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REPRESENTATIONS OF SUBHARMONIC HARDY
FUNCTIONS IN THE COMPLEX BALL

ERN GUN KWON AND JONG HEE PARK

ABSTRACT. For the purpose of characterizing subharmonic or M-subharmonic
Hardy classes in the unit ball of C™, we establish fundamental identities
between integral means in terms of volume integrals and Green’s functions.

1. Introduction

Let B = B,, denote the open unit ball of C” and S denote the boundary of B:
S ={z€C":|z| =1}. Let v and o denote respectively the Lebesgue volume
measure on B and the surface measure on S normalized to be v(B) = o(S) = 1.
Denote d7(z) = (1 — |z?)~ "+t Ddy(2).

Let M denote the group of all automorphism, that is, one to one biholomor-
phic onto map, of B. M consists of all maps of the form Ug,, where U is a
unitary operator of C™ and ¢, is defined by

a—Pyz—/1—a|?2Qqz ifa ?é 0
Pa(z) =

1-<z,a> ’

0, ifa=0.

Here <, > is the Hermitian inner product of C™: < z, w >= Z?Zl ZjWj, Z, W €
C™, P,z is the projection of C™ onto the subspace generated by B:

<z,a> .
Pazzﬁa7 ifa#0 and Pyz =0,
<a,a>
and Q,(z) =z — Pyz.

Let A be the complex Laplacian: A = 4377, D;Dj, where D; = 52 and

D; = 6%]-’ j=12,....,n. In B, A may be decomposed into the complex
tangential Laplacian and the complex radial Laplacian: A = Auun + Avad,
where A,.q is defined for f € C?(B) and z = r(,0 < r < 1, € S, to be the
Laplacian of the function A — f(z + A() at the origin of C (see [3], 17.3.2).
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Let A denote the (M-) invariant Laplacian of B defined for f € C2(B) by
Af(a)=A(fopa)(0), a€B.
A is M-invariant in the sense that
(Bf)ew=A(fov)
for all ¥ € M, and it is known that

Af(a) =401 —a]*) Y (65 — @a;)(D;D;f)(a), a€ B,
i,j=1
for f € C*(B) (see [3], 4.1.3).
A C?(B) function f is said to be harmonic (in B) if Af = 0 in B, M-
harmonic if ﬁf =0 in B, pluriharmonic if Af =0 = Kf in B (see [3], 4.4.9).
An upper semicontinuous function f : B — [—o0, 00), f # —o0, satisfying
the inequality

fla) < /S fla+7¢) do(C)

for all a € B and for all r such that a + rB C B is called subharmonic (in B).
An upper semicontinuous function f : B — [—oc0, 00), f # —o0, satisfying

fla) < /S f 0 pa(r¢) do()

for all @ € B and for all r sufficiently small is called M-subharmonic. Also, an
upper semicontinuous function f : B — [—00, o0), is called plurisubharmonic
if the functions

A= f(a+ Ab)
are subharmonic in neighborhoods of the origin in C, for all a € B, b € C".

If f is subharmonic on B, then [ f(r¢) do(¢) is an increasing function of r.
If f is M-subharmonic on B, then [q f o ,(r¢) do(C) is an increasing function
of r for every a € B (see [4], 5.11).

It is known for f € C%(B) that Af > 0 if and only if f is subharmonic, and
that Af > 0 if and only if f is M-subharmonic. But Af > 0 and ﬁf > 0 does
not imply that f is plurisubharmonic (see [3], 7.2.1).

For 0 <r <1, let

g(r,z) = /Ilpzi_ldp, z € rB,

and

~ 1" (1=p*)nt
g(r,z) = 2n/ll(p;l_)lalp, z €rB.

Let g(z) = g(1,2) and g(z) = g(1, 2). Then g(z) = log ﬁ ifn=1, and

o = g (=)
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if n > 1. Elementary calculation shows that Ag(z) = 0 for all z € B, z #
0. So g is superharmonic (i.e - ¢ is subharmonic) on B\{0}, ¢g(0) = oo and
lim|.|—,; g(2) = 0. The function

G(zw) =g(pw(z)), zweB,
is called the Green’s function for A. It satisfies G(z, w) = G(w, z) and A, G(z,w) =
0 on B\{0}.

Also, Ag(z) = 0 for all z € B, z # 0; g is M-superharmonic (i.e - ¢ is
M-subharmonic) on B\{0}, g(0) = co and lim,—; g(2) = 0. The function

é(zaw)zg(ww(z))’ z,w € B,

is called the (invariant) Green’s function for A. It satisfies G(z, w) = G(w, 2)
and A,G(z,w) = 0 on B\{0}.

Let Rf denote the radial derivative of f: Rf(z) = Z?Zl ziD;f(z), z € B.
Note that Rf = §¢" when f is radial with f(z) = ¢(r),[z| = 7. Rf is invariant
under the action of the unitary group U.

We in this note establish fundamental identities between integral means as
follows.

Theorem 1.1. If f € C?(B) and 0 < r < 1, then the following (a)~(f) are all
equal.

@ [ f60d0(0

® 10 +5 [ o)A v

© 1O+ [ Gr2)B) art

@ 5 [ 10 @)+ o [ 02 AL avle)
n+1 5

© ma— (1—n ) 1) vl

T I+ 1):27»(1 —) /TB {1 B (f:;)nﬂ} Af(z) dv(z)

1 [ @

If n > 2, then each one of (a ) equals

[ S [P A () o).

Theorem 1.1 can be used in characterizing various function classes, for exam-
ple pluri-harmonic Hardy classes and BMO classes, in terms of volume integrals.
This will be done in a forthcoming paper. Instead, we refer to [1, 2] for previous
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results of the same vein and present a simple illustration, which immediately
follows from Theorem 1.1.

Corollary 1.2. Letn > 2. Let f : B — C with |f|> € C*(B). If Araalf|> >0
and Agan|f|? > 0, then the following (a) ~ (e) are equivalent.

(a) sup/|fr§\2da()<oo

0<r<1

(0) AO—MMWM%M@<w
(¢) Lu—vwmﬂm%ma<w

/me%Ma<m
B

/ Avanl f(2)2 d(2) < 00
B

2. Lemmas

Lemma 2.1. Let 0 < r <1 be fized.
(a) If n =1, then g(r,z) = log ﬁ = 24(r, 2).
(b) If n > 2, then

g(rv Z) (Tv Z) 2—2n
G-y~

Proof. (a) follows immediately. (b) follows from the following limits which can
be derived by using L’Hospital’s rule.
g(r,t) 1 i g(r,t) 1 1

1 _— = — 1 = . R
Sr 21— L) T 2p om0l -1L)  2(n—1) dn(n—1)

, zerb.

lim g(ryt) _ 1 lim g(r,t) _ 1
t—r $2720(1 — ¢2)n n(n—1+7r2)" t50¢2-2n(1 —¢2)n dn(n —1)

O

Lemma 2.2 (See [1]). Let f € C*(B) and a =r(,0<r < 1,{ € S. Then we
have the following.

(a) A = Atan + Drad; B = (1 - Tz)Atan + (1 - T2)2A1’ad

2(n—1)0
(b) If fis radial, then Apoaf = —— + === and A¢anf = Li
2r  ror r or
(¢) A, Avad, Atan, A all commutes with the action of the unitary group.
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Lemma 2.3. If f € C*(B) and 0 < r < 1, then the following (a)~ (f) are
equal.

@ 2t 2 [ 0 o0
(b) /TBAf(Z)dV(Z)
() (1—r3)t / Af@dn()

(d) %d% /TB(T2—|Z|2)Af(z)dy(z)
© T r (0T 0= At
(f) %d% /BRf(z)dy(z).

If n > 2, then each one of (a) ~ (f) equals

O gTrar | P i)

Proof. If we denote f# the radialization of f:
o) = [ 1ws) av,
u

where U denote the group of unitary operators of C™, then by Lemma 2.2 (c)

Buan (1) = Buan§)* . & (7#) = (A1)* and & (7#) = (A7)

So it is sufficient to verify required equalities with f# instead of f. Denote
f#* = wand u(z) = ¢(p), p = |2| for simplicity.
Consider two representations of r2"~1¢/(r):

n— / _ " d n— /
r2n gl (r) = /0 dp {92 ‘o (P)}d/’ (2.1)
and

7“2n_1¢/(7“) _ (1 _ 7"2)n_1 /OT dip {(]-_p12)n1p2n—1¢/(p)} d[) (22)

Simply from Ru = £¢’, we have

2d (*
2np*" ¢ = dnp®2Ru = f—/ 2nr?" ' Ru dr,
pdp Jo
so that (a) = (f) follows.
By Lemma 2.2
2n —1

Au(z) = ¢"(p) + o' (p),



582 E. G. KWON AND J. H. PARK

Avaqu(z) = ¢"(p) + }b’(p),

and N
Ruz) = (1 - p)2Au(z) +2(n — Dp(1 = p2)/(p).
Thus, from (2.1) we obtain

T2n71¢/(7ﬂ) _ /O' p2n71 {¢/I(p) + 2n — 1¢I(p)} dp
= /T p*" Au(z) dp,
0
which implies that (a) = (b).
Also, from (2.2) we obtain
T2n—1¢/(7_)
" 1 d
—a-rr [ A A ) 2 D) do
T 2n—1 -
S /O Ty £ St 800,

which implies that (a) = (c¢).
Integration by parts gives that

2r /O P> AG(p)dp
d r
1 G R BN
d [ [" d [
= ( /0 p2”1r2A¢>(p)dp> - /0 P AG(p)dp

= d% (/OT P> (r? — p2)A¢(p)dp> ,

which implies that (b) = (d).
By a similar way,

|
|
| =
r—’h\
=
|
3,
3
+
-
h
=
3
: i—‘
+
_
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>
=8
e
——
S
3
—
>
©-
—
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_
I
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,_.
r\
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3
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—
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>
S
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——

which implies that (c) = (e).
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Suppose n > 2. From Azppu(z) = Mqﬁ’(p) and (a) = (d),

2 _ 4
n—1 dp J,p

Taking [, dp gives (d) = (g). O

PP Aganu(z) = 4np® ¢ (p (0* = [21)Af(z) dv(2).

3. Proof of Main Results
Proof of Theorem 1.1. That (a) = (b) follows from integrating the identity

i [ 10000 = g [ AfIan(:

(which is (a) = (b) of Lemma 2.3) with respect to dr and using

3 |, e [ ArGI)

/ af (/ T Xie |<pdp> d(2)
= [ 9(r2)Af(z) dv(z).
2n /TB

(a) = (c) follows from integrating the identity

—/fr(da = 2nr2”1/Af )dT(z
(which is (a) = (¢) of Lemma 2.3) with respect to dr and using

% /Or (1;2,7012)1”1 dp/pB Af(z) dr(z)
5 [ e ([ SN i) ar(:)

- / 3(r, 2)Af(2) dr(2).
rB

(a) = (d) follows from mtegratmg the 1dent1ty

e [ 1000 = 2 [ 02— 1EPASE) dvte)

(which is (a) = (d) of Lemma 2.3) with respect to dr and using

/07“ p2n (jp /S f(pC)da(g)) dp

—2n /S f(rO)do(¢) — 2n / " ldp /S £(p0) do () (3.1)

= [ pe0an©) = [ () vt
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Also, (a) = (e) follows from integrating the identity
(1 —r? / f(r¢)do(¢

4n (n+1) dr / {@ =) = =) Af(z)dr(2)

(which is (a) = (e) of Lemma 2.3) with respect to dr and using

[ =) (5 [ 160 o)) a
=211 [ 100 do(¢) - 20 [ (1”:1/32> dp [ £(pda()
=7r?"(1 —r?) /Sf(rC) do(¢) — /TB <1 - "Z ! Z|2> f(z) dv(2).

(a) = (f) follows from integrating the identity

Q”Cifgf(rodo(o = %%/TB Rf(2) dv(2)

(which is (a) = (f) of Lemma 2.3) with respect to dr and using (3.1).
If n > 2, then (a) = (g) follows from integrating the identity

d 2
d /f TC dU mdr/ ‘Z| Atanf(z) dI/(Z)
(which is (a) = (g) of Lemma 2.3) with respect to dr and using

/ ( /f pC)do (¢ )dp = TQ”/Sf(rC)da(g) —/TB F(2) dv(z)

Proof of Corollary 1.2. That AvadlfI? > 0 and Agen|f|? > 0 imply A|f]?2 >0
and A|f|? > 0. These subharmonicity imply

sup [ F0QR da(@) = tim [ 170 do(c).

0<r<1J8

Whence by Lemma 2.1 and Theorem 1.1 the result follows. 0

O
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