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CYCLOTOMIC POLYNOMIALS OVER
CYCLOTOMIC FIELDS

SunG Doo KiMm AND JUNE BOK LEE

ABSTRACT. In this paper, we find the minimal polynomial of a primi-
tive root of unity over cyclotomic fields. From this, we factorize cyclo-
tomic polynomials over cyclotomic fields and investigate the coefficients
of @3, (x) when 31 n.

1. Introduction

Throughout this paper, n and m denote two positive integers with the great-
est common divisor d of n and m. We define e by n = de and f by m = df.

Let ¢’ be the largest factor of n such that ged(d,e’) =1, and d’ = 7.

Let ¢, = 627“/__1/", which is a primitive nth root of 1, and the Euler ¢-
function ¢(n) is the number of positive integers < n that are relatively prime
to n. The nth cyclotomic polynomial ®,,(x) is defined by

Py (z) = H (x_dz)
ged(l,n)=1
1<i<n

We know that ®,,(z) is irreducible over Q but might reducible over an extension
field of Q. For each integer k relatively prime to n, if we find the minimal
polynomial of (¥ over an extension field of Q, then we can factorize ®,, ()
because all roots of ®,(x) are ¢, where ged(l,n) =1and 1 <1< n.

In Section 2, we factorize cyclotomic polynomials over cyclotomic fields. In
Section 3, we investigate the coefficients of ®5,(z) when 3¢ n.

2. A factorization of cyclotomic polynomials over cyclotomic fields

In this section, let k be an integer relatively prime to n, and we find a
factorization of ®,,(z) over Q((n)-
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2.1. The minimal polynomial of Cfl over cyclotomic fields

Ming-chang Kang ([3]) showed that the minimal polynomial of ¢, over Q({,)
is the greatest common divisor of @, (x) and ¢ — (4, which is

I @-am.
ged(14+-hd,n)=1
0<h<e—1
However, his expression is difficult to figure out the coefficients. In the fol-
lowing, if we know ®./ (), then we give an easy construction of the minimal
polynomial of ¢¥ over Q((,,), which is

’
:L'd

— )

Ca

where 4 satisfies that i¢’ = jd + k and 1 < i < d. To prove this, we need some
lemmas.

(¢ e (

Lemma 2.1. There exist unique i and j such that ie’ = jd+k and 1 < i <d.

Proof. We can find integers ag and by such that age’ — bpd = k because
ged(d,e’) = 1. For an integer h, let ¢ = ag + hd, j = by + he’. Then
there is a unique h such that —%" < h < —%" + 1, so ¢ is also unique be-
cause 0 < ¢ = ag + hd < d. Therefore, there exist unique 7 and j such that

el —jd=kand 1<i<d. O

Lemma 2.2. Let a and a’ be positive integers such that a is divisible by every
prime factor of a’. Then ¢(a’a) = a’¢(a).

Proof. Refer to [3]. O
Lemma 2.3. Let a | b and a #b. Then ¢(a) = ¢(b) if and only if b = 2a,

where a is odd.

Proof. If p is a prime number, then ¢(p**t")/¢(p*) = 1 if and only if either
r=0orr=1,s=0and p=2. Therefore, ¢p(a) = ¢(b) if and only if b = 2a,

where a is odd. [l
Lemma 2.4. [Q(¢1,Gn) : Q(Gn)] = [Q(C) = Q(Ca)] = d'o(e).
Proof. Refer to [3]. O

Since Q(¢q) is a subfield of Q({y, ), if the degree of the minimal polynomial
of ¢¥ over Q(¢4) is equal to the degree of the minimal polynomial of (¥ over
Q(Gm), then the minimal polynomial of ¢* over Q(¢4) is equal to the minimal
polynomial of (¥ over Q(¢,,).

If u is an algebraic number over a field F, then we will find a monic poly-
nomial whose root is u, and its degree is [F(u) : F]. If so, it is the minimal
polynomial of u over F because of the uniqueness. We are now ready to prove
the following theorem.
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Theorem 2.5. The minimal polynomial of C* over Q((n) is
(€PN Do (=),

Ca

where i satisfies that ie’ = jd +k and 1 <1 < d. Moreover, all of its roots are

¢F+hd where h is an integer such that ged(k + hd,n) =1 and 1 < k + hd < n.

Proof. Since C¥ is a root of ¢ — ¢%, the minimal polynomial of ¢¥ over Q(¢)
is a factor of x¢ — §§. By Lemma 2.1, there exist unique ¢ and j such that
ie! = jd+k and 1 <4 < d, then (¢3)¢ = ¢*™ = ¢%. So we get
24 24
¢ — §d = Cd( -1)= (Cd) (( ) —1) = H(Cz)d)(l)q)l(
Cd Cd Ile’ Cd
because 2¢ — 1 = [T @u(x) and e’ = 37, . 6(1)
By Lemma 2.3, if €’ # 2I, where [ is odd, then there exists the unique factor
of the product that has the highest degree d'¢(e’). This is

)

d/
)-

Ca

For the remaining case, let ¢/ = 2a, where a is odd. Then d and k are odd

because ¢ and n are even. Two polynomials of the highest degree are

’ ’

d
, x
(C1)*®)@20() and (1) Pu( ).
Ca Ca
. 2d/_k: ad’ LR ad Lh g ad LR
Since x ¢ o= (" — ;% )@ +¢;7 ), ¢y is a root of x ¢;? or
zad’ kyad o U5 d+k _ ok k
+ (d . In fact, (C )4+ ¢7 =+ ST = ¢, — &, = 0. Therefore,

+k
¢F is a root of 2 4 (d . Since i(2a) — jd = k implies ia — &5 1d = M, we

have

(€)@ (5

e | (o) L e
l\a Cd

Then (¥ is not a root of (¢})*(®®, ( ) but a root of (¢3)?(® <I>2a( 7 ) There-
d

fore, the minimal polynomial of ¢¥ over Q((,) is

)-

d/

)-

G

The minimal polynomial of ¢¥ over Q((,,) depends on i. Let 4, and j; satisfy
el = jid + k; and 1 < 4; < d where [ is 1 or 2. If i1 = 45, then the minimal
polynomials of ¢¥* and ¢*2 over Q((,,) are the same. Since i€’ = jid + ki and
ize’ = jod+ ko, we get (j1 —j2)d = ko — k1. So if the minimal polynomials of (¥
and ¢*2 over Q((,,) are the same, then we have k; = ky (mod d). Conversely,
if k1 = k2 (mod d), then i; = iz because ged(d,e’) = 1 and 1 < iy,i2 < d.

(G (2
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Therefore, all roots of the minimal polynomial of (¥ over Q((,,) are ¢f+hd
where h is an integer such that ged(k 4+ hd,n) =1 and 1 < k+ hd < n. (I

For example, the degree of the minimal polynomial of (30 over Q({3) is

[Q(¢30) : Q(¢3)] = 4, and we get

o ‘T_w, 10 (1)
G =6l -~ D=8 Hf ®()
=) 0L ;?<5><1>5(%> - 00(Z)

= (2 = G) (@ + Ga) (o + G2® + GG + (o + 3) (2" — G’ + (o® — G+ ().
So the minimal polynomial of (39 over Q((3) is x* — (323 + (32% — 3z + (5.
2.2. A factorization of cyclotomic polynomials over cyclotomic fields

For each k, we found the minimal polynomial of ¢¥ over Q((,,). So we are
ready to factorize ®,,(z) over Q((m).

Theorem 2.6. A factorization of cyclotomic polynomial ®,,(x) over Q((,,) is

. ’ Z'd/
[T @ a )-
ged(i,d)=1 d
1<i<d

Proof. By Theorem 2.5, we know that for all k, the degrees of the minimal
polynomials of ¢¥ over Q((,,) are the same. Thus, the number of irreducible
factors is ¢(n)/d'¢p(e’) = ¢(d). Using Lemma 2.1 and that ged(k,d) = 1
ged(i, d) divides k, so ged(i,d) = 1. Therefore, @, () is

d
IT @y >q>e/(x¢- ) over Q(Cm)-

ged(i,d)=1 d
1<i<d O

3. The coefficients of ®3,,(x)

In this section, we find the coefficients of ®3,,(x) and the coefficient of x#(%)
of (I)gpq (SC) .

3.1. The coefficients of @3, (x)

We already know that ®3,(r) = ®,(—z) when 2 t n. By Theorem 2.6,
®3,,(x) has only two irreducible factors, so we can easily expand them. Now
using the coefficients of ®,,(z), we find the coefficients of ®3,,(x) when 3t n.

Theorem 3.1. Let &, (x) = Zf:(g) aix! and ®3,(z) = 21)(”) cixt when 3{n.
Then

Cl = Co¢p(n)—1 = E kmamal mH
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where 0 < 1 < ¢(n) and

P 2 ifm+1=0 (mod 3)
™ =1 ifm 4120 (mod 3).

Proof. By Theorem 2.6, we know that @3, (x) is
(C)*™MDn(=) - ()PP (5) over Q(Ga).
€ G

Then ¢; = cag(n)—1 = ao(¢3)*™ar()*™W 4+ +ay(¢5)* ™ lag(¢3)*™ where
0<1<¢(n). So we get

Zamal m<¢(" mC #(n)—(l—m))

_ Z A ] m<l+m _ Z a_ mam<2(l+m)

and
1
2¢; = Z A (C5T™ + §§“+’">).
m=0
Moreover, (3h+1 +C3 (Bht1) _ g a2 +C (Bh+2) _ 04 cah +C§(3h) _

for h € Z. Let ky, = 5™ + 42”*"‘) Then

Cl = Ca¢p(n)— Z K QG —m,

where 0 <1 < ¢(n) and
P {2 if m+1=0 (mod 3)

-1 ifm+1#0 (mod 3). O
Let ®35(x) = Zanx”. Then we know that ag = 1, a1 = —1, as = 0,
a3 =0, a1 =0, a5 =1, ag = —1 and ay = 1. So the coefficient of z” of

(13’105(,%) is l( agar — a1a¢ + 2a2a5 — asay — asas + 2asa9 — aga1 — a7a0) =
1(-1-140+0+0+0-1-1)=-2.
3.2. The coefficient of z#(P? of ®3,,(x)

If p and ¢ are distinct prime numbers, then the coefficient of z#(P9)/2 of
®,q(x) is (—1)", where r and s satisfy (p —1)(¢—1) =rp+s¢, 0 <r <g—2
and 0 < s < p —2 (see [4]). This time, we find the coefficient of z#(P%) of
Pspq ().

Theorem 3.2. Let p and q be odd primes where 31 p < q. Then the coefficient
of 2% of B3, (z) is
{ —1 fr=2 (mod 3) or s =2 (mod 3),

1 otherwise,
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where r and s satisfy (p—1)(¢g—1) =rp+sq, 0<r<g—2and0<s<p—2.

Proof. Let ®pq(x) = f:(%q) ajz’ and @3, (7) = ?i)(()pq) ciz!. Then by Theo-
rem 3.1, we have
1 ¢§) . here R 2 if m+ ¢(pg) =0 (mod 3)
¢ == mmGd(pg)—m Where k, = :
¢(rq) 2 — #(pq) -1 ifm+ ¢(pq) _—,z_é 0 (mod 3)

Since @, () is symmetric, am = ag(pg)—m- SO

1 #(pq)
2
Co(pq) = ) Z kmas, .
m=0

By [4], the coefficients of ®p4(z) are —1, 0 or 1, and the number of ! such that
ap = £1is 2(r +1)(s + 1) — 1. By [1] and [2], we have | c4(pq) |< 2 and cg(pq)

is odd. Therefore, cg(pq) = —1 or 1. Let h be the number of m such that
kma?, = 2. Then the number of ka2, = —1is 2(r + 1)(s+1) — 1 — h. So
#(pq)
> kmal, =3h—2(r+1)(s+1)+1=-2 or 2.
m=0

Therefore, 3h is 2(r+1)(s+1) =3 or 2(r + 1)(s+ 1) + 1. So the coefficient of
2?9 of &y, (z) is

—1 if r =2 (mod 3) or s =2 (mod 3)
1 otherwise. g
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