Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.2.231

Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners  

Cuong, Bui H. (Department of Building and Industrial Construction, Hanoi University of Civil Engineering)
Publication Information
Structural Engineering and Mechanics / v.81, no.2, 2022 , pp. 231-242 More about this Journal
Abstract
Numerical solutions for the linear buckling behavior of thin-walled circular hollow section members (CHS) with and without longitudinal stiffeners are presented using the semi-analytical finite strip method (SAFSM) which is developed based on Marguerre's shallow shell theory and Kirchhoff's assumption. The formulation of 3-nodal line finite strip is presented. The CHS members subjected to uniform axial compression, uniform bending, and combination of compression and bending. The buckling behavior of CHS is investigated through buckling curves which relate buckling stresses to lengths of the member. Effects of longitudinal stiffeners are studied with the change of its dimensions, position, and number.
Keywords
circular hollow sections; finite strip method; Marguerre theory; shallow shell theory; stiffened cylinders; stiffened tubes;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Donnel, L.H. and Wan, C.C. (1950), "Effect of imperfections on the buckling of thin cylinders and columns under axial compression", J. Appl. Mech., ASME, 17(1), 73-83. https://doi.org/10.1115/1.4010060.   DOI
2 Hancock, G.J. (1978), "Local distortional and lateral buckling of I-beams", J. Struct. Div., ASCE, 104(11), 1787-1798. https://doi.org/10.1061/JSDEAG.0005035.   DOI
3 Hancock, G.J. and Pham, C.H. (2013), "Shear buckling of channel sections with simply supported ends using the semi-analytical finite strip method", Thin Wall. Struct., 71, 72-80. https://doi.org/10.1016/j.tws.2013.05.004.   DOI
4 Li, Z. and Schafer, B.W. (2010), "Application of the finite strip method in cold-formed steel member design", J. Constr. Steel Res., 66(8-9), 971-980. https://doi.org/10.1016/j.jcsr.2010.04.001.   DOI
5 Majid, K., Davood, P. and Shapour M. (2016), " Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.   DOI
6 NASA-National Aeronautics and Space Administration (2019), Buckling of Thin Walled Circular Cylinders, Technical report NASA/SP-8007, 2nd Revision.
7 Ghannadpour, S.A.M., Ovesy, H.R. and Zia-Dehkordi E. (2015), "Buckling and post-buckling behaviour of moderately thick plates using an exact finite strip", Comput. Struct., 147, 172-180. https://doi.org/10.1016/j.compstruc.2014.09.013.   DOI
8 Marguerre, K. (1950), Knick-und Beulvorgangne-Einfuhrung in die Theorie der elastichen Stabilitat, Chapitre VI de: Neuere Festigkeitsprobleme des Ingenieurs, Herausgegeben von K. Marguerre, Springer-Verlag.
9 Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2017), "New developments in the direct strength method (DSM) for the design of cold-formed steel sections under localised loading", Steel Constr., 10(3), 227-233. https://doi.org/10.1002/stco.201710028.   DOI
10 Plank, R.J. and Wittrick, W.H. (1974), "Buckling under combined loading of thin, flat-walled structures by a complex finite strip method", Int. J. Numer. Meth. Eng., 8(2), 323-339. https://doi.org/10.1002/nme.1620080211.   DOI
11 Schafer, B.W. (2012), CUFSM4.05-Finite Strip Buckling Analysis of Thin-Walled Members, Johns Hopkins University, Baltimore, USA.
12 Silvestre, N. (2007), "Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes", Thin Wall. Struct., 45(2), 185-198. https://doi.org/10.1016/j.tws.2007.02.001.   DOI
13 Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
14 Beregszaszi, Z. and A dany, S. (2019), "Modal buckling analysis of thin-walled members with rounded corners by using the constrained finite strip method with elastic corner elements", Thin Wall. Struct., 142, 414-425. https://doi.org/10.1016/j.tws.2019.04.058.   DOI
15 Basaglia, C., Camotim, D. and Silvestre, N. (2019), "GBT-based buckling analysis of steel cylindrical shells under combinations of compression and external pressure", Thin Wall. Struct., 144, 106274. https://doi.org/10.1016/j.tws.2019.106274.   DOI
16 Bui, H.C. (2012), "Semi-analytical finite strip method based on the shallow shell theory in buckling analysis of cold-formed sections", Thin Wall. Struct., 50(1), 141-146. https://doi.org/10.1016/j.tws.2011.09.005.   DOI
17 Cheung, Y.K. (1976), Finite Strip Method in Structural Analysis, Pergamon Press, New York.
18 Bradford, M.A. and Azhari, M. (1995), "Buckling of plates with different end conditions using the finite strip method", Comput. Struct., 56(1), 75-83. https://doi.org/10.1016/0045-7949(94)00528-B.   DOI
19 Bui, H.C. (2009), "Buckling analysis of thin-walled sections under general loading conditions", Thin Wall. Struct., 47, 730-739. https://doi.org/10.1016/j.tws.2008.12.003.   DOI
20 Bui, H.C. (2013), "Buckling of thin-walled members analyzed by Mindlin-Reissner finite strip", Struct. Eng. Mech., 48(1), 77-91. https://doi.org/10.12989/sem.2013.48.1.077.   DOI
21 Von Karman, T. and Tsien, H.S. (1941), "The buckling of thin cylindrical shells under axial compression", J. Aeronaut. Sci., 8(6), 303-312. https://doi.org/10.2514/8.10722.   DOI
22 Seide, P. and Weingarten, W.I. (1961), "On the buckling of circular cylindrical shells under pure bending", J. Appl. Mech. Div., ASME, 28(1), 112-116. https://doi.org/10.1115/1.3640420.   DOI
23 Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2017), "Analyses of thin-walled sections under localised loading for general end boudary conditions-Part 1: Pre-buckling", Thin Wall. Struct., 119, 956-972. https://doi.org/10.1016/j.tws.2017.01.010.   DOI
24 Bui, H.C. and Rondal, J. (2008), "Buckling analysis of thin-walled sections by semi-analytical Mindlin-Reissner finite strips-A treatment of drilling rotation problem", Thin Wall. Struct., 46, 646-652. doi.org/10.1016/ j.tws.2007.12.003.   DOI
25 Chu, X.T., Ye, Z.M., Kettle, R. and Li, L.Y. (2005), "Buckling behaviour of coldformed channel sections under uniformly distributed loads", Thin Wall. Struct., 43, 531-542. https://doi.org/10.1016/j.tws.2004.10.002.   DOI
26 Dawe, D.J. (1977), "Finite strip buckling analysis of curved plate assemblies under biaxial loading", Int. J. Solid. Struct., 13, 1141-1155. https://doi.org/10.1016/0020-7683(77)90083-X.   DOI
27 Donnell, L.H. (1935), "A new theory for the buckling of thin cylinders under axial compression and bending", Trans. ASME, 56, 795-806.
28 Hancock, G.J. and Pham, C.H. (2015), "Buckling analysis of thin-walled sections under localised loading using the semianalytical finite strip method", Thin Wall. Struct., 86, 35-46. https://doi.org/10.1016/j.tws.2014.09.017   DOI
29 Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2017), "Analyses of thin-walled sections under localised loading for general end boudary conditions-Part 2: Buckling", Thin Wall. Struct., 119, 973-987. https://doi.org/10.1016/j.tws.2017.01.008.   DOI
30 Sherafat, M.H., Ghannadpour, S.A.M. and Ovesy, H.R. (2013), "Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method", Struct. Eng. Mech., 45(5), 677-691. https://doi.org/10.12989/sem.2013.45.5.677.   DOI
31 Nguyen, V.V., Hancock, G.J. and Pham, C.H. (2020), "Consistent and simplified direct strength method for design of cold-formed steel structural members under localised loading", J. Struct. Eng., 146(6), 04020090. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002609.   DOI
32 Ovesy, H.R. and Ghannadpour, S.A.M. (2009), "An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates", Struct. Eng. Mech., 31(2), 181-210. https://doi.org/10.12989/sem.2009.31.2.181   DOI
33 A dany, S. and Schafer, B.W. (2006), "Buckling mode decomposition of single-branched open cross section members via finite strip method: Derivation", Thin Wall. Struct., 44(5), 563-584. https://doi.org/10.1016/j.tws.2006.03.013.   DOI
34 A dany, S. and Schafer, B.W. (2006), "Buckling mode decomposition of single-branched open cross-section members via finite strip method: Application and examples", Thin Wall. Struct., 44(5), 585-600. https://doi.org/10.1016/j.tws.2006.03.014.   DOI