Browse > Article
http://dx.doi.org/10.12941/jksiam.2022.26.185

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS  

RICHARD OLU, AWONUSIKA (DEPARTMENT OF MATHEMATICAL SCIENCES, ADEKUNLE AJASIN UNIVERSITY)
PETER OLUWAFEMI, OLATUNJI (DEPARTMENT OF MATHEMATICAL SCIENCES, ADEKUNLE AJASIN UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.26, no.4, 2022 , pp. 185-223 More about this Journal
Abstract
The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.
Keywords
Classical Lane-Emden equation; Generalised Lane-Emden equation; Adomian polynomials; Powers of elementary functions; Adomian decomposition method; Series solution; Nested second derivative two-step Runge-Kutta method;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 A.K. Verma, S. Kayenat, On the convergence of Mickens' type nonstandard finite difference schemes on Lane-Emden type equations, J. Math. Chem., 56 (2018), 1667-1706.   DOI
2 S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, New York, 1967.
3 J.H. He, F. Y. Ji, Taylor series solution for Lane-Emden equation, Journal of Mathematical Chemistry, 57 (2019), 1932-1934   DOI
4 J.I Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos, Solitons & Fractals, 38 (2008), 400-408.   DOI
5 M.S. Mechee, N. Senu, Numerical study of fractional differential equations of Lane-Emden type by method of collocation, Appl. Math., 3 (2012), 851-856.   DOI
6 M. I. Nouh, E. A.-B. Abdel-Salam, Approximate Solution to the Fractional Lane-Emden Type Equations, Iran J Sci Technol Trans Sci, 42 (2017), 2199-2206.
7 A. Akgul, M. Inc, E. Karatas, D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equat., 2015 (2015)
8 B. Caruntu, C. Bota, M. Lapadat, M. S. Pasca, Polynomial least squares method for fractional Lane-Emden equations, Symmetry, 11 (2019)
9 J. Davila, L. Dupaigne, J. Wei, On the fractional Lane-Emden equation, Trans. Am. Math. Soc.,369 (2017), 6087-6104.   DOI
10 A. K. Nasab, Z. P. Atabakan, A. I. Ismail, R. W. Ibrahim, A numerical method for solving singular fractional Lane-Emden type equations, J. King Saud University-Science,30 (2018)
11 A. H. Bhrawy, A. S. Alofi, A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 62-70.   DOI
12 P. O. Olatunji, Second derivative multistep methods with nested hybrid evaluation, M.Sc. Thesis, Department of Mathematics, University of Benin, Nigeria, 2017.
13 P. O. Olatunji, M. N. O. Ikhile, Variable order nested hybrid multistep methods for stiff ODEs, J. Math. Comput. Sci., 10 (2020), 78-94.
14 S.K Vanani, A. Aminataei, On the numerical solutions of differential equations of Lane-Emden type, Comput. Math. Appl., 59 (2010), 2815-2820.
15 M. S. H. Chowdhury, I. Hashim, Solutions of a class of singular second-order IVPs by homotopyperturbation method, Phys. Lett. A, 365 (2007), 439-447.   DOI
16 O. P. Singh, R. K. Pandey, V. K. Singh, An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified Homotopy analysis method, Comput. Phys. Commun., 180 (2009), 1116-1124.   DOI
17 A. Yildirim, T. Ozis, Solutions of singular IVPs of Lane-Emden type by the variational iteration method, Nonl. Anal., 70, (2009), 2480-1484.
18 S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type, Appl. Math. Comput., 181 (2006), 1417-1422.   DOI
19 E. A. -B. Abdel-Salam, M. I. Nouh, E. A. Elkholy, Analytical solution to the conformable fractional LaneEmden type equations arising in astrophysics, Scientific African, 8 (2020), e00386.
20 G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501-544.   DOI
21 G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Boston, 1994.
22 G. Adomian, R. Rach, N.T. Shawagfeh, On the analytic solution of Lane-Emden equation, Foundations of Phys. Lett., 8 (1995), 161-181.   DOI
23 U. Saeed, Haar Adomian method for the solution of fractional nonlinear Lane-Emden type equations arising in astrophysics, Taiwanese J. Math., 21 (2017), 1175-1192,   DOI
24 M. Dehghan, F. Shakeri, Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New Astron., 13 (2008), 53-59.   DOI
25 J.H. He, Variational approach to the Lane-Emden equation, Appl. Math. Comput., 143 (2003), 539-541.   DOI
26 A. Aslanov, A generalization of the Lane-Emden equation, Int. J. Comput. Math., 85 (2008), 661-663.   DOI
27 P. Mach, All solutions of the n = 5 Lane-Emden equation, J. Math. Phys., 53 (2012), 062503.
28 A. Figueroa, Z. Jackiewicz, R. Lohner, Explicit two-step Runge-Kutta methods for computational fluid dynamics solvers, Int. J. Numer. Methods Fluids, 93 (2020), 429-444.
29 A. Figueroa, Z. Jackiewicz, R. Lohner, Efficient two-step Runge-Kutta methods for fluid dynamics simulations, Appl. Numer. Math., 159 (2021), 1-20.   DOI
30 S. E. Ogunfeyitimi and M. N. O. Ikhile, Second derivative generalized extended backward differentiation formulas for stiff problems, J. Korean Soc. Ind. Appl. Math., 23 (2019) 179-202.   DOI
31 S. E. Ogunfeyitimi and M. N. O. Ikhile, Multiblock boundary value methods for ordinary differential and differential algebraic equations, J. Korean Soc. Ind. Appl. Math., 24 (2020), 243-291.   DOI
32 J. C. Butcher, Numerical methods for solving ordinary differential equations, Wiley, Chichester, 2016.
33 P. O. Olatunji, M. N. O. Ikhile, R. I. Okuonghae, Nested second derivative two-step Runge-Kutta methods, Int. J. Appl. Comput. Math., 7 (2021), 1-39.   DOI
34 P. O. Olatunji, Nested general linear methods for stiff differential equations and differential algebraic equations, PhD Thesis, Department of Mathematics, University of Benin, Nigeria, 2021.
35 P. O. Olatunji, M. N. O. Ikhile, Strongly regular general linear methods, J. Sci. Comput., 82 (2020), 1-25.   DOI
36 P. O. Olatunji, M. N. O. Ikhile, FSAL mono-implicit Nordsieck general linear methods with inherent Runge - Kutta stability for DAEs, J. Korean Soc. Ind. Appl. Math., 25 (2021), 262-295.
37 K. Parand, M. Dehghan, A. R. Rezaei, S. M. Ghaderi, An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method, Comput. Phys. Commun., 181 (2010), 1096-1108.   DOI
38 A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111 (2000), 53-69.   DOI
39 K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to differential equations, Comput. Math. Appl., 102 (1999), 77-86.   DOI
40 M. S. Hashemi, A. Akgul, M. Inc, I. S. Mustafa, D. Baleanu, Solving the Lane-Emden equation within a reproducing kernel method and group preserving scheme, Mathematics, 5 (2017), 1-13.   DOI
41 A.M. Malik, O.H. Mohammed, Two efficient methods for solving fractional Lane-Emden equations with conformable fractional derivative, J. Egyptian Math. Soc., 28 (2020)
42 P. K. Sahu, B. Mallick, Approximate solution of fractional order Lane-Emden type differential equation by orthonormal Bernoulli's polynomials, Int. J. Appl. Comput. Math, 5 (2019)
43 M. A. Abdelkawy, Z. Sabir, J. L. G. Guirao, T. Saeed, Numerical investigations of a new singular secondorder nonlinear coupled functional Lane-Emden model, Open Phys.,18 (2020), 770-778.   DOI
44 Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020)
45 W. Adel, Z. Sabir, Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model, Eur. Phys. J. Plus, 135 (2020)
46 R. Gupta, S. Kumar, Numerical simulation of variable-order fractional differential equation of nonlinear Lane-Emden type appearing in astrophysics, Int. J. Nonlinear Sci. Num. Simul., 23 (2022)
47 K. Tablennehas, Z. Dahmani, M. M. Belhamiti, A. Abdelnebi, M. Z. Sarikaya, On a fractional problem of Lane-Emden type: Ulam type stabilities and numerical behaviors, Adv. Differ. Equat.,2021 (2021)
48 H. F. Ahmed, M. B. Melad, A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential models with variable order, Math. Sci., (2022)
49 R. O. Awonusika, Analytical solution of a class of fractional Lane-Emden equation: a power series method, Int. J. Appl. Comput. Math,8 (2022)
50 R. O. Awonusika, O. A. Mogbojuri, Approximate analytical solution of fractional Lane-Emden equation by Mittag-Leffler function method, J. Nig. Soc. Phys. Sci., 4 (2022), 265-280.
51 R. Rach, A convenient computational form for the Adomian polynomials, J. Math. Anal. Appl., 102 (1984), 415-419.   DOI
52 V. Seng, K. Abbaoui, Y. Cherruault, Adomian's polynomials for nonlinear operators, Mathl. Comput. Modelling, 24 (1996), 59-65.
53 K. Boubaker, R. A. V. Gorder, Application of the BPES to Lane-Emden equations governing polytropic and isothermal gas spheres, New Astron., 17 (2012) 565-569.   DOI
54 A.M. Wazwaz, The decomposition method for approximate solution of the Goursat problem, Appl. Math. Comput., 69 (1995), 299-311.   DOI
55 A.M. Wazwaz, A reliable modification of Adomian's decomposition method, Appl. Math. Comput., 102 (1999), 77-86.   DOI
56 C. Mohan, A.R. Al-Bayaty, Power series solutions of the Lane-Emden equation, Astro. Space Sci., 73 (1980), 227-239.   DOI
57 A.M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Appl. Math. Comput., 118 (2001), 287-310.   DOI
58 A. Saadatmandi, A. Ghasemi-Nasrabady, A. Eftekhari, Numerical study of singular fractional Lane-Emden type equations arising in astrophysics, J. Astrophys. Astr. 40 (2019), 1-12.   DOI
59 R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions of fractional Lane-Emden equations via Laplace transform and residual error function, Alenxandria Eng. J., 61 (2022), 10551-10562.   DOI
60 A.M. Wazwaz, Solving the non-isothermal reaction-diffusion model equations in a spherical catalyst by the variational iteration method, Chem. Phys. Lett., 679 (2017) 132-136.   DOI
61 H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Courier Corporation, Dover, New York, 1962.
62 O.U. Richardson, The Emission of Electricity from Hot Bodies, Longman, Green and Co., London, New York, 1921.
63 M. C, Khalique, F. M. Mahomed, B. Muatjetjeja, Lagrangian formulation of a generalized Lane-Emden equation and double reduction, J. Nonl. Math. Phys.,15 (2008), 152-161.   DOI
64 H. Madduri, P. Roul, T.C. Hao, F.Z. Cong,Y.F. Shang, An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate, J. Math. Chem., 56 (2018), 2691-2706.   DOI
65 H. Madduri, P. Roul, A fast-converging iterative scheme for solving a system of Lane-Emden equations arising in catalytic diffusion reactions, J. Math. Chem., 57 (2019), 570-582.   DOI
66 P. Roul, A new mixed MADM-Collocation approach for solving a class of Lane-Emden singular boundary value problems, J. Math. Chem., 57 (2019), 945-969.   DOI