• Title/Summary/Keyword: class decomposition

Search Result 112, Processing Time 0.022 seconds

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

Decay Rate and Nutrients Dynamics during Decomposition of Oak Roots (상수리나무 뿌리 분해 및 분해과정에 따른 영양염류 변화)

  • 문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.165-171
    • /
    • 2004
  • Weight loss and nutrients dynamics during decomposition of oak roots (diameter classes: R₁〈0.2㎝, 0.5㎝〈R₂〈1㎝, 1㎝〈R₃〈2㎝, 2㎝.〈R₄〈4㎝) (Quercus acutissima) were studied for 33-months in Kongiu, Korea. After 33-months, decomposition rate of R₁, R₂, R₃ and R₄ was 49.6%, 47.5%, 66.4% and 66.1%, respectively. The decomposition constant(k) for R₁, R₂, R₃, and R₄ was 0.249/yr, 0.234/yr, 0.397/yr and 0.393/yr, respectively. Larger diameter class of the root lost more weight than smaller diameter class. N concentration in decomposing oak roots increased in all diameter classes. After 33-months, remaining N in R₁, R₂, R₃ and R₄ was 66.5%, 80.7%, 84.4% and 44.4%, respectively. K concentration in decomposing oak roots decreased in early part of decomposition and then increased in later stage of decomposition. After 33-months, remaining P in R₁, R₂, R₃ and R₄ was 64.7%, 62.4%, 93.1% and 30.7%, respectively. K concentration in decomposing oak roots decreased rapidly in early stage of decomposition. Remaining K in R₁, R₂, R₃ and R₄ was 11.6%, 10.6%, 5.9% and 7.7%, respectively. Ca concentration in decomposing oak roots showed different among diameter classes. After 33-months, remaining Ca in R₁, R₂, R₃ and R₄ was 66.2%, 51.0%, 39.1% and 48.3%, respectively. Initial concentration of Mg in oak root was higher in smaller diameter class. After 33-months, remaining Mg in R₁, R₂, R₃ and R₄ was 15.3%, 29.9%, 24.5% and 69.4%, respectively.

Delay-Margin based Traffic Engineering for MPLS-DiffServ Networks

  • Ashour, Mohamed;Le-Ngoc, Tho
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.351-361
    • /
    • 2008
  • This paper presents a delay-margin based traffic engineering (TE) approach to provide end-to-end quality of service (QoS) in multi-protocol label switching (MPLS) networks using differentiated services (DiffServ) at the link level. The TE, including delay, class, and route assignments, is formulated as a nonlinear optimization problem reflecting the inter-class and inter-link dependency introduced by DiffServ and end-to-end QoS requirements. Three algorithms are used to provide a solution to the problem: The first two, centralized offline route configuration and link-class delay assignment, operate in the convex areas of the feasible region to consecutively reduce the objective function using a per-link per-class decomposition of the objective function gradient. The third one is a heuristic that promotes/demotes connections at different links in order to deal with concave areas that may be produced by a trunk route usage of more than one class on a given link. Approximations of the three algorithms suitable for on-line distributed TE operation are also derived. Simulation is used to show that proposed approach can increase the number of users while maintaining end-to-end QoS requirements.

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS

  • RICHARD OLU, AWONUSIKA;PETER OLUWAFEMI, OLATUNJI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.185-223
    • /
    • 2022
  • The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.

ON A CLASS OF OPERATORS RELATED TO PARANORMAL OPERATORS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.25-34
    • /
    • 2007
  • An operator $T{\in}L(H)$ is said to be p-paranormal if $$\parallel{\mid}T\mid^pU{\mid}T\mid^px{\parallel}x\parallel\geq\parallel{\mid}T\mid^px\parallel^2$$ for all $x{\in}H$ and p > 0, where $T=U{\mid}T\mid$ is the polar decomposition of T. It is easy that every 1-paranormal operator is paranormal, and every p-paranormal operator is paranormal for 0 < p < 1. In this note, we discuss some properties for p-paranormal operators.

SVD Pseudo-inverse and Application to Image Reconstruction from Projections (SVD Pseudo-inverse를 이용한 영상 재구성)

  • 심영석;김성필
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 1980
  • A singular value decomposition (SVD) pseudo-inversion method has been applied to the image reconstruction from projections. This approach is relatively unknown and differs from conventionally used reconstructioll methods such as the Foxier convolution and iterative techniques. In this paper, two SVD pseudo-inversion methods have been discussed for the search of optimum reconstruction and restoration, one using truncated inverse filtering, the other scalar Wiener filtering. These methods partly overcome the ill-conditioned nature of restoration problems by trading off between noise and signal quality. To test the SVD pseudo-inversion method, simulations were performed from projection data obtained from a phantom using truncated inversefiltering. The results are presented together with some limitations particular to the applications of the method to the general class of 3-D image reconstruction and restoration.

  • PDF

Performance Evaluations of the Serial Production Lines Utilizing the Decomposition Method (분할기법을 이용한 직렬 생산라인의 성능분석)

  • 이노성;서기성;안인석;최윤열;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.8
    • /
    • pp.23-32
    • /
    • 1993
  • This paper presents a decomposition method to evaluate the performance measures of the serial production lines with unreliable machines and finite buffers. This method is to decompose the transfer line into a set of two machine lines for analysis. Bases on this approximation method, we consider nonhomogeneous lines. In such lines, the machines may take the different lengths of time performing operations on parts. A new transformation is employed in order to replace the line by a homogeneous line. The approximate transformation enables one to determine parameters of performance such as production rate and average buffer levels, and it also shows better application for a large class of systems.

  • PDF

Dynamic linear mixed models with ARMA covariance matrix

  • Han, Eun-Jeong;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.575-585
    • /
    • 2016
  • Longitudinal studies repeatedly measure outcomes over time. Therefore, repeated measurements are serially correlated from same subject (within-subject variation) and there is also variation between subjects (between-subject variation). The serial correlation and the between-subject variation must be taken into account to make proper inference on covariate effects (Diggle et al., 2002). However, estimation of the covariance matrix is challenging because of many parameters and positive definiteness of the matrix. To overcome these limitations, we propose autoregressive moving average Cholesky decomposition (ARMACD) for the linear mixed models. The ARMACD allows a class of flexible, nonstationary, and heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the random effects covariance matrix. We analyze a real dataset to illustrate our proposed methods.