≤ q + p− 1. Then one readily verifies that

rf(0) > · · · > rf(p− 1) > rf(q) > n > rf(q + 1) > · · · > rf(q + p− 1).

Thus it follows from Lemma 2.2(2) that

a(pqr, n) = −

p−1
∑

j=1

a(pq, f(q + j)).(3.3)

Let 1 ≤ j ≤ p − 1. Then f(q + j) ≡ −4j 6≡ 0 (mod p). Hence, by (3.1),
a(pq, f(q+ j)) 6= 1 and the quantity a(pq, f(q+ j)) takes on one of two values:
0, −1.

Note that p ≡ 1 (mod 4). Now we claim that a(pq, f(q + j)) = −1 if and

only if j = 1 or j = 3p+5
4 .

If a(pq, f(q+j)) = −1, according to (3.1), then there must exist 0 ≤ u ≤ k−1
and 0 ≤ v ≤ p− 2 such that

(3.4) f(q + j) = up+ vq + 1.

By using (3.2) and taking (3.4) modulo q, we have

(3.5) up− p+ 4j − 4 ≡ 0 (mod q).

From 0 ≤ u ≤ k− 1 and 1 ≤ j ≤ p− 1, we infer that −q < up−p+4j− 4 < 2q,
and thus, by (3.5), up − p + 4j − 4 = 0 or q. Since p ≡ 1 (mod 4), we have

j = 1, if up− p+ 4j − 4 = 0; and j = 3p+5
4 , if up− p+ 4j − 4 = q.

Conversely, if j = 1, then f(q + 1) = p + (p − 5)q + 1, and thus, by (3.1),

a(pq, f(q + 1)) = −1; if j = 3p+5
4 , then f(q + 3p+5

4 ) = (k − 2)p+ (p− 6)q + 1,

and, by (3.1) again, a(pq, f(q + 3p+5
4 )) = −1, as desired.

Hence, combining our claim with (3.3) gives a(pqr, n) = 2.
(2) Let n = pqr − 5qr + q + r + 1. Proceeding as before, applying n to

congruence (2.1), we have

(3.6) f(i) = pq − q − 4i+ 5

for 0 ≤ i ≤ p− 1 and q ≤ i ≤ q + p− 1. This yields

rf(0) > · · · > rf(p− 1) > rf(q) > n > rf(q + 1) > · · · > rf(q + p− 1).

So, by Lemma 2.2(2),

a(pqr, n) = −

p−1
∑

j=1

a(pq, f(q + j)).(3.7)

Let 1 ≤ j ≤ p− 1. Then f(q + j) ≡ −4j 6≡ 0 (mod p), and thus, in view of
(3.1), a(pq, f(q + j)) = 0 or −1.

Note that p ≡ 3 (mod 4). Now we claim that a(pq, f(q + j)) = −1 if and

only if j = 1 or j = p+5
4 .

If a(pq, f(q + j)) = −1, by (3.1), then

(3.8) f(q + j) = up+ vq + 1,
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where 0 ≤ u ≤ k−1 and 0 ≤ v ≤ p−2. By using (3.6) and taking (3.8) modulo
q, we have

up+ 4j − 4 ≡ 0 (mod q).

Since 0 ≤ u ≤ k − 1 and 1 ≤ j ≤ p− 1, we deduce that 0 ≤ up+ 4j − 4 < 3q,
and therefore up+ 4j − 4 = 0, q or 2q. If up + 4j − 4 = 2q, then 2j − 3 ≡ 0
(mod p) and thus j = p+3

2 . While this gives u = 2k − 2, a contradiction to

0 ≤ u ≤ k − 1. It is easy to prove that if up+ 4j − 4 = q, then j = p+5
4 ; and if

up+ 4j − 4 = 0, then j = 1.
On the other hand, if j = 1, then f(q + 1) = (p − 5)q + 1, and by (3.1),

a(pq, f(q+1)) = −1; if j = p+5
4 , then f(q+ p+5

4 ) = (k− 1)p+(p− 6)q+1 and

thus a(pq, f(q + p+5
4 ) = −1, as claimed.

Consequently, by (3.7), we get a(pqr, n) = 2. �

Next we prove that:

Fact 2. Let 7 ≤ p < q < r be primes such that q ≡ −1 (mod p) and 4r ≡ 1
(mod pq).

(1) If p ≡ 1 (mod 4), then a(pqr, 3qr + q + 3p−3
4 ) = −2.

(2) If p ≡ 3 (mod 4) and p > 7, then a(pqr, pr + 3qr + q + p−3
4 ) = −2.

(3) If p = 7, then a(7qr, 3qr + 7r + 1) = 2.

Proof. Let q = kp− 1. Then pq + 1 = p · k + q · (p− 1). Similarly, we rewrite
the conclusion of Lemma 2.1 in the form
(3.9)

a(pq, j) =











1 if j = up+ vq for some 0 ≤ u ≤ k − 1, 0 ≤ v ≤ p− 2;

−1 if j = up+ 1 for some 0 ≤ u ≤ q − k − 1;

0 otherwise.

(1) Note that p ≡ 1 (mod 4). Let n = 3qr + q + 3p−3
4 . By using (2.1) and

0 ≤ f(i) ≤ pq − 1, we have

(3.10) f(i) = 3p+ 7q − 4i− 3

for 0 ≤ i ≤ p − 1 and q ≤ i ≤ q + p − 1. We then infer that rf(i) > n

whenever i ∈ {0, 1, . . . , p−1}∪{q, q+1, . . . , q+ 3p−7
4 }, and rf(i) < n whenever

i ∈ {q + 3p−3
4 , . . . , q + p− 1}. From Lemma 2.2(2), we derive that

a(pqr, n) = −

p−1
∑

j= 3p−3

4

a(pq, f(q + j)).(3.11)

Since f(q + 3p−3
4 ) = 3q and f(q + p − 1) = (k − 1)p + 2q, by (3.9), we have

a(pq, f(q + 3p−3
4 )) = a(pq, f(q + p− 1)) = 1. Then Eq. (3.11) becomes

a(pqr, n) = −2−

p−2
∑

j= 3p+1

4

a(pq, f(q + j)).
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Now we claim that a(pq, f(q+ j)) = 0 for all 3p+1
4 ≤ j ≤ p− 2. Since f(q+

j) ≡ −4j−6 6≡ 1 (mod p), a(pq, f(q+ j)) 6= −1 by (3.9). If a(pq, f(q+ j)) = 1,
according to (3.9), there must exist 0 ≤ u ≤ k− 1 and 0 ≤ v ≤ p− 2 such that

(3.12) f(q + j) = up+ vq.

By using (3.10) and taking (3.12) modulo q, we infer that

(3.13) up− 3p+ 4j + 3 ≡ 0 (mod q).

But the conditions 0 ≤ u ≤ k − 1 and 3p+1
4 ≤ j ≤ p− 2 imply

0 < up− 3p+ 4j + 3 < q.

This is a contradiction to (3.13) and proves our claim. Therefore a(pqr, n) =
−2.

(2) Note that p ≡ 3 (mod 4). Let n = pr+3qr+ q+ p−3
4 . Using congruence

(2.1), we get

(3.14) f(i) = 2p+ 7q − 4i− 3,

where 0 ≤ i ≤ p−1 and q ≤ i ≤ q+p−1. It can easily be verified that rf(i) > n

whenever i ∈ {0, 1, . . . , p− 1}∪{q, q+1, . . . , q+ p−7
4 }, and rf(i) < n whenever

i ∈ {q+ p−3
4 , . . . , q+ p− 1}. In particular, on noting that f(q+ p−3

4 ) = p+ 3q

and f(q + p− 1) = (k − 2)p+ 2q, we infer from (3.9) that a(pq, f(q + p−3
4 )) =

a(pq, f(q + p− 1)) = 1. So, by Lemma 2.2(2),

(3.15) a(pqr, n) = −2−

p−2
∑

j= p+1

4

a(pq, f(q + j)).

Now we claim that a(pq, f(q + j)) = 0 for all p+1
4 ≤ j ≤ p − 2. Since

f(q + j) ≡ −4j − 6 6≡ 1 (mod p), by (3.9), we have a(pq, f(q + j)) 6= −1. If
a(pq, f(q+ j)) = 1, then there exist 0 ≤ u ≤ k− 1 and 0 ≤ v ≤ p− 2 such that
f(q+ j) = up+ vq. By using (3.14) and taking this equality modulo q, we have

(3.16) up− 2p+ 4j + 3 ≡ 0 (mod q).

Due to 0 ≤ u ≤ k−1 and p+1
4 ≤ j ≤ p−2, we have −q < up−2p+4j+3 < 2q,

and thus, by (3.16), up− 2p+ 4j + 3 = 0 or q. It is straightforward to verify
that both of these two cases are impossible. Hence we prove our claim and
infer that a(pqr, n) = −2.

(3) Let n = 3qr + 7r + 1. By using rf(i) + i ≡ n (mod 7q), we obtain
f(i) = 3q− 4i+11 for 0 ≤ i ≤ 6; and f(q+ j) = 6q− 4j+11 for 0 ≤ j ≤ 6. So

rf(q) > · · · > rf(q + 6) > rf(0) > n > rf(1) > · · · > rf(6).

Note that f(1) = 7 + 3q and f(6) = (k − 2)7 + 2q. By (3.9), it can easily be
checked that a(7q, f(1)) = a(7q, f(6)) = 1 and a(7q, f(i)) = 0 for i = 2, 3, 4, 5.
Then it follows from Lemma 2.2(2) that a(7qr, n) = 2. �
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3.2. p = 3.

Let 3 < q < r be primes such that 4r ≡ 1 (mod 3q). The aim is to show
that A(3qr) = 1 if and only if q > 7 and q ≡ −1 (mod 3).

Indeed, considering Proposition 1.1 with h = 4, we obtain that for q ≥ 11
and 4r ≡ 1 (mod 3q), A(3qr) = 1 if and only if q ≡ −1 (mod 3).

It remains to consider q = 5 and q = 7. Note that 4 · 19 ≡ 1 (mod 3 · 5)
and 4 · 37 ≡ 1 (mod 3 · 7). By using the PARI/GP system or [1], we have
A(3 ·5 ·19) = A(3 ·7 ·37) = 2. In view of Lemma 2.3, we infer that A(3 ·5 ·r) = 2
when 4r ≡ 1 (mod 3 · 5) and A(3 · 7 · r) = 2 when 4r ≡ 1 (mod 3 · 7).

3.3. p = 5.

(1) Let 5 < q < r be primes such that q ≡ −1 (mod 5) and 4r ≡ 1 (mod 5q).
We will prove

a(5qr, 2qr + 3) = 2.

Let n = 2qr + 3. By using rf(i) + i ≡ n (mod 5q), we deduce that f(i) =
2q − 4i+ 12 for 0 ≤ i ≤ 4 and f(q + j) = 3q − 4j + 12 for 0 ≤ j ≤ 4. So

(3.17) rf(q) > · · · > rf(q+4) > rf(0) > rf(1) > rf(2) > n > rf(3) > rf(4).

Let q = 5k − 1. Then f(3) = 2q and f(4) = (k − 1)5 + q. By using Lemma
2.1, we have a(5q, f(3)) = a(5q, f(4)) = 1. It follows from Lemma 2.2(2) and
(3.17) that a(5qr, n) = 2.

(2) Let 5 < q < r be primes such that q ≡ 1 (mod 5) and 4r ≡ 1 (mod 5q).
The purpose is to show that

(3.18) A(5qr) =

{

2 if q = 11;

1 otherwise.

Observe that 4 · 179 ≡ 1 (mod 5 · 11). By using the PARI/GP system or [1],
we have A(5 · 11 · 179) = 2. So, by Lemma 2.3, A(5 · 11 · r) = 2 for primes r

with 4r ≡ 1 (mod 5 · 11).
Now it remains to show A(5qr) = 1 in the case q > 11, q ≡ 1 (mod 5) and

4r ≡ 1 (mod 5q). Note that Lemma 2.2 yields

(3.19) a(5qr, n) =
4

∑

i=0

a∗(5q, f(i)) +

q+4
∑

i=q

(

− a∗(5q, f(i))
)

,

where f(i) ≡ r−1(n− i) (mod 5q), 0 ≤ f(i) ≤ 5q − 1, and

(3.20) a∗(5q, f(i)) =

{

a(5q, f(i)) if rf(i) ≤ n;

0 otherwise.
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Let s = 4q+1
5 and t = 1. Then 5q + 1 = 5s + qt. Applying Lemma 2.1 for

these p < q, s, t, we get

(3.21) a(5q, f(i))=







































1 if f(i) ≡ 0 (mod 5) and 0 ≤ f(i) ≤ 4q − 4;

−1 if f(i) ≡ 1 (mod 5) and 1 ≤ f(i) ≤ q − 5;

−1 if f(i) ≡ 2 (mod 5) and q + 1 ≤ f(i) ≤ 2q − 5;

−1 if f(i) ≡ 3 (mod 5) and 2q + 1 ≤ f(i) ≤ 3q − 5;

−1 if f(i) ≡ 4 (mod 5) and 3q + 1 ≤ f(i) ≤ 4q − 5;

0 otherwise.

For simplicity, we will write af(i) := a(5q, f(i)) in the rest of this paper if there
are no confusion arising from doing so.

For any given n ∈ [0, φ(5qr)], the value of f(i) is uniquely defined, since
rf(i) + i ≡ n (mod 5q) and we have

f(q) ≡ f(0) + q (mod 5q),

f(1) ≡ f(0)− 4 (mod 5q), f(q + 1) ≡ f(0) + q − 4 (mod 5q),

f(2) ≡ f(0)− 8 (mod 5q), f(q + 2) ≡ f(0) + q − 8 (mod 5q),(3.22)

f(3) ≡ f(0)− 12 (mod 5q), f(q + 3) ≡ f(0) + q − 12 (mod 5q),

f(4) ≡ f(0)− 16 (mod 5q), f(q + 4) ≡ f(0) + q − 16 (mod 5q).

In order to use (3.19) and (3.20), we need to determine for which i, rf(i) ≤ n.
Now according to the value of f(0), we give the following tables. The first row
of each table is the inequality about rf(i) for i ∈ {0, 1, 2, 3, 4, q, q+1, q+2, q+
3, q + 4}. The values of af(i) are obtained by using (3.21) and (3.22).

In the following tables, let f(0) be the unique integer such that 0 ≤ f(0) ≤ 4

and f(0) ≡ f(0) (mod 5).

Table 1. 0 ≤ f(0) ≤ 3

rf(1) > rf(2) > rf(3) > rf(4) > rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0)
f(0) af(1) af(2) af(3) af(4) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0)
0 0 0 0 0 0 0 0 0 −1 1
1 0 0 0 0 1 0 0 −1 1 −1
2 0 0 0 0 0 0 −1 1 0 0
3 0 0 0 0 0 −1 1 0 0 0

Table 2. 4 ≤ f(0) ≤ 7

rf(2) > rf(3) > rf(4) > rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1)
f(0) af(2) af(3) af(4) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1)
4 0 0 0 −1 0 0 0 0 0 1
5 0 0 0 0 1 0 0 −1 1 −1
6 0 0 0 1 0 0 −1 1 −1 0
7 0 0 0 0 0 −1 1 0 0 0
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Table 3. 8 ≤ f(0) ≤ 11

rf(3) > rf(4) > rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2)
f(0) af(3) af(4) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2)
8 0 0 0 −1 0 0 0 0 0 1
9 0 0 −1 0 1 0 0 0 1 −1
10 0 0 0 1 0 0 −1 1 −1 0
11 0 0 1 0 0 −1 1 −1 0 0

Table 4. 12 ≤ f(0) ≤ 15

rf(4) > rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3)
f(0) af(4) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3)
12 0 0 0 −1 0 0 0 0 0 1
13 0 0 −1 0 1 0 0 0 1 −1
14 0 −1 0 1 0 0 0 1 −1 0
15 0 0 1 0 0 −1 1 −1 0 0

Table 5. 16 ≤ f(0) ≤ q − 1

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)

f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
0 0 1 0 0 −1 1 −1 0 0 0
1 1 0 0 −1 0 −1 0 0 0 1
2 0 0 −1 0 1 0 0 0 1 −1
3 0 −1 0 1 0 0 0 1 −1 0
4 −1 0 1 0 0 0 1 −1 0 0

Table 6. q ≤ f(0) ≤ q + 12

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)
f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
q 0 0 0 −1 0 0 0 0 0 1

q + 1 1 0 −1 0 1 −1 0 0 1 −1
q + 2 0 −1 0 1 0 0 0 1 −1 0
q + 3 −1 0 1 0 0 0 1 −1 0 0
q + 4 0 0 0 0 −1 1 0 0 0 0
q + 5 0 1 0 −1 0 0 −1 0 0 1
q + 6 1 0 −1 0 1 −1 0 0 1 −1
q + 7 0 −1 0 1 0 0 0 1 −1 0
q + 8 −1 0 0 0 0 0 1 0 0 0
q + 9 0 0 1 0 −1 1 0 −1 0 0
q + 10 0 1 0 −1 0 0 −1 0 0 1
q + 11 1 0 −1 0 1 −1 0 0 1 −1
q + 12 0 −1 0 0 0 0 0 1 0 0
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Table 7. q + 13 ≤ f(0) ≤ 2q − 1

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)

f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
0 0 0 1 0 −1 1 0 −1 0 0
1 0 1 0 −1 0 0 −1 0 0 1
2 1 0 −1 0 0 −1 0 0 1 0
3 0 −1 0 0 1 0 0 1 0 −1
4 −1 0 0 1 0 0 1 0 −1 0

Table 8. 2q ≤ f(0) ≤ 2q + 12

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)
f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
2q 0 0 −1 0 0 0 0 0 1 0

2q + 1 1 −1 0 0 1 −1 0 1 0 −1
2q + 2 −1 0 0 1 0 0 1 0 -1 0
2q + 3 0 0 1 0 −1 1 0 −1 0 0
2q + 4 0 0 0 −1 0 0 0 0 0 1
2q + 5 0 1 −1 0 0 0 −1 0 1 0
2q + 6 1 −1 0 0 1 −1 0 1 0 −1
2q + 7 −1 0 0 1 0 0 1 0 −1 0
2q + 8 0 0 0 0 −1 1 0 0 0 0
2q + 9 0 0 1 −1 0 0 0 −1 0 1
2q + 10 0 1 −1 0 0 0 −1 0 1 0
2q + 11 1 −1 0 0 1 −1 0 1 0 −1
2q + 12 −1 0 0 0 0 0 1 0 0 0

Table 9. 2q + 13 ≤ f(0) ≤ 3q − 1

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)

f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
0 0 0 0 1 −1 1 0 0 −1 0
1 0 0 1 −1 0 0 0 −1 0 1
2 0 1 −1 0 0 0 −1 0 1 0
3 1 −1 0 0 0 −1 0 1 0 0
4 −1 0 0 0 1 0 1 0 0 −1
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Table 10. 3q ≤ f(0) ≤ 3q + 12

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)
f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
3q 0 −1 0 0 0 0 0 1 0 0

3q + 1 0 0 0 0 1 −1 1 0 0 −1
3q + 2 0 0 0 1 −1 1 0 0 −1 0
3q + 3 0 0 1 −1 0 0 0 −1 0 1
3q + 4 0 0 −1 0 0 0 0 0 1 0
3q + 5 0 0 0 0 0 0 −1 1 0 0
3q + 6 0 0 0 0 1 −1 1 0 0 −1
3q + 7 0 0 0 1 −1 1 0 0 −1 0
3q + 8 0 0 0 −1 0 0 0 0 0 1
3q + 9 0 0 0 0 0 0 0 −1 1 0
3q + 10 0 0 0 0 0 0 −1 1 0 0
3q + 11 0 0 0 0 1 −1 1 0 0 −1
3q + 12 0 0 0 0 −1 1 0 0 0 0

Table 11. 3q + 13 ≤ f(0) ≤ 4q − 1

rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4)

f(0) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4)
0 0 0 0 0 0 1 0 0 0 −1
1 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 −1 1 0
3 0 0 0 0 0 0 −1 1 0 0
4 0 0 0 0 0 −1 1 0 0 0

Table 12. 4q ≤ f(0) ≤ 4q + 3

rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4) > rf(q)
f(0) −af(q+1) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4) −af(q)
4q 0 0 0 0 0 1 0 0 0 −1

4q + 1 0 0 0 0 0 0 0 0 −1 1
4q + 2 0 0 0 0 0 0 0 −1 1 0
4q + 3 0 0 0 0 0 0 −1 1 0 0

Table 13. 4q + 4 ≤ f(0) ≤ 4q + 7

rf(q + 2) > rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4) > rf(q) > rf(q + 1)
f(0) −af(q+2) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4) −af(q) −af(q+1)

4q + 4 0 0 0 0 0 1 0 0 0 −1
4q + 5 0 0 0 0 0 0 0 0 −1 1
4q + 6 0 0 0 0 0 0 0 −1 1 0
4q + 7 0 0 0 0 0 0 −1 1 0 0
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Table 14. 4q + 8 ≤ f(0) ≤ 4q + 11

rf(q + 3) > rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4) > rf(q) > rf(q + 1) > rf(q + 2)
f(0) −af(q+3) −af(q+4) af(0) af(1) af(2) af(3) af(4) −af(q) −af(q+1) −af(q+2)

4q + 8 0 0 0 0 0 1 0 0 0 −1
4q + 9 0 0 0 0 0 0 0 0 −1 1
4q + 10 0 0 0 0 0 0 0 −1 1 0
4q + 11 0 0 0 0 0 0 −1 1 0 0

Table 15. 4q + 12 ≤ f(0) ≤ 4q + 15

rf(q + 4) > rf(0) > rf(1) > rf(2) > rf(3) > rf(4) > rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3)
f(0) −af(q+4) af(0) af(1) af(2) af(3) af(4) −af(q) −af(q+1) −af(q+2) −af(q+3)

4q + 12 0 0 0 0 0 1 0 0 0 −1
4q + 13 0 0 0 0 0 0 0 0 −1 1
4q + 14 0 0 0 0 0 0 0 −1 1 0
4q + 15 0 0 0 0 0 0 −1 1 0 0

Table 16. 4q + 16 ≤ f(0) ≤ 5q − 1

rf(0) > rf(1) > rf(2) > rf(3) > rf(4) > rf(q) > rf(q + 1) > rf(q + 2) > rf(q + 3) > rf(q + 4)

f(0) af(0) af(1) af(2) af(3) af(4) −af(q) −af(q+1) −af(q+2) −af(q+3) −af(q+4)

0 0 0 0 0 0 1 0 0 0 −1
1 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 −1 1 0
3 0 0 0 0 0 0 −1 1 0 0
4 0 0 0 0 0 −1 1 0 0 0

Let Σ = {0, 1, 2, 3, 4, q, q+ 1, q + 2, q + 3, q + 4}.
(I) If rf(i) > n holds for all i ∈ Σ, by Lemma 2.2(2), we have a(5qr, n) = 0;
(II) If rf(i) ≤ n holds for all i ∈ Σ, by Lemma 2.2, we also obtain a(5qr, n) =

0.
Otherwise, there must exist two neighboring symbols rf(ℓ1) and rf(ℓ2) in

the first row of the corresponding table such that

rf(ℓ1) > n ≥ rf(ℓ2).

If 0 ≤ ℓ2 ≤ 4 (or q ≤ ℓ2 ≤ q + 4), the value of a(5qr, n) is given by computing
the sum of values from af(ℓ2) (or −af(ℓ2)) to the end of the relevant row. Let
us illustrate it with the following examples:

Example 3.1. Let q = 31, r = 349 and n = 1396. Then a(5qr, n) = 1.

Proof. Note that 4r ≡ 1 (mod 5q) and n = 1396. By using rf(0) ≡ n

(mod 5q), we have f(0) = 4. According to (3.22) and Table 2, we obtain

rf(2) > rf(3) > rf(4) > rf(q) > · · · > rf(q + 4) > n ≥ rf(0) > rf(1),
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namely, ℓ1 = q+4 and ℓ2 = 0. Then a(5qr, n) is equal to the sum of the values
from af(0) to the end of the third row in Table 2. That is

a(5qr, n) = af(0) + af(1) = 0 + 1 = 1. �

Example 3.2. Let q = 61, r = 229 and n = 47009. Then a(5qr, n) = −1.

Proof. It is clear that 4r ≡ 1 (mod 5q). By using rf(0) ≡ n (mod 5q), we

have f(0) = 156. So 2q + 13 ≤ f(0) ≤ 3q − 1 and 1 = f(0) ≡ f(0) (mod 5).
According to (3.22) and Table 9, we have

rf(q) > rf(q+1) > rf(q+2) > n > rf(q+3) > rf(q+4) > rf(0) > · · · > rf(4),

namely, ℓ1 = q + 2 and ℓ2 = q + 3. Then a(5qr, n) is equal to the sum of the
values from −af(q+3) to the end of the fourth row in Table 9. So we obtain

a(5qr, n) = (−1) + 0 + 0 + 0 + (−1) + 0 + 1 = −1. �

It is a routine matter to check that the sum of values, from anywhere to the
end of the row in all tables, is equal to −1, 0 or 1. Hence, a(5qr, n) ∈ {−1, 0, 1}
for all n ∈ [0, φ(5qr)]. That is to say, A(5qr) = 1 in the case where q > 11,
q ≡ 1 (mod 5) and 4r ≡ 1 (mod 5q). This establishes the validity of (3.18).

Finally, the proof of Theorem 1.2 is completed by using what we have proved
and Lemma 2.3.
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