• Title/Summary/Keyword: circulant graphs

Search Result 13, Processing Time 0.023 seconds

NORMAL EDGE-TRANSITIVE CIRCULANT GRAPHS

  • Sim, Hyo-Seob;Kim, Young-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.317-324
    • /
    • 2001
  • A Cayley graph of a finite group G is called normal edge-transitive if its automorphism group has a subgroup which both normalized G and acts transitively on edges. In this paper, we consider Cayley graphs of finite cyclic groups, namely, finite circulant graphs. We characterize the normal edge-transitive circulant graphs and determine the normal edge-transitive circulant graphs of prime power order in terms of lexicographic products.

  • PDF

Generalized characteristic polynomials of semi-zigzag product of a graph and circulant graphs

  • Lee, Jae-Un;Kim, Dong-Seok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1289-1295
    • /
    • 2008
  • We find the generalized characteristic polynomial of graphs G($F_{1},F_{2},{\cdots},F_{v}$) the semi-zigzag product of G and ${\{F_{i}\}^{v}_{i=1}$ obtained from G by replacing vertices by circulant graphs of vertices and joining $F_{i}$'s along the edges of G. These graphs contain discrete tori and are key examples in the study of network model.

  • PDF

A REMARK ON CIRCULANT DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS BY GREGARIOUS CYCLES

  • Cho, Jung Rae
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • Let k, m and t be positive integers with $m{\geq}4$ and even. It is shown that $K_{km+1(2t)}$ has a decomposition into gregarious m-cycles. Also, it is shown that $K_{km(2t)}$ has a decomposition into gregarious m-cycles if ${\frac{(m-1)^2+3}{4m}}$ < k. In this article, we make a remark that the decompositions can be circulant in the sense that it is preserved by the cyclic permutation of the partite sets, and we will exhibit it by examples.

A DIFFERENCE SET METHOD FOR CIRCULANT DECOMPOSITIONS OF COMPLETE PARTITE GRAPHS INTO GREGARIOUS 4-CYCLES

  • Kim, Eun-Kyung;Cho, Young-Min;Cho, Jung-Rae
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.655-670
    • /
    • 2010
  • The complete multipartite graph $K_{n(m)}$ with n $ {\geq}$ 4 partite sets of size m is shown to have a decomposition into 4-cycles in such a way that vertices of each cycle belong to distinct partite sets of $K_{n(m)}$, if 4 divides the number of edges. Such cycles are called gregarious, and were introduced by Billington and Hoffman ([2]) and redefined in [3]. We independently came up with the result of [3] by using a difference set method, and improved the result so that the composition is circulant, in the sense that it is invariant under the cyclic permutation of partite sets. The composition is then used to construct gregarious 4-cycle decompositions when one partite set of the graph has different cardinality than that of others. Some results on joins of decomposable complete multipartite graphs are also presented.

On the Numbers of Palindromes

  • Bang, Sejeong;Feng, Yan-Quan;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.349-355
    • /
    • 2016
  • For any integer $n{\geq}2$, each palindrome of n induces a circulant graph of order n. It is known that for each integer $n{\geq}2$, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes ${\sigma}$ with $gcd({\sigma})=1$ to the connected circulant graphs. It was also shown that the number of palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ is the same number of aperiodic palindromes of n. Let $a_n$ (resp. $b_n$) be the number of aperiodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). Let $c_n$ (resp. $d_n$) be the number of periodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). In this paper, we calculate the numbers $a_n$, $b_n$, $c_n$, $d_n$ in two ways. In Theorem 2.3, we $n_d$ recurrence relations for $a_n$, $b_n$, $c_n$, $d_n$ in terms of $a_d$ for $d{\mid}n$ and $d{\neq}n$. Afterwards, we nd formulae for $a_n$, $b_n$, $c_n$, $d_n$ explicitly in Theorem 2.5.

Genesis and development of Schur rings, as a bridge of group and algebraic graph theory (Schur환론의 발생과 발전, 군론과 그래프론에서의 역할)

  • Choi Eun-Mi
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2006
  • In 1933, I. Schur introduced a Schur ring in connection with permutation group and regular subgroup. After then, it was studied mostly for purely group theoretical purposes. In 1970s, Klin and Poschel initiated its usage in the investigation of graphs, especially for Cayley and circulant graphs. Nowadays it is known that Schur ring is one of the best way to enumerate Cayley graphs. In this paper we study the origin of Schur ring back to 1933 and keep trace its evolution to graph theory and combinatorics.

  • PDF

RADIO AND RADIO ANTIPODAL LABELINGS FOR CIRCULANT GRAPHS G(4k + 2; {1, 2})

  • Nazeer, Saima;Kousar, Imrana;Nazeer, Waqas
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.173-183
    • /
    • 2015
  • A radio k-labeling f of a graph G is a function f from V (G) to $Z^+{\cup}\{0\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}k+1$ for every two distinct vertices x and y of G, where d(x, y) is the distance between any two vertices $x,y{\in}G$. The span of a radio k-labeling f is denoted by sp(f) and defined as max$\{{\mid}f(x)-f(y){\mid}:x,y{\in}V(G)\}$. The radio k-labeling is a radio labeling when k = diam(G). In other words, a radio labeling is an injective function $f:V(G){\rightarrow}Z^+{\cup}\{0\}$ such that $${\mid}f(x)=f(y){\mid}{\geq}diam(G)+1-d(x,y)$$ for any pair of vertices $x,y{\in}G$. The radio number of G denoted by rn(G), is the lowest span taken over all radio labelings of the graph. When k = diam(G) - 1, a radio k-labeling is called a radio antipodal labeling. An antipodal labeling for a graph G is a function $f:V(G){\rightarrow}\{0,1,2,{\ldots}\}$ such that $d(x,y)+{\mid}f(x)-f(y){\mid}{\geq}diam(G)$ holds for all $x,y{\in}G$. The radio antipodal number for G denoted by an(G), is the minimum span of an antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and radio antipodal number for the circulant graphs G(4k + 2; {1, 2}).

Fault-hamiltonicity of Bipartite Double Loop Networks (이분 그래프인 이중 루프 네트워크의 고장 해밀톤 성질)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we investigate the longest fault-free paths joining every pair of vertices in a double loop network with faulty vertices and/or edges, and show that a bipartite double loop network G(mn;1, m) is strongly hamiltonian-laceable when the number of faulty elements is two or less. G(mn;1, m) is bipartite if and only if m is odd and n is even.

RICCI CURVATURE, CIRCULANTS, AND EXTENDED MATCHING CONDITIONS

  • Dagli, Mehmet;Olmez, Oktay;Smith, Jonathan D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.201-217
    • /
    • 2019
  • Ricci curvature for locally finite graphs, as proposed by Lin, Lu and Yau, provides a useful isomorphism invariant. A Matching Condition was introduced as a key tool for computation of this Ricci curvature. The scope of the Matching Condition is quite broad, but it does not cover all cases. Thus the current paper introduces extended versions of the Matching Condition, and applies them to the computation of the Ricci curvature of a class of circulants determined by certain number-theoretic data. The classical Matching Condition is also applied to determine the Ricci curvature for other families of circulants, along with Cayley graphs of abelian groups that are generated by the complements of (unions of) subgroups.