• Title/Summary/Keyword: circular section

Search Result 634, Processing Time 0.02 seconds

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

Micromachined Mercury Drop Tilt Sensor (MEMS 기술을 이용한 수은방울경사각센서 개발)

  • Oh, Jong-Hyun;Oh, Dong-Young;Lee, Seung S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.120-125
    • /
    • 2000
  • This paper proposes a tilt sensor made by MEMS technology. The sensor consists of an electrode glass a small mercury drop a circular channel and a cover glass. The mercury drop is used as medium of a current flow and in contact with two circular chromel electrodes used as an angular-motion resistance When this sensor inclines the mercury drop inside the circular channel moves into the bottom under the influence of gravity. A tilt angle can be measured by changed resistance as tilting this sensor, This sensor has a linear section between +50.$^{\circ}$ and -50.$^{\circ}$ with the accuracy of 2.$^{\circ}$. We are also studying about the enlargement of the linear section and the effect of the size of the mercury drop.

  • PDF

Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.231-242
    • /
    • 2022
  • Numerical solutions for the linear buckling behavior of thin-walled circular hollow section members (CHS) with and without longitudinal stiffeners are presented using the semi-analytical finite strip method (SAFSM) which is developed based on Marguerre's shallow shell theory and Kirchhoff's assumption. The formulation of 3-nodal line finite strip is presented. The CHS members subjected to uniform axial compression, uniform bending, and combination of compression and bending. The buckling behavior of CHS is investigated through buckling curves which relate buckling stresses to lengths of the member. Effects of longitudinal stiffeners are studied with the change of its dimensions, position, and number.

Simplified analytical Moment-Curvature relationship for hollow circular RC cross-sections

  • Gentile, Roberto;Raffaele, Domenico
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.419-429
    • /
    • 2018
  • The seismic vulnerability analysis of multi-span bridges can be based on the response of the piers, provided that deck, bearings and foundations remain elastic. The lateral response of an RC bridge pier can be affected by different mechanisms (i.e., flexure, shear, lap-splice or buckling of the longitudinal reinforcement bars, second order effects). In the literature, simplified formulations are available for mechanisms different from the flexure. On the other hand, the flexural response is usually calculated with a numerically-based Moment-Curvature diagram of the base section and equivalent plastic hinge length. The goal of this paper is to propose a simplified analytical solution to obtain the Moment-Curvature relationship for hollow circular RC sections. This based on calibrated polynomials, fitted against a database comprising 720 numerical Moment-Curvature analyses. The section capacity curve is defined through the position of 6 characteristic points and they are based on four input parameters: void ratio of the hollow section, axial force ratio, longitudinal reinforcement ratio, transversal reinforcement ratio. A case study RC bridge pier is assessed with the proposed solution and the results are compared to a refined numerical FEM analysis, showing good match.

Bending Characteristic Evaluations Circular Cross-section Carbon Composite and Hybrid Structural Material (원통단면 탄소복합재와 혼성 구조부재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Jeong, Jong-An;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2012
  • Carbon Fiber reinforced composite material can be designed for the optimized performances of structural member that have achieve appropriate mechanical properties with cross-sectional shape, fiber direction, stacking sequence and thickness. So there are needed extensive databases each optimal design of CFRP structural member by impact through the preparation of different shape, interface number, thickness and stacking angle. When pressure is applied to structural member, compression, bending and torsion is shown on the corresponding member. For the effective utilization of fiber reinforced composite material as main structural member, optimized design technology should be established to maximize mechanical properties for compression, bending and torsion. In this paper, CFRP prepreg sheet with different stacking angle is manufactured in CFRP and hybrid(Al+CFRP) with circular cross-section. Strength and stiffness is gotten respectively by flexure test. CFRP structure and hybrid structure can be compared with each other. The best design guideline can be analyzed by use of this study result.

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Circular Cross-Section with Constant Volume (일정체적 원형 변단면 보-기둥의 자유진동 및 좌굴하중)

  • 이병구
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.135-143
    • /
    • 1996
  • The differential equations governing both the free vibrations and buckling loads of tapered beam-columns of circular cross-section with constant volume are derived and solved numerically. The effects of axial load are included in the differential equations. The parabolic equation is chosen as the variable radius of circular cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, clamped-hinged and hinged-hinged end constraints are considered. The variations of the frequency parameters and buckling load parameters with the non-dimensional system parameters are presented in figures and the configurations of strongest columns are obtained.

  • PDF

DEVELOPMENT OF CONCRETE FILLED TUBE AS A PILLAR PILE FOR TOP DOWN METHOD

  • Jee-Yun Song;Hong-Chul Rhim;Seung-Weon Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.808-813
    • /
    • 2009
  • Top-down method is widely used for urban area construction for its advantages in reducing environmental problems such as dust and noise, and saving construction cost depending on given conditions of a construction site. Because the excavation and construction of super- and sub-structures of the building have to be proceeded simultaneously, a column has to be embedded prior to excavation. This column is called a pillar column or pre-founded column. Usually a wide flange section is used for these columns. To place the columns, usually the diameter of casing holes needs to be larger than the section of the wide flange itself in order to accommodate a couple of tremie pipes for pouring concrete. In this paper, a newly developed method of using circular pipe as an alternative to the existing wide flange section is discussed. The crucial part of the new method is to develop a connection between the circular column and concrete flat slabs. For shear force transfer from concrete slab to the concrete filled tube (CFT) column, shear jackets with studs and shear bands are proposed. The studs are welded on the jackets at shop and placed around the circular column on site. The shear bands are welded on the outer side of the CFT at shop and inserted into ground with the CFT. Test results and application of the method to a construction site are also provided in this paper.

  • PDF

Magnetic Field Calculation of Toroidal Winding with Circular Section (단면이 원형인 토로이드 권선의 자속밀도 계산)

  • Lee, Sang-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.28-31
    • /
    • 2010
  • A magnetic field calculation method for toroidal type winding which has circular section was developed. At first, the equation for magnetic field by single filament coil was extended using numerical integration to estimate the entire interesting region of solenoid, especially winding region itself. And then, the magnetic field by toroidal arrangement of solenoids was computed with a coordinate transformation of vector fields. The superconducting magnet with toroidal arrangement can be made up of several tens of solenoid type double pancake windings for some applications such as superconducting magnetic energy storage system(SMES). In this system, the field calculation on the high-Tc superconducting(HTS) tape itself is very important because the entire system can be reached to a fault by magnetic stress of conductor or the critical current of superconducting tape can be dramatically reduced under its self field condition. To make matters worse, 3-dimensional analysis is indispensable for this type of magnet and the most of commercial programs with finite element method can be taken too much time for analysis and design. In this paper, a magnetic field calculation method for toroidal type winding with circular section was induced.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.