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REPRESENTATIONS OF SUBHARMONIC HARDY

FUNCTIONS IN THE COMPLEX BALL

Ern Gun Kwon and Jong Hee Park

Abstract. For the purpose of characterizing subharmonic or M-subharmonic

Hardy classes in the unit ball of Cn, we establish fundamental identities

between integral means in terms of volume integrals and Green’s functions.

1. Introduction

Let B = Bn denote the open unit ball of Cn and S denote the boundary of B:
S = {z ∈ Cn : |z| = 1}. Let ν and σ denote respectively the Lebesgue volume
measure on B and the surface measure on S normalized to be ν(B) = σ(S) = 1.
Denote dτ(z) = (1− |z|2)−(n+1)dν(z).

LetM denote the group of all automorphism, that is, one to one biholomor-
phic onto map, of B. M consists of all maps of the form Uϕa, where U is a
unitary operator of Cn and ϕa is defined by

ϕa(z) =

{
a−Paz−

√
1−|a|2Qaz

1−<z,a> , if a 6= 0

0, if a = 0.

Here< , > is the Hermitian inner product of Cn: < z, w >=
∑n
j=1 zjw̄j , z, w ∈

Cn, Paz is the projection of Cn onto the subspace generated by B:

Paz =
< z, a >

< a, a >
a, if a 6= 0 and P0z = 0,

and Qa(z) = z − Paz.
Let ∆ be the complex Laplacian: ∆ = 4

∑n
j=1DjD̄j , where Dj = ∂

∂zj
and

D̄j = ∂
∂z̄j

, j = 1, 2, . . . , n. In B, ∆ may be decomposed into the complex

tangential Laplacian and the complex radial Laplacian: ∆ = ∆tan + ∆rad,
where ∆rad is defined for f ∈ C2(B) and z = rζ, 0 < r < 1, ζ ∈ S, to be the
Laplacian of the function λ→ f(z + λζ) at the origin of C (see [3], 17.3.2).
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Let ∆̃ denote the (M-) invariant Laplacian of B defined for f ∈ C2(B) by

∆̃f(a) = ∆ (f ◦ ϕa) (0), a ∈ B.

∆̃ is M-invariant in the sense that(
∆̃f
)
◦ ψ = ∆̃(f ◦ ψ)

for all ψ ∈M, and it is known that

∆̃f(a) = 4(1− |a|2)

n∑
i,j=1

(δi,j − āiaj)(D̄iDjf)(a), a ∈ B,

for f ∈ C2(B) (see [3], 4.1.3).
A C2(B) function f is said to be harmonic (in B) if ∆f = 0 in B, M-

harmonic if ∆̃f = 0 in B, pluriharmonic if ∆f = 0 = ∆̃f in B (see [3], 4.4.9).
An upper semicontinuous function f : B → [−∞, ∞), f 6≡ −∞, satisfying

the inequality

f(a) ≤
∫
S

f(a+ rζ) dσ(ζ)

for all a ∈ B and for all r such that a+ rB̄ ⊂ B is called subharmonic (in B).
An upper semicontinuous function f : B → [−∞, ∞), f 6≡ −∞, satisfying

f(a) ≤
∫
S

f ◦ ϕa(rζ) dσ(ζ)

for all a ∈ B and for all r sufficiently small is called M-subharmonic. Also, an
upper semicontinuous function f : B → [−∞, ∞), is called plurisubharmonic
if the functions

λ→ f(a+ λb)

are subharmonic in neighborhoods of the origin in C, for all a ∈ B, b ∈ Cn.
If f is subharmonic on B, then

∫
S
f(rζ) dσ(ζ) is an increasing function of r.

If f isM-subharmonic on B, then
∫
S
f ◦ϕa(rζ) dσ(ζ) is an increasing function

of r for every a ∈ B (see [4], 5.11).
It is known for f ∈ C2(B) that ∆f ≥ 0 if and only if f is subharmonic, and

that ∆̃f ≥ 0 if and only if f is M-subharmonic. But ∆f ≥ 0 and ∆̃f ≥ 0 does
not imply that f is plurisubharmonic (see [3], 7.2.1).

For 0 < r ≤ 1, let

g(r, z) =

∫ r

|z|

1

ρ2n−1
dρ, z ∈ rB,

and

g̃(r, z) =
1

2n

∫ r

|z|

(1− ρ2)n−1

ρ2n−1
dρ, z ∈ rB.

Let g(z) = g(1, z) and g̃(z) = g̃(1, z). Then g(z) = log 1
|z| if n = 1, and

g(z) =
1

2(n− 1)

(
1

|z|2n−2
− 1

)
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if n > 1. Elementary calculation shows that ∆g(z) = 0 for all z ∈ B, z 6=
0. So g is superharmonic (i.e - g is subharmonic) on B\{0}, g(0) = ∞ and
lim|z|→1 g(z) = 0. The function

G(z, w) = g (ϕw(z)) , z, w ∈ B,
is called the Green’s function for ∆. It satisfiesG(z, w) = G(w, z) and ∆zG(z, w) =
0 on B\{0}.

Also, ∆̃g̃(z) = 0 for all z ∈ B, z 6= 0; g̃ is M-superharmonic (i.e - g̃ is
M-subharmonic) on B\{0}, g̃(0) =∞ and lim|z|→1 g̃(z) = 0. The function

G̃(z, w) = g̃ (ϕw(z)) , z, w ∈ B,

is called the (invariant) Green’s function for ∆̃. It satisfies G̃(z, w) = G̃(w, z)

and ∆̃zG̃(z, w) = 0 on B\{0}.
Let Rf denote the radial derivative of f : Rf(z) =

∑n
j=1 zjDjf(z), z ∈ B.

Note that Rf = r
2φ
′ when f is radial with f(z) = φ(r), |z| = r. Rf is invariant

under the action of the unitary group U .
We in this note establish fundamental identities between integral means as

follows.

Theorem 1.1. If f ∈ C2(B) and 0 < r < 1, then the following (a)∼(f) are all
equal.

(a)

∫
S

f(rζ)dσ(ζ)

(b) f(0) +
1

2n

∫
rB

g(r, z)∆f(z) dν(z)

(c) f(0) +

∫
rB

g̃(r, z)∆̃f(z) dτ(z)

(d)
1

r2n

∫
rB

f(z) dν(z) +
1

4nr2n

∫
rB

(r2 − |z|2)∆f(z) dν(z)

(e)
1

r2n(1− r2)

∫
rB

(
1− n+ 1

n
|z|2
)
f(z) dν(z)

+
1

4n(n+ 1)r2n(1− r2)

∫
rB

{
1−

(
1− r2

1− |z|2

)n+1
}

∆̃f(z) dν(z)

(f)
1

r2n

∫
rB

f(z) dν(z) +
1

nr2n

∫
rB

Rf(z) dν(z)

If n ≥ 2, then each one of (a) ∼ (f) equals

(g)
1

r2n

∫
rB

f(z) dν(z)+
1

4n(n− 1)r2n

∫
rB

|z|2∆tanf(z) dν(z).

Theorem 1.1 can be used in characterizing various function classes, for exam-
ple pluri-harmonic Hardy classes and BMO classes, in terms of volume integrals.
This will be done in a forthcoming paper. Instead, we refer to [1, 2] for previous
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results of the same vein and present a simple illustration, which immediately
follows from Theorem 1.1.

Corollary 1.2. Let n ≥ 2. Let f : B → C with |f |2 ∈ C2(B). If ∆rad|f |2 ≥ 0
and ∆tan|f |2 ≥ 0, then the following (a) ∼ (e) are equivalent.

(a) sup
0≤r<1

∫
S

|f(rζ)|2 dσ(ζ) <∞

(b)

∫
B

(1− |z|)∆|f(z)|2 dν(z) <∞

(c)

∫
B

(1− |z|)n∆̃|f(z)|2 dτ(z) <∞

(d)

∫
B

R|f(z)|2 dν(z) <∞

(e)

∫
B

∆tan|f(z)|2 dν(z) <∞

2. Lemmas

Lemma 2.1. Let 0 < r ≤ 1 be fixed.

(a) If n = 1, then g(r, z) = log r
|z| = 2g̃(r, z).

(b) If n ≥ 2, then

g̃(r, z)

(1− |z|2)n
≈ g(r, z)

1− |z|r
≈ |z|2−2n, z ∈ rB.

Proof. (a) follows immediately. (b) follows from the following limits which can
be derived by using L’Hospital’s rule.

lim
t→r

g(r, t)

t2−2n(1− t
r )

=
1

2n
, lim

t→0

g(r, t)

t2−2n(1− t
r )

=
1

2(n− 1)
· 1

4n(n− 1)
;

lim
t→r

g̃(r, t)

t2−2n(1− t2)n
=

1

n(n− 1 + r2)
, lim

t→0

g̃(r, t)

t2−2n(1− t2)n
=

1

4n(n− 1)
.

�

Lemma 2.2 (See [1]). Let f ∈ C2(B) and a = rζ, 0 ≤ r < 1, ζ ∈ S. Then we
have the following.

(a) ∆ = ∆tan + ∆rad; ∆̃ = (1− r2)∆tan + (1− r2)2∆rad

(b) If f is radial, then ∆radf =
∂f2

∂2r
+

1

r

∂f

∂r
and ∆tanf =

2(n− 1)

r

∂f

∂r
.

(c) ∆,∆rad,∆tan, ∆̃ all commutes with the action of the unitary group.



SUBHARMONIC FUNCTIONS IN THE COMPLEX BALL 581

Lemma 2.3. If f ∈ C2(B) and 0 < r < 1, then the following (a)∼ (f) are
equal.

(a) 2nr2n−1 d

dr

∫
S

f(rζ) dσ(ζ)

(b)

∫
rB

∆f(z) dν(z)

(c) (1− r2)n−1

∫
rB

∆̃f(z) dτ(z)

(d)
1

2r

d

dr

∫
rB

(r2 − |z|2)∆f(z) dν(z)

(e)
1

2(n+ 1)r(1− r2)

d

dr

∫
rB

{
(1− |z|2)n+1 − (1− r2)n+1

}
∆̃f(z) dτ(z)

(f)
2

r

d

dr

∫
rB

Rf(z) dν(z).

If n ≥ 2, then each one of (a) ∼ (f) equals

(g)
1

2(n− 1)r

d

dr

∫
rB

|z|2∆tanf(z) dν(z).

Proof. If we denote f# the radialization of f :

f#(z) =

∫
U
f(Uz) dU,

where U denote the group of unitary operators of Cn, then by Lemma 2.2 (c)

∆tan

(
f#
)

= (∆tanf)
#
, ∆

(
f#
)

= (∆f)
#

and ∆̃
(
f#
)

=
(

∆̃f
)#

.

So it is sufficient to verify required equalities with f# instead of f . Denote
f# = u and u(z) = φ(ρ), ρ = |z| for simplicity.

Consider two representations of r2n−1φ′(r):

r2n−1φ′(r) =

∫ r

0

d

dρ

{
ρ2n−1φ′(ρ)

}
dρ (2.1)

and

r2n−1φ′(r) = (1− r2)n−1

∫ r

0

d

dρ

{
1

(1− ρ2)n−1
ρ2n−1φ′(ρ)

}
dρ. (2.2)

Simply from Ru = ρ
2φ
′, we have

2nρ2n−1φ′ = 4nρ2n−2Ru =
2

ρ

d

dρ

∫ ρ

0

2nr2n−1Ru dr,

so that (a) = (f) follows.
By Lemma 2.2

∆u(z) = φ′′(ρ) +
2n− 1

ρ
φ′(ρ),
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∆radu(z) = φ′′(ρ) +
1

ρ
φ′(ρ),

and

∆̃u(z) = (1− ρ2)2∆u(z) + 2(n− 1)ρ(1− ρ2)φ′(ρ).

Thus, from (2.1) we obtain

r2n−1φ′(r) =

∫ r

0

ρ2n−1

{
φ′′(ρ) +

2n− 1

ρ
φ′(ρ)

}
dρ

=

∫ r

0

ρ2n−1∆u(z) dρ,

which implies that (a) = (b).
Also, from (2.2) we obtain

r2n−1φ′(r)

= (1− r2)n−1

∫ r

0

1

(1− ρ2)n

{
(1− ρ2)

d

dρ

(
ρ2n−1φ′(ρ)

)
+ 2(n− 1)ρ2nφ′(ρ)

}
dρ

= (1− r2)n−1

∫ r

0

ρ2n−1

(1− ρ2)n+1
∆̃φ(ρ)dρ,

which implies that (a) = (c).
Integration by parts gives that

2r

∫ r

0

ρ2n−1∆φ(ρ)dρ

=
d

dr

(
r2

∫ r

0

ρ2n−1∆φ(ρ)dρ

)
− r2n+1∆φ(r)

=
d

dr

(∫ r

0

ρ2n−1r2∆φ(ρ)dρ

)
− d

dr

∫ r

0

ρ2n+1∆φ(ρ)dρ

=
d

dr

(∫ r

0

ρ2n−1(r2 − ρ2)∆φ(ρ)dρ

)
,

which implies that (b) = (d).
By a similar way,

2(n+ 1)r(1− r2)n
∫ r

0

ρ2n−1

(1− ρ2)n+1
∆̃φ(ρ)dρ

= − d

dr

{
(1− r2)n+1

∫ r

0

ρ2n−1

(1− ρ2)n+1
∆̃φ(ρ)dρ

}
+ r2n−1∆̃φ(r)

= − d

dr

{
(1− r2)n+1

∫ r

0

ρ2n−1

(1− ρ2)n+1
∆̃φ(ρ)dρ

}
+

d

dr

{∫ r

0

ρ2n−1∆̃φ(ρ)dρ

}
=

d

dr

∫ r

0

{
1−

(
1− r2

1− ρ2

)n+1
}
ρ2n−1∆̃φ(ρ) dρ,

which implies that (c) = (e).
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Suppose n ≥ 2. From ∆tanu(z) = 2(n−1)
ρ φ′(ρ) and (a) = (d),

2n

n− 1
ρ2n+1∆tanu(z) = 4nρ2nφ′(ρ) =

d

dρ

∫
ρB

(ρ2 − |z|2)∆f(z) dν(z).

Taking
∫ r

0
dρ gives (d) = (g). �

3. Proof of Main Results

Proof of Theorem 1.1. That (a) = (b) follows from integrating the identity

d

dr

∫
S

f(rζ)dσ(ζ) =
1

2nr2n−1

∫
rB

∆f(z)dν(z)

(which is (a) = (b) of Lemma 2.3) with respect to dr and using

1

2n

∫ r

0

1

ρ2n−1
dρ

∫
ρB

∆f(z)dν(z)

=
1

2n

∫
rB

∆f(z)

(∫ r

0

1

ρ2n−1
χ|z|<ρdρ

)
dν(z)

=
1

2n

∫
rB

g(r, z)∆f(z) dν(z).

(a) = (c) follows from integrating the identity

d

dr

∫
S

f(rζ)dσ(ζ) =
(1− r2)n−1

2nr2n−1

∫
rB

∆̃f(z)dτ(z)

(which is (a) = (c) of Lemma 2.3) with respect to dr and using

1

2n

∫ r

0

(1− ρ2)n−1

ρ2n−1
dρ

∫
ρB

∆̃f(z) dτ(z)

=
1

2n

∫
rB

∆̃f(z)

(∫ r

0

(1− ρ2)n−1

ρ2n−1
χ|z|<ρ dρ

)
dτ(z)

=

∫
rB

g̃(r, z)∆̃f(z) dτ(z).

(a) = (d) follows from integrating the identity

r2n d

dr

∫
S

f(rζ)dσ(ζ) =
1

4n

d

dr

∫
rB

(r2 − |z|2)∆f(z) dν(z)

(which is (a) = (d) of Lemma 2.3) with respect to dr and using∫ r

0

ρ2n

(
d

dρ

∫
S

f(ρζ)dσ(ζ)

)
dρ

= r2n

∫
S

f(rζ)dσ(ζ)− 2n

∫ r

0

ρ2n−1dρ

∫
S

f(ρζ) dσ(ζ)

= r2n

∫
S

f(rζ)dσ(ζ)−
∫
rB

f(z) dν(z).

(3.1)
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Also, (a) = (e) follows from integrating the identity

r2n(1− r2)
d

dr

∫
S

f(rζ) dσ(ζ)

=
1

4n(n+ 1)

d

dr

∫
rB

{
(1− |z|2)n+1 − (1− r2)n+1

}
∆̃f(z) dτ(z)

(which is (a) = (e) of Lemma 2.3) with respect to dr and using∫ r

0

ρ2n(1− ρ2)

(
d

dρ

∫
S

f(ρζ) dσ(ζ)

)
dρ

= r2n(1− r2)

∫
S

f(rζ) dσ(ζ)− 2n

∫ r

0

ρ2n−1

(
1− n+ 1

n
ρ2

)
dρ

∫
S

f(ρζ)dσ(ζ)

= r2n(1− r2)

∫
S

f(rζ) dσ(ζ)−
∫
rB

(
1− n+ 1

n
|z|2
)
f(z) dν(z).

(a) = (f) follows from integrating the identity

r2n d

dr

∫
S

f(rζ)dσ(ζ) =
1

n

d

dr

∫
rB

Rf(z) dν(z)

(which is (a) = (f) of Lemma 2.3) with respect to dr and using (3.1).
If n ≥ 2, then (a) = (g) follows from integrating the identity

r2n d

dr

∫
S

f(rζ)dσ(ζ) =
1

4n(n− 1)

d

dr

∫
rB

|z|2∆tanf(z) dν(z)

(which is (a) = (g) of Lemma 2.3) with respect to dr and using∫ r

0

ρ2n

(
d

dρ

∫
S

f(ρζ)dσ(ζ)

)
dρ = r2n

∫
S

f(rζ)dσ(ζ)−
∫
rB

f(z) dν(z).

�

Proof of Corollary 1.2. That ∆rad|f |2 ≥ 0 and ∆tan|f |2 ≥ 0 imply ∆|f |2 ≥ 0

and ∆̃|f |2 ≥ 0. These subharmonicity imply

sup
0≤r<1

∫
S

|f(rζ)|2 dσ(ζ) = lim
r→1

∫
S

|f(rζ)|2 dσ(ζ).

Whence by Lemma 2.1 and Theorem 1.1 the result follows. �
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