CYCLOTOMIC POLYNOMIALS OVER CYCLOTOMIC FIELDS

Sung Doo Kim and June Bok Lee

Abstract

In this paper, we find the minimal polynomial of a primitive root of unity over cyclotomic fields. From this, we factorize cyclotomic polynomials over cyclotomic fields and investigate the coefficients of $\Phi_{3 n}(x)$ when $3 \nmid n$.

1. Introduction

Throughout this paper, n and m denote two positive integers with the greatest common divisor d of n and m. We define e by $n=d e$ and f by $m=d f$. Let e^{\prime} be the largest factor of n such that $\operatorname{gcd}\left(d, e^{\prime}\right)=1$, and $d^{\prime}=\frac{n}{d e^{\prime}}$.

Let $\zeta_{n}=e^{2 \pi \sqrt{-1} / n}$, which is a primitive nth root of 1 , and the Euler ϕ function $\phi(n)$ is the number of positive integers $\leq n$ that are relatively prime to n. The nth cyclotomic polynomial $\Phi_{n}(x)$ is defined by

$$
\Phi_{n}(x)=\prod_{\substack{\operatorname{gcd}(l, n)=1 \\ 1 \leq l \leq n}}\left(x-\zeta_{n}^{l}\right) .
$$

We know that $\Phi_{n}(x)$ is irreducible over \mathbb{Q} but might reducible over an extension field of \mathbb{Q}. For each integer k relatively prime to n, if we find the minimal polynomial of ζ_{n}^{k} over an extension field of \mathbb{Q}, then we can factorize $\Phi_{n}(x)$ because all roots of $\Phi_{n}(x)$ are ζ_{n}^{l} where $\operatorname{gcd}(l, n)=1$ and $1 \leq l \leq n$.

In Section 2, we factorize cyclotomic polynomials over cyclotomic fields. In Section 3, we investigate the coefficients of $\Phi_{3 n}(x)$ when $3 \nmid n$.

2. A factorization of cyclotomic polynomials over cyclotomic fields

In this section, let k be an integer relatively prime to n, and we find a factorization of $\Phi_{n}(x)$ over $\mathbb{Q}\left(\zeta_{m}\right)$.

Received February 1, 2011; Revised April 24, 2011.
2010 Mathematics Subject Classification. Primary 12D05.
Key words and phrases. factorization, cyclotomic polynomial, cyclotomic field.

2.1. The minimal polynomial of $\boldsymbol{\zeta}_{n}^{k}$ over cyclotomic fields

Ming-chang Kang ([3]) showed that the minimal polynomial of ζ_{n} over $\mathbb{Q}\left(\zeta_{m}\right)$ is the greatest common divisor of $\Phi_{n}(x)$ and $x^{e}-\zeta_{d}$, which is

$$
\prod_{\substack{\operatorname{gcd}(1+h d, n)=1 \\ 0 \leq h \leq e-1}}\left(x-\zeta_{n}^{1+h d}\right)
$$

However, his expression is difficult to figure out the coefficients. In the following, if we know $\Phi_{e^{\prime}}(x)$, then we give an easy construction of the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$, which is

$$
\left(\zeta_{d}^{i}\right)^{\phi\left(e^{\prime}\right)} \Phi_{e^{\prime}}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right),
$$

where i satisfies that $i e^{\prime}=j d+k$ and $1 \leq i \leq d$. To prove this, we need some lemmas.

Lemma 2.1. There exist unique i and j such that $i e^{\prime}=j d+k$ and $1 \leq i \leq d$.
Proof. We can find integers a_{0} and b_{0} such that $a_{0} e^{\prime}-b_{0} d=k$ because $\operatorname{gcd}\left(d, e^{\prime}\right)=1$. For an integer h, let $i=a_{0}+h d, j=b_{0}+h e^{\prime}$. Then there is a unique h such that $-\frac{a_{0}}{d}<h \leq-\frac{a_{0}}{d}+1$, so i is also unique because $0<i=a_{0}+h d \leq d$. Therefore, there exist unique i and j such that $i e^{\prime}-j d=k$ and $1 \leq i \leq d$.

Lemma 2.2. Let a and a^{\prime} be positive integers such that a is divisible by every prime factor of a^{\prime}. Then $\phi\left(a^{\prime} a\right)=a^{\prime} \phi(a)$.

Proof. Refer to [3].
Lemma 2.3. Let $a \mid b$ and $a \neq b$. Then $\phi(a)=\phi(b)$ if and only if $b=2 a$, where a is odd.

Proof. If p is a prime number, then $\phi\left(p^{s+r}\right) / \phi\left(p^{s}\right)=1$ if and only if either $r=0$ or $r=1, s=0$ and $p=2$. Therefore, $\phi(a)=\phi(b)$ if and only if $b=2 a$, where a is odd.

Lemma 2.4. $\left[\mathbb{Q}\left(\zeta_{n}^{k}, \zeta_{m}\right): \mathbb{Q}\left(\zeta_{m}\right)\right]=\left[\mathbb{Q}\left(\zeta_{n}^{k}\right): \mathbb{Q}\left(\zeta_{d}\right)\right]=d^{\prime} \phi\left(e^{\prime}\right)$.
Proof. Refer to [3].
Since $\mathbb{Q}\left(\zeta_{d}\right)$ is a subfield of $\mathbb{Q}\left(\zeta_{m}\right)$, if the degree of the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{d}\right)$ is equal to the degree of the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$, then the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{d}\right)$ is equal to the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$.

If u is an algebraic number over a field \mathbb{F}, then we will find a monic polynomial whose root is u, and its degree is $[\mathbb{F}(u): \mathbb{F}]$. If so, it is the minimal polynomial of u over \mathbb{F} because of the uniqueness. We are now ready to prove the following theorem.

Theorem 2.5. The minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$ is

$$
\left(\zeta_{d}^{i}\right)^{\phi\left(e^{\prime}\right)} \Phi_{e^{\prime}}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)
$$

where i satisfies that $i e^{\prime}=j d+k$ and $1 \leq i \leq d$. Moreover, all of its roots are $\zeta_{n}^{k+h d}$ where h is an integer such that $\operatorname{gcd}(k+h d, n)=1$ and $1 \leq k+h d \leq n$.

Proof. Since ζ_{n}^{k} is a root of $x^{e}-\zeta_{d}^{k}$, the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$ is a factor of $x^{e}-\zeta_{d}^{k}$. By Lemma 2.1, there exist unique i and j such that $i e^{\prime}=j d+k$ and $1 \leq i \leq d$, then $\left(\zeta_{d}^{i}\right)^{e^{\prime}}=\zeta_{d}^{j d+k}=\zeta_{d}^{k}$. So we get

$$
x^{e}-\zeta_{d}^{k}=\zeta_{d}^{k}\left(\frac{x^{e}}{\zeta_{d}^{k}}-1\right)=\left(\zeta_{d}^{i}\right)^{e^{\prime}}\left(\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)^{e^{\prime}}-1\right)=\prod_{l \mid e^{\prime}}\left(\zeta_{d}^{i}\right)^{\phi(l)} \Phi_{l}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)
$$

because $x^{e^{\prime}}-1=\prod_{l \mid e^{\prime}} \Phi_{l}(x)$ and $e^{\prime}=\sum_{l \mid e^{\prime}} \phi(l)$.
By Lemma 2.3, if $e^{\prime} \neq 2 l$, where l is odd, then there exists the unique factor of the product that has the highest degree $d^{\prime} \phi\left(e^{\prime}\right)$. This is

$$
\left(\zeta_{d}^{i}\right)^{\phi\left(e^{\prime}\right)} \Phi_{e^{\prime}}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right) .
$$

For the remaining case, let $e^{\prime}=2 a$, where a is odd. Then d and k are odd because e^{\prime} and n are even. Two polynomials of the highest degree are

$$
\left(\zeta_{d}^{i}\right)^{\phi(2 a)} \Phi_{2 a}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right) \text { and }\left(\zeta_{d}^{i}\right)^{\phi(a)} \Phi_{a}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)
$$

Since $x^{2 a d^{\prime}}-\zeta_{d}^{k}=\left(x^{a d^{\prime}}-\zeta_{d}^{\frac{d+k}{2}}\right)\left(x^{a d^{\prime}}+\zeta_{d}^{\frac{d+k}{2}}\right), \zeta_{n}^{k}$ is a root of $x^{a d^{\prime}}-\zeta_{d}^{\frac{d+k}{2}}$ or $x^{a d^{\prime}}+\zeta_{d}^{\frac{d+k}{2}}$. In fact, $\left(\zeta_{n}^{k}\right)^{a d^{\prime}}+\zeta_{d}^{\frac{d+k}{2}}=\zeta_{2 d}^{k}+\zeta_{2 d}^{d+k}=\zeta_{2 d}^{k}-\zeta_{2 d}^{k}=0$. Therefore, ζ_{n}^{k} is a root of $x^{a d^{\prime}}+\zeta_{d}^{\frac{d+k}{2}}$. Since $i(2 a)-j d=k$ implies $i a-\frac{j-1}{2} d=\frac{d+k}{2}$, we have

$$
x^{a d^{\prime}}-\zeta_{d}^{\frac{d+k}{2}}=\prod_{l \mid a}\left(\zeta_{d}^{i}\right)^{\phi(l)} \Phi_{l}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)
$$

Then ζ_{n}^{k} is not a root of $\left(\zeta_{d}^{i}\right)^{\phi(a)} \Phi_{a}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)$ but a root of $\left(\zeta_{d}^{i}\right)^{\phi(2 a)} \Phi_{2 a}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)$. Therefore, the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$ is

$$
\left(\zeta_{d}^{i}\right)^{\phi\left(e^{\prime}\right)} \Phi_{e^{\prime}}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right) .
$$

The minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$ depends on i. Let i_{l} and j_{l} satisfy $i_{l} e^{\prime}=j_{l} d+k_{l}$ and $1 \leq i_{l} \leq d$ where l is 1 or 2 . If $i_{1}=i_{2}$, then the minimal polynomials of $\zeta_{n}^{k_{1}}$ and $\zeta_{n}^{k_{2}}$ over $\mathbb{Q}\left(\zeta_{m}\right)$ are the same. Since $i_{1} e^{\prime}=j_{1} d+k_{1}$ and $i_{2} e^{\prime}=j_{2} d+k_{2}$, we get $\left(j_{1}-j_{2}\right) d=k_{2}-k_{1}$. So if the minimal polynomials of $\zeta_{n}^{k_{1}}$ and $\zeta_{n}^{k_{2}}$ over $\mathbb{Q}\left(\zeta_{m}\right)$ are the same, then we have $k_{1} \equiv k_{2}(\bmod d)$. Conversely, if $k_{1} \equiv k_{2}(\bmod d)$, then $i_{1}=i_{2}$ because $\operatorname{gcd}\left(d, e^{\prime}\right)=1$ and $1 \leq i_{1}, i_{2} \leq d$.

Therefore, all roots of the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$ are $\zeta_{n}^{k+h d}$ where h is an integer such that $\operatorname{gcd}(k+h d, n)=1$ and $1 \leq k+h d \leq n$.

For example, the degree of the minimal polynomial of ζ_{30} over $\mathbb{Q}\left(\zeta_{3}\right)$ is $\left[\mathbb{Q}\left(\zeta_{30}\right): \mathbb{Q}\left(\zeta_{3}\right)\right]=4$, and we get

$$
\begin{aligned}
& x^{10}-\zeta_{3}=\zeta_{3}\left(\frac{x^{10}}{\zeta_{3}}-1\right)=\zeta_{3}^{10}\left(\left(\frac{x}{\zeta_{3}}\right)^{10}-1\right)=\prod_{l \mid 10} \zeta_{3}^{\phi(l)} \Phi_{l}\left(\frac{x}{\zeta_{3}}\right) \\
= & \zeta_{3}^{\phi(1)} \Phi_{1}\left(\frac{x}{\zeta_{3}}\right) \cdot \zeta_{3}^{\phi(2)} \Phi_{2}\left(\frac{x}{\zeta_{3}}\right) \cdot \zeta_{3}^{\phi(5)} \Phi_{5}\left(\frac{x}{\zeta_{3}}\right) \cdot \zeta_{3}^{\phi(10)} \Phi_{10}\left(\frac{x}{\zeta_{3}}\right) \\
= & \left(x-\zeta_{3}\right)\left(x+\zeta_{3}\right)\left(x^{4}+\zeta_{3} x^{3}+\zeta_{3}^{2} x^{2}+\zeta_{3}^{3} x+\zeta_{3}^{4}\right)\left(x^{4}-\zeta_{3} x^{3}+\zeta_{3}^{2} x^{2}-\zeta_{3}^{3} x+\zeta_{3}^{4}\right) .
\end{aligned}
$$

So the minimal polynomial of ζ_{30} over $\mathbb{Q}\left(\zeta_{3}\right)$ is $x^{4}-\zeta_{3} x^{3}+\zeta_{3}^{2} x^{2}-\zeta_{3}^{3} x+\zeta_{3}^{4}$.

2.2. A factorization of cyclotomic polynomials over cyclotomic fields

For each k, we found the minimal polynomial of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$. So we are ready to factorize $\Phi_{n}(x)$ over $\mathbb{Q}\left(\zeta_{m}\right)$.
Theorem 2.6. A factorization of cyclotomic polynomial $\Phi_{n}(x)$ over $\mathbb{Q}\left(\zeta_{m}\right)$ is

$$
\prod_{\substack{\operatorname{gcd}(i, d)=1 \\ 1 \leq i \leq d}}\left(\zeta_{d}^{i}\right)^{\phi\left(e^{\prime}\right)} \Phi_{e^{\prime}}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right)
$$

Proof. By Theorem 2.5, we know that for all k, the degrees of the minimal polynomials of ζ_{n}^{k} over $\mathbb{Q}\left(\zeta_{m}\right)$ are the same. Thus, the number of irreducible factors is $\phi(n) / d^{\prime} \phi\left(e^{\prime}\right)=\phi(d)$. Using Lemma 2.1 and that $\operatorname{gcd}(k, d)=1$, $\operatorname{gcd}(i, d)$ divides k, so $\operatorname{gcd}(i, d)=1$. Therefore, $\Phi_{n}(x)$ is

$$
\prod_{\substack{\operatorname{gcd}(i, d)=1 \\ 1 \leq i \leq d}}\left(\zeta_{d}^{i}\right)^{\phi\left(e^{\prime}\right)} \Phi_{e^{\prime}}\left(\frac{x^{d^{\prime}}}{\zeta_{d}^{i}}\right) \text { over } \mathbb{Q}\left(\zeta_{m}\right)
$$

3. The coefficients of $\Phi_{3 n}(x)$

In this section, we find the coefficients of $\Phi_{3 n}(x)$ and the coefficient of $x^{\phi(p q)}$ of $\Phi_{3 p q}(x)$.

3.1. The coefficients of $\mathbf{\Phi}_{3 n}(x)$

We already know that $\Phi_{2 n}(x)=\Phi_{n}(-x)$ when $2 \nmid n$. By Theorem 2.6, $\Phi_{3 n}(x)$ has only two irreducible factors, so we can easily expand them. Now using the coefficients of $\Phi_{n}(x)$, we find the coefficients of $\Phi_{3 n}(x)$ when $3 \nmid n$.
Theorem 3.1. Let $\Phi_{n}(x)=\sum_{l=0}^{\phi(n)} a_{l} x^{l}$ and $\Phi_{3 n}(x)=\sum_{l=0}^{2 \phi(n)} c_{l} x^{l}$ when $3 \nmid n$. Then

$$
c_{l}=c_{2 \phi(n)-l}=\frac{1}{2} \sum_{m=0}^{l} k_{m} a_{m} a_{l-m}
$$

where $0 \leq l \leq \phi(n)$ and

$$
k_{m}= \begin{cases}2 & \text { if } m+l \equiv 0(\bmod 3) \\ -1 & \text { if } m+l \not \equiv 0(\bmod 3) .\end{cases}
$$

Proof. By Theorem 2.6, we know that $\Phi_{3 n}(x)$ is

$$
\left(\zeta_{3}\right)^{\phi(n)} \Phi_{n}\left(\frac{x}{\zeta_{3}}\right) \cdot\left(\zeta_{3}^{2}\right)^{\phi(n)} \Phi_{n}\left(\frac{x}{\zeta_{3}^{2}}\right) \text { over } \mathbb{Q}\left(\zeta_{3}\right)
$$

Then $c_{l}=c_{2 \phi(n)-l}=a_{0}\left(\zeta_{3}\right)^{\phi(n)} a_{l}\left(\zeta_{3}^{2}\right)^{\phi(n)-l}+\cdots+a_{l}\left(\zeta_{3}\right)^{\phi(n)-l} a_{0}\left(\zeta_{3}^{2}\right)^{\phi(n)}$ where $0 \leq l \leq \phi(n)$. So we get

$$
\begin{aligned}
c_{l} & =\sum_{m=0}^{l} a_{m} a_{l-m} \zeta_{3}^{\phi(n)-m} \zeta_{3}^{2(\phi(n)-(l-m))} \\
& =\sum_{m=0}^{l} a_{m} a_{l-m} \zeta_{3}^{l+m}=\sum_{m=0}^{l} a_{l-m} a_{m} \zeta_{3}^{2(l+m)}
\end{aligned}
$$

and

$$
2 c_{l}=\sum_{m=0}^{l} a_{m} a_{l-m}\left(\zeta_{3}^{l+m}+\zeta_{3}^{2(l+m)}\right)
$$

Moreover, $\zeta_{3}^{3 h+1}+\zeta_{3}^{2(3 h+1)}=-1, \zeta_{3}^{3 h+2}+\zeta_{3}^{2(3 h+2)}=-1$ and $\zeta_{3}^{3 h}+\zeta_{3}^{2(3 h)}=2$ for $h \in \mathbb{Z}$. Let $k_{m}=\zeta_{3}^{l+m}+\zeta_{3}^{2(l+m)}$. Then

$$
c_{l}=c_{2 \phi(n)-l}=\frac{1}{2} \sum_{m=0}^{l} k_{m} a_{m} a_{l-m}
$$

where $0 \leq l \leq \phi(n)$ and

$$
k_{m}= \begin{cases}2 & \text { if } m+l \equiv 0(\bmod 3) \\ -1 & \text { if } m+l \not \equiv 0(\bmod 3) .\end{cases}
$$

Let $\Phi_{35}(x)=\sum a_{n} x^{n}$. Then we know that $a_{0}=1, a_{1}=-1, a_{2}=0$, $a_{3}=0, a_{4}=0, a_{5}=1, a_{6}=-1$ and $a_{7}=1$. So the coefficient of x^{7} of $\Phi_{105}(x)$ is $\frac{1}{2}\left(-a_{0} a_{7}-a_{1} a_{6}+2 a_{2} a_{5}-a_{3} a_{4}-a_{4} a_{3}+2 a_{5} a_{2}-a_{6} a_{1}-a_{7} a_{0}\right)=$ $\frac{1}{2}(-1-1+0+0+0+0-1-1)=-2$.

3.2. The coefficient of $x^{\phi(p q)}$ of $\Phi_{3 p q}(x)$

If p and q are distinct prime numbers, then the coefficient of $x^{\phi(p q) / 2}$ of $\Phi_{p q}(x)$ is $(-1)^{r}$, where r and s satisfy $(p-1)(q-1)=r p+s q, 0 \leq r \leq q-2$ and $0 \leq s \leq p-2$ (see [4]). This time, we find the coefficient of $x^{\phi(p q)}$ of $\Phi_{3 p q}(x)$.

Theorem 3.2. Let p and q be odd primes where $3 \nmid p<q$. Then the coefficient of $x^{\phi(p q)}$ of $\Phi_{3 p q}(x)$ is
$\begin{cases}-1 & \text { if } r \equiv 2(\bmod 3) \text { or } s \equiv 2(\bmod 3), \\ 1 & \text { otherwise, }\end{cases}$
where r and s satisfy $(p-1)(q-1)=r p+s q, 0 \leq r \leq q-2$ and $0 \leq s \leq p-2$.
Proof. Let $\Phi_{p q}(x)=\sum_{l=0}^{\phi(p q)} a_{l} x^{l}$ and $\Phi_{3 p q}(x)=\sum_{l=0}^{2 \phi(p q)} c_{l} x^{l}$. Then by Theorem 3.1, we have
$c_{\phi(p q)}=\frac{1}{2} \sum_{m=0}^{\phi(p q)} k_{m} a_{m} a_{\phi(p q)-m}$ where $k_{m}=\left\{\begin{aligned} 2 & \text { if } m+\phi(p q) \equiv 0(\bmod 3) \\ -1 & \text { if } m+\phi(p q) \not \equiv 0(\bmod 3) .\end{aligned}\right.$
Since $\Phi_{p q}(x)$ is symmetric, $a_{m}=a_{\phi(p q)-m}$. So

$$
c_{\phi(p q)}=\frac{1}{2} \sum_{m=0}^{\phi(p q)} k_{m} a_{m}^{2}
$$

By [4], the coefficients of $\Phi_{p q}(x)$ are $-1,0$ or 1 , and the number of l such that $a_{l}= \pm 1$ is $2(r+1)(s+1)-1$. By [1] and [2], we have $\left|c_{\phi(p q)}\right| \leq 2$ and $c_{\phi(p q)}$ is odd. Therefore, $c_{\phi(p q)}=-1$ or 1 . Let h be the number of m such that $k_{m} a_{m}^{2}=2$. Then the number of $k_{m} a_{m}^{2}=-1$ is $2(r+1)(s+1)-1-h$. So

$$
\sum_{m=0}^{\phi(p q)} k_{m} a_{m}^{2}=3 h-2(r+1)(s+1)+1=-2 \text { or } 2
$$

Therefore, $3 h$ is $2(r+1)(s+1)-3$ or $2(r+1)(s+1)+1$. So the coefficient of $x^{\phi(p q)}$ of $\Phi_{3 p q}(x)$ is

$$
\begin{cases}-1 & \text { if } r \equiv 2(\bmod 3) \text { or } s \equiv 2(\bmod 3) \\ 1 & \text { otherwise } .\end{cases}
$$

References

[1] M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial $F_{p q r}$, Amer. Math. Monthly 75 (1968), 370-372.
[2] G. P. Dresden, On the middle coefficient of a cyclotomic polynomial, Amer. Math. Monthly 111 (2004), 531-533.
[3] M.-C. Kang, Minimal polynomials over cyclotomic fields, Amer. Math. Monthly 104 (1997), no. 3, 258-260.
[4] T. Y. Lam and K. H. Leung, On the cyclotomic polynomial $\Phi_{p q}(X)$, Amer. Math. Monthly 103 (1996), no. 7, 562-564.

Sung Doo Kim
Department of Mathematics
Yonsei University
Seoul 120-749, Korea
E-mail address: ksd93@hanmail.net
June Bok Lee
Department of Mathematics
Yonsei University
Seoul 120-749, Korea
E-mail address: leejb@yonsei.ac.kr

