East Asian Math. J.
Vol. 34 (2018), No. 5, pp. 577-585
http://dx.doi.org/10.7858/eamj.2018.037

REPRESENTATIONS OF SUBHARMONIC HARDY FUNCTIONS IN THE COMPLEX BALL

Ern Gun Kwon and Jong Hee Park

Abstract

For the purpose of characterizing subharmonic or \mathcal{M}-subharmonic Hardy classes in the unit ball of \mathbb{C}^{n}, we establish fundamental identities between integral means in terms of volume integrals and Green's functions.

1. Introduction

Let $B=B_{n}$ denote the open unit ball of \mathbb{C}^{n} and S denote the boundary of B : $S=\left\{z \in \mathbb{C}^{n}:|z|=1\right\}$. Let ν and σ denote respectively the Lebesgue volume measure on B and the surface measure on S normalized to be $\nu(B)=\sigma(S)=1$. Denote $d \tau(z)=\left(1-|z|^{2}\right)^{-(n+1)} d \nu(z)$.

Let \mathcal{M} denote the group of all automorphism, that is, one to one biholomorphic onto map, of $B . \mathcal{M}$ consists of all maps of the form $U \varphi_{a}$, where U is a unitary operator of \mathbb{C}^{n} and φ_{a} is defined by

$$
\varphi_{a}(z)= \begin{cases}\frac{a-P_{a} z-\sqrt{1-|a|^{2}} Q_{a} z}{1-\langle z, a\rangle}, & \text { if } a \neq 0 \\ 0, & \text { if } a=0\end{cases}
$$

Here $<,>$ is the Hermitian inner product of $\left.\mathbb{C}^{n}:<z, w\right\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}, z, w \in$ $\mathbb{C}^{n}, P_{a} z$ is the projection of \mathbb{C}^{n} onto the subspace generated by B :

$$
P_{a} z=\frac{\langle z, a\rangle}{\langle a, a\rangle} a, \quad \text { if } a \neq 0 \quad \text { and } \quad P_{0} z=0
$$

and $Q_{a}(z)=z-P_{a} z$.
Let Δ be the complex Laplacian: $\Delta=4 \sum_{j=1}^{n} D_{j} \bar{D}_{j}$, where $D_{j}=\frac{\partial}{\partial z_{j}}$ and $\bar{D}_{j}=\frac{\partial}{\partial \bar{z}_{j}}, j=1,2, \ldots, n$. In B, Δ may be decomposed into the complex tangential Laplacian and the complex radial Laplacian: $\Delta=\Delta_{t a n}+\Delta_{\text {rad }}$, where $\Delta_{\text {rad }}$ is defined for $f \in C^{2}(B)$ and $z=r \zeta, 0<r<1, \zeta \in S$, to be the Laplacian of the function $\lambda \rightarrow f(z+\lambda \zeta)$ at the origin of \mathbb{C} (see [3], 17.3.2).

[^0]Let $\widetilde{\Delta}$ denote the (\mathcal{M}_{-}) invariant Laplacian of B defined for $f \in C^{2}(B)$ by

$$
\widetilde{\Delta} f(a)=\Delta\left(f \circ \varphi_{a}\right)(0), \quad a \in B
$$

$\widetilde{\Delta}$ is \mathcal{M}-invariant in the sense that

$$
(\widetilde{\Delta} f) \circ \psi=\widetilde{\Delta}(f \circ \psi)
$$

for all $\psi \in \mathcal{M}$, and it is known that

$$
\widetilde{\Delta} f(a)=4\left(1-|a|^{2}\right) \sum_{i, j=1}^{n}\left(\delta_{i, j}-\bar{a}_{i} a_{j}\right)\left(\bar{D}_{i} D_{j} f\right)(a), \quad a \in B
$$

for $f \in C^{2}(B)$ (see [3], 4.1.3).
A $C^{2}(B)$ function f is said to be harmonic (in B) if $\Delta f=0$ in B, \mathcal{M} harmonic if $\widetilde{\Delta} f=0$ in B, pluriharmonic if $\Delta f=0=\widetilde{\Delta} f$ in B (see [3], 4.4.9).

An upper semicontinuous function $f: B \rightarrow[-\infty, \infty), f \not \equiv-\infty$, satisfying the inequality

$$
f(a) \leq \int_{S} f(a+r \zeta) d \sigma(\zeta)
$$

for all $a \in B$ and for all r such that $a+r \bar{B} \subset B$ is called subharmonic (in B). An upper semicontinuous function $f: B \rightarrow[-\infty, \infty), f \not \equiv-\infty$, satisfying

$$
f(a) \leq \int_{S} f \circ \varphi_{a}(r \zeta) d \sigma(\zeta)
$$

for all $a \in B$ and for all r sufficiently small is called \mathcal{M}-subharmonic. Also, an upper semicontinuous function $f: B \rightarrow[-\infty, \infty)$, is called plurisubharmonic if the functions

$$
\lambda \rightarrow f(a+\lambda b)
$$

are subharmonic in neighborhoods of the origin in \mathbb{C}, for all $a \in B, b \in \mathbb{C}^{n}$.
If f is subharmonic on B, then $\int_{S} f(r \zeta) d \sigma(\zeta)$ is an increasing function of r. If f is \mathcal{M}-subharmonic on B, then $\int_{S} f \circ \varphi_{a}(r \zeta) d \sigma(\zeta)$ is an increasing function of r for every a $\in B$ (see [4], 5.11).

It is known for $f \in C^{2}(B)$ that $\Delta f \geq 0$ if and only if f is subharmonic, and that $\widetilde{\Delta} f \geq 0$ if and only if f is \mathcal{M}-subharmonic. But $\Delta f \geq 0$ and $\widetilde{\Delta} f \geq 0$ does not imply that f is plurisubharmonic (see [3], 7.2.1).

For $0<r \leq 1$, let

$$
g(r, z)=\int_{|z|}^{r} \frac{1}{\rho^{2 n-1}} d \rho, \quad z \in r B
$$

and

$$
\widetilde{g}(r, z)=\frac{1}{2 n} \int_{|z|}^{r} \frac{\left(1-\rho^{2}\right)^{n-1}}{\rho^{2 n-1}} d \rho, \quad z \in r B .
$$

Let $g(z)=g(1, z)$ and $\widetilde{g}(z)=\widetilde{g}(1, z)$. Then $g(z)=\log \frac{1}{|z|}$ if $n=1$, and

$$
g(z)=\frac{1}{2(n-1)}\left(\frac{1}{|z|^{2 n-2}}-1\right)
$$

if $n>1$. Elementary calculation shows that $\Delta g(z)=0$ for all $z \in B, z \neq$ 0 . So g is superharmonic (i.e $-g$ is subharmonic) on $B \backslash\{0\}, g(0)=\infty$ and $\lim _{|z| \rightarrow 1} g(z)=0$. The function

$$
G(z, w)=g\left(\varphi_{w}(z)\right), \quad z, w \in B
$$

is called the Green's function for Δ. It satisfies $G(z, w)=G(w, z)$ and $\Delta_{z} G(z, w)=$ 0 on $B \backslash\{0\}$.

Also, $\widetilde{\Delta} \widetilde{g}(z)=0$ for all $z \in B, z \neq 0 ; \widetilde{g}$ is \mathcal{M}-superharmonic (i.e - \widetilde{g} is \mathcal{M}-subharmonic) on $B \backslash\{0\}, \widetilde{g}(0)=\infty$ and $\lim _{|z| \rightarrow 1} \widetilde{g}(z)=0$. The function

$$
\widetilde{G}(z, w)=\widetilde{g}\left(\varphi_{w}(z)\right), \quad z, w \in B
$$

is called the (invariant) Green's function for $\widetilde{\Delta}$. It satisfies $\widetilde{G}(z, w)=\widetilde{G}(w, z)$ and $\widetilde{\Delta}_{z} \widetilde{G}(z, w)=0$ on $B \backslash\{0\}$.

Let $R f$ denote the radial derivative of $f: R f(z)=\sum_{j=1}^{n} z_{j} D_{j} f(z), \quad z \in B$. Note that $R f=\frac{r}{2} \phi^{\prime}$ when f is radial with $f(z)=\phi(r),|z|=r . R f$ is invariant under the action of the unitary group \mathcal{U}.

We in this note establish fundamental identities between integral means as follows.

Theorem 1.1. If $f \in C^{2}(B)$ and $0<r<1$, then the following (a) (f) are all equal.
(a) $\int_{S} f(r \zeta) d \sigma(\zeta)$
(b) $f(0)+\frac{1}{2 n} \int_{r B} g(r, z) \Delta f(z) d \nu(z)$
(c) $f(0)+\int_{r B} \widetilde{g}(r, z) \widetilde{\Delta} f(z) d \tau(z)$
(d) $\frac{1}{r^{2 n}} \int_{r B} f(z) d \nu(z)+\frac{1}{4 n r^{2 n}} \int_{r B}\left(r^{2}-|z|^{2}\right) \Delta f(z) d \nu(z)$
(e) $\frac{1}{r^{2 n}\left(1-r^{2}\right)} \int_{r B}\left(1-\frac{n+1}{n}|z|^{2}\right) f(z) d \nu(z)$

$$
+\frac{1}{4 n(n+1) r^{2 n}\left(1-r^{2}\right)} \int_{r B}\left\{1-\left(\frac{1-r^{2}}{1-|z|^{2}}\right)^{n+1}\right\} \widetilde{\Delta} f(z) d \nu(z)
$$

(f) $\frac{1}{r^{2 n}} \int_{r B} f(z) d \nu(z)+\frac{1}{n r^{2 n}} \int_{r B} R f(z) d \nu(z)$

If $n \geq 2$, then each one of $(a) \sim(f)$ equals
(g) $\frac{1}{r^{2 n}} \int_{r B} f(z) d \nu(z)+\frac{1}{4 n(n-1) r^{2 n}} \int_{r B}|z|^{2} \Delta_{t a n} f(z) d \nu(z)$.

Theorem 1.1 can be used in characterizing various function classes, for example pluri-harmonic Hardy classes and BMO classes, in terms of volume integrals. This will be done in a forthcoming paper. Instead, we refer to [1, 2] for previous
results of the same vein and present a simple illustration, which immediately follows from Theorem 1.1.

Corollary 1.2. Let $n \geq 2$. Let $f: B \rightarrow \mathbb{C}$ with $|f|^{2} \in C^{2}(B)$. If $\Delta_{\text {rad }}|f|^{2} \geq 0$ and $\Delta_{\text {tan }}|f|^{2} \geq 0$, then the following $(a) \sim(e)$ are equivalent.
(a) $\sup _{0 \leq r<1} \int_{S}|f(r \zeta)|^{2} d \sigma(\zeta)<\infty$
(b) $\int_{B}(1-|z|) \Delta|f(z)|^{2} d \nu(z)<\infty$
(c) $\int_{B}(1-|z|)^{n} \widetilde{\Delta}|f(z)|^{2} d \tau(z)<\infty$
(d) $\quad \int_{B} R|f(z)|^{2} d \nu(z)<\infty$
(e) $\int_{B} \Delta_{t a n}|f(z)|^{2} d \nu(z)<\infty$

2. Lemmas

Lemma 2.1. Let $0<r \leq 1$ be fixed.
(a) If $n=1$, then $g(r, z)=\log \frac{r}{|z|}=2 \widetilde{g}(r, z)$.
(b) If $n \geq 2$, then

$$
\frac{\widetilde{g}(r, z)}{\left(1-|z|^{2}\right)^{n}} \approx \frac{g(r, z)}{1-\frac{|z|}{r}} \approx|z|^{2-2 n}, \quad z \in r B
$$

Proof. (a) follows immediately. (b) follows from the following limits which can be derived by using L'Hospital's rule.

$$
\begin{aligned}
\lim _{t \rightarrow r} \frac{g(r, t)}{t^{2-2 n}\left(1-\frac{t}{r}\right)} & =\frac{1}{2 n}, \quad \lim _{t \rightarrow 0} \frac{g(r, t)}{t^{2-2 n}\left(1-\frac{t}{r}\right)}=\frac{1}{2(n-1)} \cdot \frac{1}{4 n(n-1)} \\
\lim _{t \rightarrow r} \frac{\widetilde{g}(r, t)}{t^{2-2 n}\left(1-t^{2}\right)^{n}} & =\frac{1}{n\left(n-1+r^{2}\right)}, \quad \lim _{t \rightarrow 0} \frac{\widetilde{g}(r, t)}{t^{2-2 n}\left(1-t^{2}\right)^{n}}=\frac{1}{4 n(n-1)} .
\end{aligned}
$$

Lemma 2.2 (See [1]). Let $f \in C^{2}(B)$ and $a=r \zeta, 0 \leq r<1, \zeta \in S$. Then we have the following.
(a) $\Delta=\Delta_{t a n}+\Delta_{\text {rad }} ; \quad \widetilde{\Delta}=\left(1-r^{2}\right) \Delta_{t a n}+\left(1-r^{2}\right)^{2} \Delta_{\text {rad }}$
(b) If f is radial, then $\Delta_{r a d} f=\frac{\partial f^{2}}{\partial^{2} r}+\frac{1}{r} \frac{\partial f}{\partial r}$ and $\Delta_{\text {tan }} f=\frac{2(n-1)}{r} \frac{\partial f}{\partial r}$.
(c) $\Delta, \Delta_{\text {rad }}, \Delta_{\text {tan }}, \widetilde{\Delta}$ all commutes with the action of the unitary group.

Lemma 2.3. If $f \in C^{2}(B)$ and $0<r<1$, then the following $(a) \sim(f)$ are equal.
(a) $2 n r^{2 n-1} \frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)$
(b) $\int_{r B} \Delta f(z) d \nu(z)$
(c) $\left(1-r^{2}\right)^{n-1} \int_{r B} \widetilde{\Delta} f(z) d \tau(z)$
(d) $\frac{1}{2 r} \frac{d}{d r} \int_{r B}\left(r^{2}-|z|^{2}\right) \Delta f(z) d \nu(z)$
(e) $\frac{1}{2(n+1) r\left(1-r^{2}\right)} \frac{d}{d r} \int_{r B}\left\{\left(1-|z|^{2}\right)^{n+1}-\left(1-r^{2}\right)^{n+1}\right\} \widetilde{\Delta} f(z) d \tau(z)$
(f) $\quad \frac{2}{r} \frac{d}{d r} \int_{r B} R f(z) d \nu(z)$.

If $n \geq 2$, then each one of $(a) \sim(f)$ equals
(g) $\frac{1}{2(n-1) r} \frac{d}{d r} \int_{r B}|z|^{2} \Delta_{\tan } f(z) d \nu(z)$.

Proof. If we denote $f^{\#}$ the radialization of f :

$$
f^{\#}(z)=\int_{\mathcal{U}} f(U z) d U
$$

where \mathcal{U} denote the group of unitary operators of \mathbb{C}^{n}, then by Lemma 2.2 (c)

$$
\Delta_{\tan }\left(f^{\#}\right)=\left(\Delta_{\tan } f\right)^{\#}, \Delta\left(f^{\#}\right)=(\Delta f)^{\#} \text { and } \widetilde{\Delta}\left(f^{\#}\right)=(\widetilde{\Delta} f)^{\#}
$$

So it is sufficient to verify required equalities with $f^{\#}$ instead of f. Denote $f^{\#}=u$ and $u(z)=\phi(\rho), \rho=|z|$ for simplicity.

Consider two representations of $r^{2 n-1} \phi^{\prime}(r)$:

$$
\begin{equation*}
r^{2 n-1} \phi^{\prime}(r)=\int_{0}^{r} \frac{d}{d \rho}\left\{\rho^{2 n-1} \phi^{\prime}(\rho)\right\} d \rho \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{2 n-1} \phi^{\prime}(r)=\left(1-r^{2}\right)^{n-1} \int_{0}^{r} \frac{d}{d \rho}\left\{\frac{1}{\left(1-\rho^{2}\right)^{n-1}} \rho^{2 n-1} \phi^{\prime}(\rho)\right\} d \rho . \tag{2.2}
\end{equation*}
$$

Simply from $R u=\frac{\rho}{2} \phi^{\prime}$, we have

$$
2 n \rho^{2 n-1} \phi^{\prime}=4 n \rho^{2 n-2} R u=\frac{2}{\rho} \frac{d}{d \rho} \int_{0}^{\rho} 2 n r^{2 n-1} R u d r
$$

so that $(a)=(f)$ follows.
By Lemma 2.2

$$
\Delta u(z)=\phi^{\prime \prime}(\rho)+\frac{2 n-1}{\rho} \phi^{\prime}(\rho)
$$

$$
\Delta_{r a d} u(z)=\phi^{\prime \prime}(\rho)+\frac{1}{\rho} \phi^{\prime}(\rho),
$$

and

$$
\widetilde{\Delta} u(z)=\left(1-\rho^{2}\right)^{2} \Delta u(z)+2(n-1) \rho\left(1-\rho^{2}\right) \phi^{\prime}(\rho) .
$$

Thus, from (2.1) we obtain

$$
\begin{aligned}
r^{2 n-1} \phi^{\prime}(r) & =\int_{0}^{r} \rho^{2 n-1}\left\{\phi^{\prime \prime}(\rho)+\frac{2 n-1}{\rho} \phi^{\prime}(\rho)\right\} d \rho \\
& =\int_{0}^{r} \rho^{2 n-1} \Delta u(z) d \rho
\end{aligned}
$$

which implies that $(a)=(b)$.
Also, from (2.2) we obtain

$$
\begin{aligned}
& r^{2 n-1} \phi^{\prime}(r) \\
= & \left(1-r^{2}\right)^{n-1} \int_{0}^{r} \frac{1}{\left(1-\rho^{2}\right)^{n}}\left\{\left(1-\rho^{2}\right) \frac{d}{d \rho}\left(\rho^{2 n-1} \phi^{\prime}(\rho)\right)+2(n-1) \rho^{2 n} \phi^{\prime}(\rho)\right\} d \rho \\
= & \left(1-r^{2}\right)^{n-1} \int_{0}^{r} \frac{\rho^{2 n-1}}{\left(1-\rho^{2}\right)^{n+1}} \widetilde{\Delta} \phi(\rho) d \rho
\end{aligned}
$$

which implies that $(a)=(c)$.
Integration by parts gives that

$$
\begin{aligned}
& 2 r \int_{0}^{r} \rho^{2 n-1} \Delta \phi(\rho) d \rho \\
= & \frac{d}{d r}\left(r^{2} \int_{0}^{r} \rho^{2 n-1} \Delta \phi(\rho) d \rho\right)-r^{2 n+1} \Delta \phi(r) \\
= & \frac{d}{d r}\left(\int_{0}^{r} \rho^{2 n-1} r^{2} \Delta \phi(\rho) d \rho\right)-\frac{d}{d r} \int_{0}^{r} \rho^{2 n+1} \Delta \phi(\rho) d \rho \\
= & \frac{d}{d r}\left(\int_{0}^{r} \rho^{2 n-1}\left(r^{2}-\rho^{2}\right) \Delta \phi(\rho) d \rho\right),
\end{aligned}
$$

which implies that $(b)=(d)$.
By a similar way,

$$
\begin{aligned}
& 2(n+1) r\left(1-r^{2}\right)^{n} \int_{0}^{r} \frac{\rho^{2 n-1}}{\left(1-\rho^{2}\right)^{n+1}} \widetilde{\Delta} \phi(\rho) d \rho \\
= & -\frac{d}{d r}\left\{\left(1-r^{2}\right)^{n+1} \int_{0}^{r} \frac{\rho^{2 n-1}}{\left(1-\rho^{2}\right)^{n+1}} \widetilde{\Delta} \phi(\rho) d \rho\right\}+r^{2 n-1} \widetilde{\Delta} \phi(r) \\
= & -\frac{d}{d r}\left\{\left(1-r^{2}\right)^{n+1} \int_{0}^{r} \frac{\rho^{2 n-1}}{\left(1-\rho^{2}\right)^{n+1}} \widetilde{\Delta} \phi(\rho) d \rho\right\}+\frac{d}{d r}\left\{\int_{0}^{r} \rho^{2 n-1} \widetilde{\Delta} \phi(\rho) d \rho\right\} \\
= & \frac{d}{d r} \int_{0}^{r}\left\{1-\left(\frac{1-r^{2}}{1-\rho^{2}}\right)^{n+1}\right\} \rho^{2 n-1} \widetilde{\Delta} \phi(\rho) d \rho,
\end{aligned}
$$

which implies that $(c)=(e)$.

Suppose $n \geq 2$. From $\Delta_{\text {tan }} u(z)=\frac{2(n-1)}{\rho} \phi^{\prime}(\rho)$ and $(a)=(d)$,

$$
\frac{2 n}{n-1} \rho^{2 n+1} \Delta_{\tan } u(z)=4 n \rho^{2 n} \phi^{\prime}(\rho)=\frac{d}{d \rho} \int_{\rho B}\left(\rho^{2}-|z|^{2}\right) \Delta f(z) d \nu(z) .
$$

Taking $\int_{0}^{r} d \rho$ gives $(d)=(g)$.

3. Proof of Main Results

Proof of Theorem 1.1. That $(a)=(b)$ follows from integrating the identity

$$
\frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)=\frac{1}{2 n r^{2 n-1}} \int_{r B} \Delta f(z) d \nu(z)
$$

(which is $(a)=(b)$ of Lemma 2.3) with respect to $d r$ and using

$$
\begin{aligned}
& \frac{1}{2 n} \int_{0}^{r} \frac{1}{\rho^{2 n-1}} d \rho \int_{\rho B} \Delta f(z) d \nu(z) \\
= & \frac{1}{2 n} \int_{r B} \Delta f(z)\left(\int_{0}^{r} \frac{1}{\rho^{2 n-1}} \chi_{|z|<\rho} d \rho\right) d \nu(z) \\
= & \frac{1}{2 n} \int_{r B} g(r, z) \Delta f(z) d \nu(z) .
\end{aligned}
$$

$(a)=(c)$ follows from integrating the identity

$$
\frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)=\frac{\left(1-r^{2}\right)^{n-1}}{2 n r^{2 n-1}} \int_{r B} \widetilde{\Delta} f(z) d \tau(z)
$$

(which is $(a)=(c)$ of Lemma 2.3) with respect to $d r$ and using

$$
\begin{aligned}
& \frac{1}{2 n} \int_{0}^{r} \frac{\left(1-\rho^{2}\right)^{n-1}}{\rho^{2 n-1}} d \rho \int_{\rho B} \widetilde{\Delta} f(z) d \tau(z) \\
= & \frac{1}{2 n} \int_{r B} \widetilde{\Delta} f(z)\left(\int_{0}^{r} \frac{\left(1-\rho^{2}\right)^{n-1}}{\rho^{2 n-1}} \chi_{|z|<\rho} d \rho\right) d \tau(z) \\
= & \int_{r B} \widetilde{g}(r, z) \widetilde{\Delta} f(z) d \tau(z) .
\end{aligned}
$$

$(a)=(d)$ follows from integrating the identity

$$
r^{2 n} \frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)=\frac{1}{4 n} \frac{d}{d r} \int_{r B}\left(r^{2}-|z|^{2}\right) \Delta f(z) d \nu(z)
$$

(which is $(a)=(d)$ of Lemma 2.3) with respect to $d r$ and using

$$
\begin{align*}
& \int_{0}^{r} \rho^{2 n}\left(\frac{d}{d \rho} \int_{S} f(\rho \zeta) d \sigma(\zeta)\right) d \rho \\
= & r^{2 n} \int_{S} f(r \zeta) d \sigma(\zeta)-2 n \int_{0}^{r} \rho^{2 n-1} d \rho \int_{S} f(\rho \zeta) d \sigma(\zeta) \tag{3.1}\\
= & r^{2 n} \int_{S} f(r \zeta) d \sigma(\zeta)-\int_{r B} f(z) d \nu(z) .
\end{align*}
$$

Also, $(a)=(e)$ follows from integrating the identity

$$
\begin{aligned}
r^{2 n}\left(1-r^{2}\right) & \frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta) \\
& =\frac{1}{4 n(n+1)} \frac{d}{d r} \int_{r B}\left\{\left(1-|z|^{2}\right)^{n+1}-\left(1-r^{2}\right)^{n+1}\right\} \widetilde{\Delta} f(z) d \tau(z)
\end{aligned}
$$

(which is $(a)=(e)$ of Lemma 2.3) with respect to $d r$ and using

$$
\begin{aligned}
& \int_{0}^{r} \rho^{2 n}\left(1-\rho^{2}\right)\left(\frac{d}{d \rho} \int_{S} f(\rho \zeta) d \sigma(\zeta)\right) d \rho \\
= & r^{2 n}\left(1-r^{2}\right) \int_{S} f(r \zeta) d \sigma(\zeta)-2 n \int_{0}^{r} \rho^{2 n-1}\left(1-\frac{n+1}{n} \rho^{2}\right) d \rho \int_{S} f(\rho \zeta) d \sigma(\zeta) \\
= & r^{2 n}\left(1-r^{2}\right) \int_{S} f(r \zeta) d \sigma(\zeta)-\int_{r B}\left(1-\frac{n+1}{n}|z|^{2}\right) f(z) d \nu(z) .
\end{aligned}
$$

$(a)=(f)$ follows from integrating the identity

$$
r^{2 n} \frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)=\frac{1}{n} \frac{d}{d r} \int_{r B} R f(z) d \nu(z)
$$

(which is $(a)=(f)$ of Lemma 2.3) with respect to $d r$ and using (3.1).
If $n \geq 2$, then $(a)=(g)$ follows from integrating the identity

$$
r^{2 n} \frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)=\frac{1}{4 n(n-1)} \frac{d}{d r} \int_{r B}|z|^{2} \Delta_{\tan } f(z) d \nu(z)
$$

(which is $(a)=(g)$ of Lemma 2.3) with respect to $d r$ and using

$$
\int_{0}^{r} \rho^{2 n}\left(\frac{d}{d \rho} \int_{S} f(\rho \zeta) d \sigma(\zeta)\right) d \rho=r^{2 n} \int_{S} f(r \zeta) d \sigma(\zeta)-\int_{r B} f(z) d \nu(z)
$$

Proof of Corollary 1.2. That $\Delta_{\text {rad }}|f|^{2} \geq 0$ and $\Delta_{\text {tan }}|f|^{2} \geq 0$ imply $\Delta|f|^{2} \geq 0$ and $\widetilde{\Delta}|f|^{2} \geq 0$. These subharmonicity imply

$$
\sup _{0 \leq r<1} \int_{S}|f(r \zeta)|^{2} d \sigma(\zeta)=\lim _{r \rightarrow 1} \int_{S}|f(r \zeta)|^{2} d \sigma(\zeta)
$$

Whence by Lemma 2.1 and Theorem 1.1 the result follows.

References

[1] E. G. Kwon, Decomposition of the Laplacian and pluriharmonic Bloch functions, Filomat 31:1 (2017), 97-102. DOI 10.2298/FIL1701097K
[2] E. G. Kwon and J. H. Park, On M-subharmonicity in the ball, Commun. Korean Math. Soc. 28 (2013), No. 3, pp. 511-516. http://dx.doi.org/10.4134/CKMS.2013.28.3.511
[3] W. Rudin, Function Theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, New York,1980.
[4] M. Stoll, Invariant potential theory in the unit ball of \mathbb{C}^{n}, New York, 1994.

Ern Gun Kwon
Department of Mathematics Education,
Andong National University
36729, Republic of Korea
E-mail address: egkwon@anu.ac.kr
Jong Hee Park
Department of Mathematics, Graduate School,
Andong National University
36729, Republic of Korea
E-mail address: jh0021@hanmail.net

[^0]: Received May 10, 2018; Accepted July 9, 2018.
 2010 Mathematics Subject Classification. 35J05; 31C05; 31C10.
 Key words and phrases. decomposition of Laplacian, invariant Laplacian, subharmonic function, Hardy class.

 The first author was supported by a Research Grant of Andong National University.

