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SVD Pseudo-inverse and Application to Image

Reconstruction from Projections
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Abstract

A singular value decomposition (SVD) pseudo-inversion method has been applied to the image

reconstruction from projections. This approach is relatively unknown and differs from conventionally

used reconstruction methods such as the Forier convolution and iterative techniques. In this paper,

two SVD pseudo-inversion methods have been discussed for the search of optimum reconstruction and

restoration, one using truncated inverse filtering, the other scalar Wiener filtering. These methods

partly overcome the ill-conditioned nature of restoration problems by trading off between noise and

signal quality. To test the SVD pseudo-inversion method, simulations were performed from projection

data obtained from a phantom using truncated inverse filtering. The results are presented together

with some limitations particular to the applications of the method to the general class of 3-D image

reconstruction and restoration.

I. Introduction

Recently the SVD method has gained popularity
in a wide range of signal processing areas. It has
become a conventional and well-known method in
image restoration problems‘[1'3]

In this paper a SVD pseudo-inversion method is
applied to image reconstruction from projections
which is believed to be relatively new 461 The
termination criteria and scalar Wiener filter function

which minimize the residual mean square error under
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the given structural constraints are derived, and SVD
method developed was then applied to the image
reconstruction problems in computerized tomographic
system through computer simulation under a coarse

modeling of projection operation.

1. Image model and Restoration problems

For the stochastic consideration of restoration
problems, image is usually modelled as a combination
of mean signal and zero mean stationary random
signal. In this paper, zero mean signal is denoted by
symbol f and it is considered as an original image to

be restored.
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Using a discretized model, one can represent a
linear degradation superimposed by additive noise

as,
g=[W]f+n, ¥

where f and g are column stacked vectors of original
and the deg;aded images, respectively. [W] is a
system matrix which describes the degradation para-
meters of a system. And n is a column vector of addi-
tive noise which comes from sensors. Here f is an
N-dimensional vector, g and n are M-dimensional.

With a given observation g, the goal is to design
a restoration system which produces a minimum
length least square (MLLS) solution of the restora-
tion problem. The first intuitively attractive approach
is to use a Penrose-Moore pseudo-inverse [W] ¥ Then

restored image f may be written as
f=(wre . 2)

Eq. (2) gives an MLLS solution of the restoration
problem when the noise term is zero.

But in the presence of noise, fhecomes
B= W] wiE + (Wi, 3)

where [W]" n may be considered as a perturbation
to an MLLS solution. Unfortunately in most restora-
tion problems, there exists an ill-conditioned or a
singular nature. The perturbation term of restored
image due to noise results in an obscured and corrupt-
ed image. To overcome this perturbation problem,
a SVD method in conjunction with the pseudo-
inversion will be considered to adopt a stochastic
pseudo-inverse [W]s+ and a truncated pseudo-inverse
W),

IH. SVD of System Matrix [W] and Restoration
Filter

Any M by N matrix {[W] can be decomposed as[GJ,

(W] = (U] [Sg] [VI', @)
where [U] and [V] are M by M and N by N unitary
matrices, [Sg] is an M by N matrix with only ordered
nonzero G-diagonal elements, [)\li/’, i=1,2,...G],
which represent the singular values of the system [W],
respectively. And G is a rank of [W]. Here the

superscript t is used to denote a matrix transpose.

1. Truncated SVD pseudo-inverse filter

Using matrix outer product expansion, Eq. (4)
becomes
G 1
(W)= S\ uivi, 5)
i1
where u; and v; are the i-th column vectors of [U}
and [V], respectively, and ?\li/z is the i-th singular
value of [W]. Furthermore the pseudo-inverse of
[W] is given by
o Sl
(W} = ZAF b ©)
=1
As previously mentioned in section II, use of
Eq. (6) in image restoration still possess a noise
amplification because of the ill-conditioned nature
of the restoration problem. The ill-conditioning
originates from relatively smaller singular values to
the other ones. So [Sg] is modified by setting the
smaller singular values to zeros, that is to choose
the number of terms in Eq. (6) less than G. Determi-
nation of optimum termination index £ is subject
to further discussions. Following the above approach

one can have a truncated pseudo-inverse [W]t+ as,
2
+ -V t
Wl =,El>\izli2i . M
=

Using Eq. (7) a restored imagef can be written as,

- +
f=[Wlg
¢ G
:27\‘;/2113.[E)\l./zg.l.t_ﬁ_;_,]
=1 Visgd 979
L ¢ L
=3 E)\tllzl/_. (Ety_) (_!t _f;)+ b)) )\-.l/z_\_l.EitE)
e e fufil Gt
= \s‘z[f v.+ X" n. v, |
=i 1 M ®

where fj = f'v i, ni=n"uj, and & denotes termina-
tion index previously mentioned. Then residual
error vector r, which is a difference between original
and reconstruction, becomes

r=f-f=oxA ni_"i"g_ii v ®

i=1 Y ke B

From Eq(9) it can be seen that by introducing
modified SVD, noise effects can be reduced with some
loss of signals which are the components of v, where

U is a span OfXQq’ Yoezo oo w VG If £ is increased,



SVD Pseudo-inverse and Application to Image Reconstruction from Projections

the first summation in Eq.(3) will be closer to the
original object, but the noise effects become so large
that proper restoration will be prohibited. Therefore
one has to make a reasonable compromise between
these two effects, namely noise and resolution.

Proper selection of termination index % can be

made using the following procedure. From Egq.(9)
the norm square of the residual vector is
2 1 2
llell? —27\ n,+2f (10)
=01
And n and f can be&decomposed as,
M M N
n=2dij¢j ,f= Zagi. (a1
i=1 i=1

where pM S and 'S are eigenvectors of correlation
matrices of n and f, respectively, and d and a; are
the correspondmg coefficients. Then cross-correla—

tions between those coefficients can be written as,
E (djdg) = B Sik , (12-2)
E (3jak) = %0k (12-b)

where 5jk is a Kronecker delta product. Using these

relations, Eq.(10) can be rewritten as,

, LM N N 2
P =220 (o g2+ 1 Zb592  (13)
=1 =1 =L+ =1
where  cjj =g}_¢_>]M and bj; = X} ‘2}“ (13-b)

Taking expectations of Eq.(13-a) gives

E(lIzI? = 2 x,l 3 E (d]dm) cijoim

1 m
lN N * *
+I=Zé+ I}EmESajam) bijbim
g M
=2 N Eﬂllcul +Z 2’71 [bij|> (14)
=1 =1 i=f+1

Now a reasonable termination index £ may be
determined through iterative computer procedure to
minimize E[ll;rllz] under the given signal and noise
correlations. A simple formula which unambiguously
determines the termination index ¥ may be derived
by assuming that n and f are white so that ﬂj = Sn
S¢ for all j.

With the above assumption, Eq.(14) becomes

and‘yj =

2
EClli*] = M Sq T

+N(N-9 S¢ , (15)
and it has a minimum where
g=Max ;x> M5a] | (16)
k [ k/N S ]

and the A/s are ordered in a decreasing manner. Eq.
(16) comes from the concave nature of the function
E[llr(k)llz] and the following two conditions.

E(ll®lI%) - Efllr®@- DI

= MSpX — NS¢ <0 (17-2)
E(le®I*) - E[l@ DI
=-MSp Agh; +NS<o 17b)

2. Stochastic pseudo-inverse filter

For the derivation of a stochastic pseudo-inverse,
the restoration filter equation Eq.(6) may be replaced
by

[W]s E kl 1“1 18

Using the restoration filter of Eq.(18). E{|ltll’]

can be written as,
G 1 N
EflzI?] = 2 (kA H? 3 logl?
1 j=1

2 i 2
+k{ = Bilcijl*] a9)
=1
As in the case of truncated filter approach, opti-

mum gain sequence [kj] can be obtained as,

¥, N
A {3 7ilbil?
1 (20)

) ’! 2 M 2
Ai Z vibg)? + Z Bjlojl
=1 =1

Kj

where gj and 7j are the same as the previously defined
expectations. Also, when f and n are assumed to

be white, the sequence [ki] is given as,

)\}/z
Kij=— !

— (21)
Aj+(MSp /NSp

Above Eq.(20) and Eq.(21) are in similar forms
with the equations given in REF.(7).
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IV. Computer Simulation Results

A computer simulation is performed based on (he
conventional transaxial computerized tomographic
reconstruction as shown in Fig. 1. As an alternative
to Fourier convolution or iterative technique, by
making use of the linear relationship between the
original image vector and observed projected data

vector, one can make a pseudo-inversion 3-D image

reconstruction and restoration.[al
light
source
N,
\ f! +16 (j~1)
\ . e . e
. 7
i }
\ detector
“ ot
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Fig. 1. The linear model of projection operation in
computerized tomography.

A simulated phantom consists of characters C-T,
sampled with 16x16 point as shown in Fig. 2-(a)
in a matrix form through over-printing. Each point
inside the characters was given a value 1, each point
This original object blurred by

projection operation is shown in Fig. 2-(b).

outside a value 0.
Here
projection was performed for 16 beams per each 16
angle, and then a zero mean Gaussian random noise
was added to it. A standard deviation of the noise
was 0.004.

The restoration was achieved using Eq. (8). Vary-
ing termination index &, we obtained £=1, 2,. . ., 256
restored images.
3.

printer by over-printing in 32-grey levels. Fig. 3 shows

Some of them are shown in Fig.
These images were also obtained through a line
the effects of noise. For example Fig, 3-(d) is an
image which is corrupted by noise amplification.
A termination index derived in Eq. (16) gives a good
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(b) Image blurred by projection

Fig. 2.

restored image. At € = 235 where 7\1/522 = 0.01, a good
restoration is obtained which is in good agreement
with the theory presented. (see Fig. 3-(c))

V. Conclusion and Disscussion

It was shown that the SVD approach of designing
a restoration system is well suited for the noisy
linear degradation by introducing some modification.
And truncated pseudo-inverse and stochastic pseudo-
inverse filters were designed to minimize the residual
error, under the assumption that original image is
wide sense staionary. And with further assumption
that the image and noise are white, simple formulas
were derived in Eq.(16) and Eq.(21). By terminating
at an index derived, a good restored image may be

obtained. nix
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(a) Restored image ¢ =40 (¢) Restored image U= 235

(b)

Restored image ¢ = 125

Although the computation of SVD appears com-

plex and requires much more computation time than

restoration tcchmquul ! it should be

mentioned that SVD provides an important insight

since a direct matrix

(the first intuitively tempting

method one can think of), is too sensitive to noise

to provide a good restoration.

FFurthermore, with accurate modeling, one might

have an avenue which leads to better reconstructed

image in some applications, such as noisy or possibly

image, etc., by use of SVD

pseudo-inversion methods.

Appendix

Computer Simulation Programs

24 -

-
(d) Restored image = 247
Computer simulation was performed in the follow-
ing procedure with subroutines GWT, GAUS, DISPL,
SVA, etc..

presents a linear relation-ship between original image

First. weighting matrix [W| which re-
and projection data was computed in subroutine GWT.
Its singular value decomposition was carried out by
using the subroutines written in the book REF. (6),
in which the SVD was performed through successive
elementary orthogonal transformations such as House-
holder

quadratic convergence of successive bidiagonal matri-

and Givens transformations, by adopting

ces. Finally each restored image corresponding to
termination index % was obtained and printed in
16 x 16 matrix form. Here noisy projection data
were obtained by weighting matrix [W]| and additive

Gaussian noise genevated in subroutine GAUS.
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- A C ... SUBROUTINE_GWT (MIM.NIM,KBEAM,MANGL,MSIZER)
2 C
3 [ THIS SUBROUTINE COMPUTES THE WELLGHTING MATRIX -
4 C COEFFICIENTS.
_S [ . S R
6 c MIM,NIM ; SIZE OF ORIGINAL IMAGE ARRAY
? C_____KBEAM ; NUMBER OF_BEAMS PER EAGH PROJECTIONS _7
8 c MANGL ' TANCLE DIFFERENCE BETWEEN THE STVE
? C PROJECTIONS _
10 c MSIZER | MANGLXKBEAM
11 c
12 SUBROUTINE GWT (MIM,NLM KBEAM, nANbL HS1ZED) oo
13 TMPLICIT DOUBLE PRECISION (A-9, e
14 COMMON /BLUE, PWT(3%k,256)
15 INTECER MTST(R0)
16
17 FOLLK, ML M2, T) 2 (1 4 =M1~ (K-H1) /DCOS (7)) KDTANCL . $7079632945-T)
18 H24L .
19 GUS K, ML, M2, 1) =-FLOAT (J~H2~1 ) ¥DTANCT ) +FLOAT (K=H1) /DCOSCT)
20 1 +MLAY
2 NP4 =NTIM+L
22 NPi=MIM+L
23 MU=NIN/2
24 HR=MIN/2
25 KGO=KHEAM/ 2 M1 . - e
26 PI=3,1415926583
27 HPE=1.57079632915 o
20 c
29 DO 10 L=i,MANGL _
30 THETA=HP TRFLOAT (L-1) /FLOAT (HANGL)
3 _ DO 20 K=1,KBEAM__ e
32 KK=K-KSD-1
33 LI=KBEAME(L ~1)+K
34 DO 30 [=1,NPY
35 DD 40 KLM=1,20
35 Ab MTST(KLM) =0
37, DO 50 J=1,MP1
36" LI=MIMKCI-1)+ (NIM-T+1) - . -
39 LT1=MIMRCT-2)+INIM-T+2)
40 IF (L.ERL1) 60 TO 200
41 [
a2 FU=F{T,KK+1, Ki, M2, THETA)
43 FL=F (1,KK, ML, 42, THETA)
a4 BL=GCT KK, Me, M2, TRETA) - T
as GR=GC(T,KK+1, K1, M2, THETA)
Ab GRE=C(J+1,KK+1, M5, M2, THETA)
47 GL1=G(T-1 KK, Mi M2, THETA)
48 FUL=F(I+41,KK+1,Hi, M2, THETA) - S
49 FLA=F (-1, KK, M1, M2, THETA)
- c T
B4 c
52 IF (1.ER.1.0R.J.FR.1) Ni={
53 1F PL.OR.J.EQ HPL) N2=t
54 IF (3.0 LAND, T LE.FU) MTSTC(I)=t -
55 IF(MISTO . NE. ) GO TO 160
TR "c N e
57 TF (343.GE.FU.AND, I+1 CE.GR) GO TU 60
56 IF (J+1.CE,FU.AND, /431 .LE.GR) GG 10 70 s
55 TF (J+8 LEFU, 141 ‘cm G0 YO 80
X IF (J+4 LE.FU.AND.T+1 . -
b1 60 TF (N2.NE.1) FWlclL,L]
bz N GBUTTOTIOD D T T T mts
63 V0 1F (NZ.NE.S) PWELLL, L)) =iFU+FUL-2,%0)
64 &0 TO 100 -
3 B0 IF INZ.NE.1) PWT (LT, LI)~(CR+GRE-2, 1) /2.
66 nu TO 10 - -
.67 90 (N2.NE. 1Y PWTCLI,LT)=1, ~(T+1~GREI®(I+1-FUL)I /B,
&8 100 LuNrINur o T e
L9 c
) IF (I-1.LE.GL.AND.J-1,LE.FL) GO T0 110 s
71 IF (X- % LE. GL AND.J-1.GE.FL) GO 7O 120
-7 IF LE.FL) GO TO 130 - o
3 1f L £.FL) G TU {40
e gAT TELEEIF (NLLRES ) PUT(LI LIE3 T -BL TR I ~FL £, oo oo wme o e omne
75 GO TO 150
78 120 TP (R1,NE.§) PUTCLI,LIL)=(2. %1 GL-GL1) /2, -
77 60 TO 150
78 130 IF (M1, NE. 1) PWTELT L T1)=(3 xJ-FL-FLE) /2, -
79 0 TD 150
— 8t 140 IF (RENE 4> PTG IHRT=E = (BLI—T+)RCFLE-FHI/2, - - oo om o
81 150 CONTINUE
82 €
83 Ie it bE FL,AND.I-1,LE.GL) GO 70 158
-84 &0 TO
85 155 LszN[nt(l ~2) 4 (NIM-J+1)
B = e —fAm I+ ~FU) FARADTANCTHETA) /2, - .
87 52=(GL+1-1)XX2¥DTAN(HP I-THETA) /2.
-88 ALR=1-81-62 - e
8% TF CI.NE. 1. AND.J.NE,NP1) PWTCLI,LTZ>=AIR
) 60-TO 160
91 4
e BB s e AT G KK ED  AND- E NE NP L) B TBRRB- o e e e
73 GD TD 16
94 220 KF (3, NENPL) PWT(LE LEd=toom - e
95 160 Ni=0
96 0
97 50 CONTINUE
— 830 CONTINUE S
99 20 CONTINUE
- 10 CONTINUE
101 c
102 —.—.....DO. 230.LI=4,MSIZER - _
103 DA 230 I=1,NIN
04 DO.230 .54, KIN
105 KI=NIM+1-3
- 106 KI=L -
107 LIL=MIMKCI-1) + (NIM4-T)
108 LJRrMIME(KE-AD (NIMPI-KT) e
109 PWT(LI+HBIZER, LI2)=PuT (LT, 1010
[RPNIE S ¥/ U 230 _CONTINUE
114 c
142  RETURN . . - -
113 END

We have listed subroutine GWT which computes
the matrix coefficients effectively. Other subroutines
DISPL used for grey scale over-printing and GAUS are
popular. And the subroutines which perform singular
value decomposition, SVA, SVDRS, QRBD, HI12,
G1, G2, DIFF can be found in the book REF. (6).
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