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A DIFFERENCE SET METHOD FOR CIRCULANT

DECOMPOSITIONS OF COMPLETE PARTITE GRAPHS

INTO GREGARIOUS 4-CYCLES

Eun Kyung Kim, Young Min Cho, and Jung Rae Cho

Abstract. The complete multipartite graph Kn(m) with n ≥ 4 partite

sets of size m is shown to have a decomposition into 4-cycles in such a
way that vertices of each cycle belong to distinct partite sets of Kn(m),

if 4 divides the number of edges. Such cycles are called gregarious, and

were introduced by Billington and Hoffman ([2]) and redefined in [3]. We
independently came up with the result of [3] by using a difference set

method, and improved the result so that the composition is circulant, in
the sense that it is invariant under the cyclic permutation of partite sets.

The composition is then used to construct gregarious 4-cycle decomposi-

tions when one partite set of the graph has different cardinality than that
of others. Some results on joins of decomposable complete multipartite

graphs are also presented.

1. Introduction

Edge disjoint decompositions of graphs into cycles has been considered in
a number of ways. Necessary and sufficient conditions for a complete graph
of odd order or a complete graph of even order minus an 1-factor to have a
decomposition into cycles of some fixed length are known (see [1], [9] and [10]
as well as their references). Some authors have also considered cycle decom-
positions with special properties such as resolvable cycle decompositions (see
[4], [8], [7]). Although much work has gone into the decomposition of com-
plete graphs into cycles, less attention has been paid to the same problem for
complete multipartite graphs. Sotteau [11] showed that the complete bipartite
graph Km,n has a decomposition into 2k-cycles if and only if m,n are even and
2k divides mn. Note that the two obvious conditions turned out to be sufficient
conditions. This result has been used as a powerful tool by later authors for
various decompositions of multipartite graphs into cycles, as was done in [5].

Billington and Hoffman [2] introduced the notion of a gregarious cycle, mean-
ing a cycle having at least one vertex from each partite set, and then changed
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the definition slightly in [3]. There, a gregarious cycle is a cycle having at most
one vertex from any given partite set. They gave a necessary and sufficient
condition for an equipartite graph to have a decomposition into gregarious 4-
cycles. An equipartite graph is a complete multipartite graph all of whose
partite sets have the same size. They also considered complete multipartite
graphs with one partite set of different size.

Throughout the paper, K(A1, A2, . . . , An) will denote the complete multi-
partite graph with partite sets A1, A2, . . . , An, which we sometimes denote by
K(m1,m2, . . . ,mn) when |Ai| = mi for i = 1, 2, . . . , n. When all mi are equal
to m, we use the notation Kn(m). This notation is standard and can be found
in [6] amongst other places.

In this paper, we use the new definition of gregarious cycles. The purpose
of this paper is, using difference sets, to show that a complete graph Kn or an
equipartite graph Kn(m) has a decompositions into gregarious 4-cycles if n is
at least 4 and the number of edges is divisible by 4. Note that the sufficient
condition is an obvious necessary condition. Improving a result in [3], we
show that the decomposition can be circulant if n ≥ 5, in the sense that the
decomposition is invariant under the cyclic permutations of the partite sets.
The decompositions of graphs obtained so far by other authors heavily relied
on successively taking joins of graphs, and so the decompositions were not
circulant at all. Some of our results overlaps with some results in [3], but
we want make it clear that the results are obtained independently and use a
different method from theirs.

The following is informally mentioned in many papers, and formally proved
in [5] when the graph is decomposable into cycles of a fixed even length. How-
ever, it also applies when graph is decomposable into cycles of arbitrary lengths.

Lemma 1.1. If K(m1,m2, . . . ,mn) is decomposable into cycles, then all m1,
m2, . . . ,mn have the same parity, and furthermore n must be odd if the parity
of each mi is odd.

Proof. For any i, the degree of any vertex in Ai is
∑
k 6=imk, which must be

even. Thus, for any pair i and j, mj − mi =
∑
k 6=imk −

∑
k 6=jmk is also

even. Thus, all m1,m2, . . . ,mn have the same parity. If this parity is odd,
since

∑n−1
k=1 mk is even, n− 1 must be even, i.e., n is odd. �

For simplicity, we will call a gregarious 4-cycle a γ4-cycle. A graph will be
called γ4-decomposable if it is decomposable into γ4-cycles, and a decomposition
into γ4-cycles will be called a γ4-decomposition.

The following lemma is proved in [5] for decompositions into arbitrary (non-
necessarily gregarious) cycles, by the standard “expanding points method”.
However, exactly the same method can be applied for decompositions into
gregarious cycles.
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Lemma 1.2. If K(m1,m2, . . . ,mn) is decomposable into gregarious k-cycles
for an even integer k, then so is K(m1t,m2t, . . . ,mnt) for every integer t ≥ 1.

Put Dn = {±1,±2, . . . ,±n−12 } if n is odd and Dn = {±1,±2, . . . ,±n−22 , n2 }
if n is even. Then, Dn is a complete set of differences of pairs of distinct integers
in Zn = {0, 1, . . . , n−1}.

A sequence (r1, r2, r3, r4) of differences in Dn is called a feasible sequence,
or an f-sequence for simplicity, if r1 +r2 +r3 +r4 = 0 and ri+ri+1 6= 0 for
i = 1, 2, 3, where the arithmetic is done in Zn The sequence of initial sums,
or the s-sequence for short, corresponding to an f -sequence ρ = (r1, r2, r3, r4)
is the sequence σρ = 〈s0, s1, s2, s3〉 of elements in Zn such that s0 = 0 and

si =
∑i
j=1 rj for i = 1, 2, 3. Note that, si = si−1+ri for each i = 1, 2, 3 and

s3+r4 = s0. Here, all the arithmetic is done in Zn.
Intuitively, an s-sequence is the sequence of partite sets of a multipartite

graph or the sequence of vertices of a complete graph by which a 4-cycle tra-
verses, and the feasibility of the f -sequence guarantees that the 4-cycle is proper
and gregarious.

In the next section, we give circulant γ4-decompositions of equipartite graphs
with odd partite sets. In Section 3, we show that Kn(2t) has a γ4-decomposition
for every n ≥ 4 and t ≥ 1, which is circulant if n ≥ 5. In Section 4, we study
γ4-decomposition of Kh,n(m) when h 6= m. In Section 5, we consider joins of
γ4-decomposable graphs.

Before we continue to next section, we mention the following lemma.

Lemma 1.3. If K(m1,m2,m3,m4) is γ4-decomposable, then m1 = m2 = m3 =
m4 and this number is an even integer.

Proof. Let Ai be the partite sets with |Ai| = mi for i = 1, 2, 3, 4. Without
loss of generality, we may assume that m1 ≥ m2 ≥ m3 ≥ m4. Suppose C is
a γ4-decomposition of K(m1,m2,m3,m4). Let a, b, c be the numbers of gre-
garious 4-cycles in C traversing the partite sets by the orders (A1, A2, A3, A4),
(A1, A2, A4, A3), and (A1, A4, A2, A3), respectively. Counting edges used by
each type of gregarious 4-cycle, we have equations

m1m2 = a+ b = m3m4, m1m3 = b+ c = m2m4, m1m4 = a+ c = m2m3.

However, since m1 ≥ m2 ≥ m3 ≥ m4, the first equation implies m1 = m2 =
m3 = m4. Lemma 1.1 says that this number must be even. �

2. Equipartite graphs with partite sets of odd size

Let τ : Zn → Zn be the mapping defined by τ(i) = i+1 for all i in Zn, i.e., the
circulant permutation (0, 1, 2, . . . , n−1) on Zn. We can extend τ to a mapping
τ∗ : Z4 → Z4 by defining τ∗〈s0, s1, s2, s3〉 = 〈τ(s0), τ(s1), τ(s2), τ(s3)〉. Then,
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τ j∗ 〈s0, s1, s2, s3〉 = 〈s0 + j, s1 + j, s2 + j, s3 + j〉 for each j = 0, 1, . . . , n−1, and
τn∗ is the identity mapping. By convention, τ0∗ is also the identity mapping.

Lemma 2.1. (i) Kn is decomposable into 4-cycles if and only if n ≡ 1 (mod 8).
(ii) If m is odd and Kn(m) is decomposable into 4-cycles, then n ≡ 1

(mod 8).

Proof. (i) is obtained from [1]. For (ii), note that n is odd by Lemma 1, and 4

must divide the number n(n−1)m2

2 of edges in Kn(m). �

Note that cycle decompositions of Kn obtained by the method in [1] are not
circulant at all. Here, we want to give a circulant decomposition.

Let n ≡ 1 (mod 8), say n = 8k+1. Then Dn = {±1,±2, . . . ,±4k}. We use
Zn as the vertex set of Kn as well. An edge ij of Kn will be called an edge of
distance d if |i− j| = d for d = 1, 2, . . . , 4k.

Consider the f -sequences ρi = (4i+ 1,−(4i+ 2),−(4i+ 3), 4i+ 4) for i =
0, 1, . . . , k− 1. For each i, the corresponding s-sequence is σρi = 〈0, 4i+
1,−1,−(4i+4)〉, and the set

Ci = {τ j∗ (σρi) | 0 ≤ j ≤ n−1} = {〈j, 4i+1+j,−1+j,−(4i+4)+j〉 | 0 ≤ j ≤ n−1}

consists of disjoint 4-cycles and these cycles exhaust all and only edges of

distance 4i+1, 4i+2, 4i+3 or 4i+4. Thus, the 4-cycles in the set
⋃k−1
i=0 Ci are

disjoint and exhaust all edges of every distance in Kn. Furthermore, this set is
clearly invariant under τ∗ as each Ci is. By this, we have the following lemma,
which extends Lemma 2.1(i) so that the decomposition is circulant.

Lemma 2.2. Let n ≡ 1 (mod 8), say n = 8k + 1. Then, Kn is decomposable
into 4-cycles and the set

C =
⋃k−1
i=0 Ci = {〈j, 4i+1+j,−1+j,−(4i+4)+j〉 | 0 ≤ i ≤ k−1, 0 ≤ j ≤ n−1}

is a circulant decomposition of Kn into 4-cycles, in the sense that C is invariant
under τ∗.

If we regard Kn as K(1, 1, . . . , 1), then Kn(m) has a γ4-decomposition for
any integers n with n ≡ 1 (mod 8) and m by Lemmas 1.2 and 2.2. However,
we want to be more elaborate with the “expanding points method” in [5] to
see that the decomposition can be circulant.

Let n ≡ 1 (mod 8) and m be a positive integer. Expand each vertex i of
Kn to the set Ai = {i1, i2, . . . , im}, and let the partite sets of Kn(m) be Ai for
i = 0, 1, . . . , n−1. We extend the mapping τ to a mapping τ∗∗ of 4-cycles of
Kn(m) by defining

τ∗∗〈aj , bk, cp, dq〉 = 〈τ(a)j , τ(b)k, τ(c)p, τ(d)q〉 = 〈(a+1)j , (b+1)k, (c+1)p, (d+1)q〉



DECOMPOSITIONS OF GRAPHS INTO GREGARIOUS 4-CYCLES 659

for all j, k, p, q in {1, 2, . . . ,m}. Let C be the circulant decomposition of Kn in
Lemma 2.2. Then, the set

C∗ = {〈aj , bk, cj , dk〉 | 〈a, b, c, d〉 ∈ C, 1 ≤ j ≤ m, 1 ≤ k ≤ m}.
is a γ4-decomposition of Kn(m). Since C is invariant under τ∗, if 〈aj , bk, cj , dk〉
is in C∗, then τ∗∗〈aj , bk, cj , dk〉 = 〈τ(a)j , τ(b)k, τ(c)j , τ(d)k〉 also belongs to C∗.
That is, C∗ is invariant under τ∗∗.

Summarizing the above discussion, we have the following lemma.

Lemma 2.3. Let n ≡ 1 (mod 8) and m be any integer, then Kn(m) has a
circulant γ4-decomposition, in the sense that it is invariant under τ∗∗.

Combining the discussions in this section, we have the following theorem.

Theorem 2.4. Let m be an odd integer. Then, Kn(m) has a circulant γ4-
decomposition, in the sense that it is invariant under τ∗∗ if and only if n ≡ 1
(mod 8).

We remark that Billington and Hoffman ([3]) independently showed Theo-
rem 2.1 using a different method, except that their decomposition is not circu-
lant.

3. Multipartite graphs with partite sets of even size

Let Ai = {i, i}, i = 0, 1, . . . , n− 1, be the partite sets of Kn(2). Thus,
the elements in Zn are used as indices of the partite sets and as vertices of the
graph as well. The next lemma, which appears in [4], also serves as an example.
However, the decomposition is not circulant.

Lemma 3.1. K4(2) is γ4-decomposable.

Proof. The six 4-cycles

〈 0, 1, 2, 3 〉, 〈 0, 1, 2, 3 〉, 〈 0, 1, 3, 2 〉, 〈 0, 1, 3, 2 〉, 〈 0, 3, 1, 2 〉, 〈 0, 3, 1, 2 〉
constitute a γ4-decomposition of K4(2). �

An edge joining a vertex in Ai to a vertex in Aj is called an edge of distance
d if i−j ≡ ±d (mod n), where ±d is in Dn. In particular, if n is even and
d = n

2 then an edge of distance d is called a diagonal edge. For example, the

edges 04, 73, 7 2 and 83 are all edges of distance 4 in K9(2), while the edges

49 and 5 0 are diagonal edges of K10(2). If 〈a1, a2, a3, a4〉 is a 4-cycle, then
the edges a1a2, a2a3, a3a4 and a4a1 will be called the first, second, third and
fourth edges of the cycle, respectively.

Let φ+ and φ− be the mappings of Zn into
⋃n−1
i=0 Ai defined by φ+(i) = i

and φ−(i) = i for all i in Zn. A flag is a sequence φ∗ = (φ0, φ1, φ2, φ3) each of
whose entries is φ+ or φ−. Given such a flag φ∗, we also use the same notation
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φ∗ to denote the mapping defined by φ∗〈a, b, c, d〉 = 〈φ0(a), φ1(b), φ2(c), φ3(d)〉
for every sequence 〈a, b, c, d〉 of numbers in Zn. So, φ∗〈a, b, c, d〉 is a γ4-cycle of
Kn(2) if a, b, c, d are distinct, and every γ4-cycle of Kn(2) is in this form.

Recall that τ is the cyclic permutation (0, 1, . . . , n−1) on Zn. We extend τ
to a mapping τ∗ on the γ4-cycles of Kn(2) by defining

τ∗(φ
∗〈a, b, c, d〉) = 〈φ0(τ(a)), φ1(τ(b)), φ2(τ(c)), φ3(τ(d))〉

= 〈φ0(a+1), φ1(b+1), φ2(c+1), φ3(d+1)〉.

Suppose we are given an f -sequence ρ = (r1, r2, r3, r4) and a flag φ∗ =
(φ0, φ1, φ2, φ3). With the s-sequence σρ = 〈s0, s1, s2, s3〉 corresponding to ρ,

we can generate a class {τ j∗ (φ∗(σρ)) | 0 ≤ j ≤ n−1} of γ4-cycles of Kn(2). This
class is called the n-class generated by φ∗(σρ), and φ∗(σρ) is called the starter
cycle of the class. It is clear that such an n-class is invariant under τ∗. For
example, if (φ0, φ1, φ2, φ3) = (φ+, φ−, φ−, φ+), the γ4-cycles in the class are as
below:

τ0∗ (φ∗(σρ)) = 〈 0, s1, s2, s3 〉,
τ1∗ (φ∗(σρ)) = 〈 1, s1+1, s2+1, s3+1 〉,

...
...

...

τ j∗ (φ∗(σρ)) = 〈 j, s1+j, s2+j, s3+j 〉,
...

...
...

τn−1
∗ (φ∗(σρ)) = 〈n−1, s1−1, s2−1, s3−1 〉.

Note that, every column of vertices above has one vertex from each partite
set. Thus, the edge p q appears as the first edge of a γ4-cycle above if q−
p = s1 = r1. The edge p q appears as the second edge of a γ4-cycle above if
q−p = s2 − s1 = r2. Similarly, the edge p q with q−p = r3 and the edge p q
with q−p = r4 appear in the above γ4-cycles.

If φ∗(σρ) has a diagonal edge of the form pq or p q and we generate an n-class
with it, the same diagonal edge would appear twice in the n-class. For example,
if n = 10 and r2 = 5, then the diagonal edge 1 6 appears twice, once in the
form 1 6 and once in the form 6 1. Thus, to avoid such double appearances of
the same 4-cycle, we need to generate a class {τ j∗ (φ∗(σρ)) | j = 0, 1, . . . , n−12 }
with only n

2 γ4-cycles. Such a class is called an n
2 -class. When, we need an

n
2 -class, we will find one which is invariant under τ∗.

The above procedure is the basic method we adopt to produce a circulant
γ4-decomposition of Kn(2). We note that each of the above classes is invariant
under τ∗. As one may noticed already, the main problem then is how to choose
f -sequences and flags so that, in the γ4-cycles produced by them, each edge of
distance d appears exactly once for every possible distance d of the graph. We
do not have a method to produce all such f -sequences and flags. However, we
can present at least one such a pair for every n ≥ 5.
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Since the number of edges of Kn(2) is 2n(n−1), we need to produce n(n−1)
2

disjoint γ4-cycles. We will produce n−1
2 n-classes if n is odd, and one n

2 -class

and n−2
2 n-classes if n is even.

Let Φ∗1 = (φ+, φ−, φ−, φ−) and Φ∗2 = (φ−, φ+, φ+, φ+) be two special flags.
Suppose i, j are differences in Dn such that i 6= j and i+ j 6≡ 0 (mod n), and
put η = (i, j,−i,−j). Then η is an f -sequence and ση = (0, i, i+j, j). We
generate the following two n-classes from Φ∗1(ση) and Φ∗2(ση), respectively.

〈 0, i, i+j, j 〉, 〈 0, i, i+j, j 〉,
〈 1, i+1, i+j+1, j+1 〉, 〈 1, i+1, i+j+1, j+1 〉,
〈 2, i+2, i+j+2, j+2 〉, 〈 2, i+2, i+j+2, j+2 〉,

...
...

〈n−2, i−2, i+j−1, j−2 〉, 〈n−2, i−2, i+j−2, j−2 〉,
〈n−1, i−1, i+j−1, j−1 〉. 〈 n−1, i−1, i+j−1, j−1 〉.

Then, each edge of distance i or j appears exactly once in the cycles above.
We call these classes the standard n-classes produced from η.

We assume n ≥ 5, and divide the decomposition problem of Kn(2) into four
cases depending on n modulo 4.

Case (1). Suppose n = 4k+ 1 with k ≥ 1. Then n−1
2 = 2k and Dn =

{±1,±2, . . . ,±2k}. Partition Dn into k subsets {±1,±2}, {±3,±4}, . . . , and
{±(2k−1),±2k}, and take f -sequences η1 = (1, 2,−1,−2), η2 = (3, 4,−3,−4),
. . . , and ηk = (2k− 1, 2k,−(2k− 1),−2k) for the respective subsets of the
partition. Now, we produce two standard n-classes from each ηi, and let C
be the union of all these standard n-classes. Clearly, two distinct f -sequences
generates disjoint classes, and so every edge of every distance appears exactly
once in the γ4-cycles of C. Thus, C is a circulant γ4-decomposition of Kn(2),
and is invariant under τ∗ as is each n-class.

Note that if n = 8k+1 then Lemma 2.3 applies. However, The decomposition
obtained here is different from the one obtained by the method in the preceding
section.

Example 3.1 Let n = 4k+1 = 9. Then k = 2 and D9 = {±1,±2,±3,±4}.
Following the procedure in Case (1), we take η1 = (1, 2,−1,−2) and η2 =
(3, 4,−3,−4). Then ση1 = (0, 1, 3, 2) and ση2 = (0, 3, 7, 4). The circulant
γ4-decomposition of K9(2) produced by the above method is as below:

〈 0, 1, 3, 2 〉, 〈 0, 1, 3, 2 〉, 〈 0, 3, 7, 4 〉, 〈 0, 3, 7, 4 〉,
〈 1, 2, 4, 3 〉, 〈 1, 2, 4, 3 〉, 〈 1, 4, 8, 5 〉, 〈 1, 4, 8, 5 〉,
〈 2, 3, 5, 4 〉, 〈 2, 3, 5, 4 〉, 〈 2, 5, 0, 6 〉, 〈 2, 5, 0, 6 〉,
〈 3, 4, 6, 5 〉, 〈 3, 4, 6, 5 〉, 〈 3, 6, 1, 7 〉, 〈 3, 6, 1, 7 〉,
〈 4, 5, 7, 6 〉, 〈 4, 5, 7, 6 〉, 〈 4, 7, 2, 8 〉, 〈 4, 7, 2, 8 〉,
〈 5, 6, 8, 7 〉, 〈 5, 6, 8, 7 〉, 〈 5, 8, 3, 0 〉, 〈 5, 8, 3, 0 〉,
〈 6, 7, 0, 8 〉, 〈 6, 7, 0, 8 〉, 〈 6, 0, 4, 1 〉, 〈 6, 0, 4, 1 〉,
〈 7, 8, 1, 0 〉, 〈 7, 8, 1, 0 〉, 〈 7, 1, 5, 2 〉, 〈 7, 1, 5, 2 〉,
〈 8, 0, 2, 1 〉. 〈 8, 0, 2, 1 〉. 〈 8, 2, 6, 3 〉. 〈 8, 2, 6, 3 〉.
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Case (2). Suppose n = 4k+ 3 with k ≥ 1. Then we have n−1
2 = 2k+ 1

and Dn = {±1,±2, . . . ,±(2k+ 1)}. With differences ±1,±2 and ±3, take
f -sequences ρ1 = (1, 1, 1,−3), ρ2 = (1, 3,−2,−2), ρ3 = (3, 2,−3,−2), and
we obtain the corresponding s-sequences σρ1 = 〈0, 1, 2, 3〉, σρ2 = 〈0, 1, 4, 2〉,
σρ3 = 〈0, 3, 5, 2〉. Take flags φ∗1 = (φ−, φ+, φ+, φ−), φ∗2 = (φ−, φ−, φ+, φ−), and
φ∗3 = (φ+, φ+, φ−, φ+). Then, the n-classes generated from the pairs φ∗i (σρi),
i = 1, 2, 3, are as below.

〈 0, 1, 2, 3 〉, 〈 0, 1, 4, 2 〉, 〈 0, 3, 5, 2 〉,
〈 1, 2, 3, 4 〉, 〈 1, 2, 5, 3 〉, 〈 1, 4, 6, 3 〉,
〈 2, 3, 4, 5 〉, 〈 2, 3, 6, 4 〉, 〈 2, 5, 7, 4 〉,

...
...

...

〈n−2, n−1, 0, 1 〉, 〈n−2, n−1, 2, 0 〉, 〈n−2, 1, 3, 0 〉,
〈n−1, 0, 1, 2 〉. 〈n−1, 0, 3, 1 〉. 〈n−1, 2, 4, 1 〉.

Then, as explained earlier, it can be check that each edge of distance d appears
exactly once in the γ4-cycles above for d = 1, 2, 3.

If k ≥ 2, Dn \ {±1,±2,±3} = {±4,±5, . . . ,±(2k+ 1)} and this set is
nonempty. Partition this set into k−1 subsets {±4,±5}, {±6,±7}, . . . , {±2k,
±(2k+1)}. With each subset {2i, 2i+1} for i = 2, 3, . . . , k, take f -sequence
ηi = (2i, 2i+1,−2i,−(2i+1)). As in Case (1), if we generate the two standard
n-classes from each of these ηi, then every edge of distance d appears exactly
once in the 4-cycles of these 2(k−1) standard n-classes, for d = 4, 5, . . . , 2k+1.
If k = 1, we do not have these cycles.

Let C be the union of these 2(k−1) standard n-classes and the three classes
above. Then, C is a circulant γ4-decomposition of Kn(2), invariant under τ∗.

Case (3). Suppose n = 4k+ 2 with k ≥ 1. Then n
2 = 2k+ 1 and Dk =

{±1,±2, . . . ,±2k, 2k+1}. With differences ±1, ±(k+1) and 2k+1, take the f -
sequences ρ1 = (1, 2k+1,−1, 2k+1), ρ2 = (1, k+1,−1,−(k+1)), ρ3 = (2k+1, k+
1,−1, k+1), and obtain s-sequences σρ1 = 〈0, 1, 2k+2, 2k+1〉, σρ2 = 〈0, 1, k+
2, k+1〉, σρ3 = 〈0, 2k+1, 3k+2, 3k+1〉. Take flags φ∗1 = (φ+, φ−, φ−, φ+), φ∗2 =
(φ−, φ−, φ+, φ−), and φ∗3 = (φ−, φ+, φ+, φ+). From φ∗1(σρ1), we generate the
n
2 -class C1 = {τ j∗ (φ∗1(σρ1)) | j = 0, 1, . . . , n2 −1}. From φ∗2(σρ2) and φ∗2(σρ2),
we generate n-classes C2 and C3, respectively. We recall that n

2 −1 = 2k and
n−1 = 4k+1. These classes are listed in three columns as below:

〈 0, 1, 2k+2, 2k+1 〉, 〈 0, 1, k+2, k+1 〉, 〈 0, 2k+1, 3k+2, 3k+1 〉,
〈 1, 2, 2k+3, 2k+2 〉, 〈 1, 2, k+3, k+2 〉, 〈 1, 2k+2, 3k+3, 3k+2 〉,

...
...

...

〈 2k, 2k+1, 0, 4k+1 〉. 〈 2k, 2k+1, 3k+2, 3k+1 〉, 〈 2k, 4k+1, k, k−1 〉,
〈 2k+1, 2k+2, 3k+3, 3k+2 〉, 〈 2k+1, 4k+2, k+1, k 〉,

...
...

〈 4k+1, 0, k+1, k 〉. 〈 4k+1, 2k, 3k+1, 3k 〉.



DECOMPOSITIONS OF GRAPHS INTO GREGARIOUS 4-CYCLES 663

We have the following observations for diagonal edges. Put p−q = n
2 = 2k+1.

(i) The diagonal edge p q appears as the fourth edge of a cycle in C1, once
for each p = 0, 1, . . . , 2k.

(ii) The diagonal edge p q appears as the second edge of a cycle in C1, once
for each p = 0, 1, . . . , 2k.

(iii) The diagonal edge p q appears as the first edge of a cycle in C3, once
for each p = 0, 1, . . . , 4k, 4k+1. Note that the edge p q can be written
as p′ q′, where p′ = p+2k+1 and q′ = q+2k+1.

If q−p = 1, then the edge p q appears exactly once in a cycle in C1, in the form
p q as the first edge of a cycle for p = 0, 1, . . . , 2k, and in the form q p as the
third edge of a cycle for p = 2k+1, . . . , 4k+1. In a similar way as before, it can
be checked that each edge of distance 1 or distance k+1 appears exactly once
in the cycles of C2 or C3. Furthermore, all these classes including the n

2 -class
are invariant under τ∗. In fact, we see that τ∗ maps the last cycle of C1 to the
first cycle of C1, except that the order of the vertices is reversed.

If k ≥ 2 then Dn \ {±1,±(k+1),±(2k+1)} and this set is nonempty. In
this case, we partition this set into k−1 subsets {±αi,±βi} so that αi+βi 6≡ 0
(mod n) for i = 1, 2, . . . , k−1. This is always possible since we can take αi
and βi in such a way that 2 ≤ αi ≤ 2k, and 2 ≤ βi ≤ 2k. Now, put ηi =
(αi, βi,−αi,−βi) for i = 1, 2, . . . , k−1, and generate 2(k−1) standard n-classes
from these ηi as in Case (1). Then each edge of distance d appears exactly
once in these 4-cycles if d is in the set {αi, βi | 1 ≤ i ≤ k−1}, that is, if
d 6= 1, k+1, 2k+1. We already know that these classes are invariant under τ∗.

Thus, if we let C be the union of these 2(k−1) standard n-classes and the
classes C1, C2 and C3 above, then C is a circulant γ4-decomposition of Kn(2),
invariant under τ∗.

Example 3.2. Let n = 4k+2 = 10. Then k = 2 andD10 = {±1,±2,±3,±4, 5}.
According to Case (3), we take ρ1 = (1, 5,−1, 5), ρ2 = (1, 3,−1,−3), ρ3 =
(5, 3,−1, 3) and η1 = (2, 4,−2,−4). Then σρ1 = (0, 1, 6, 5), σρ2 = (0, 1, 4, 3),
σρ3 = (0, 5, 8, 7), and ση1 = (0, 2, 6, 4). The classes generated by the method in
Case (3) are as follows:

〈 0, 1, 6, 5 〉, 〈 0, 1, 4, 3 〉, 〈 0, 5, 8, 7 〉, 〈 0, 2, 6, 4 〉, 〈 0, 2, 6, 4 〉,
〈 1, 2, 7, 6 〉, 〈 1, 2, 5, 4 〉, 〈 1, 6, 9, 8 〉, 〈 1, 3, 7, 5 〉, 〈 1, 3, 7, 5 〉,
〈 2, 3, 8, 7 〉, 〈 2, 3, 6, 5 〉, 〈 2, 7, 0, 9 〉, 〈 2, 4, 8, 6 〉, 〈 2, 4, 8, 6 〉,
〈 3, 4, 9, 8 〉, 〈 3, 4, 7, 6 〉, 〈 3, 8, 1, 0 〉, 〈 3, 5, 9, 7 〉, 〈 3, 5, 9, 7 〉,
〈 4, 5, 0, 9 〉. 〈 4, 5, 8, 7 〉, 〈 4, 9, 2, 1 〉, 〈 4, 6, 0, 8 〉, 〈 4, 6, 0, 8 〉,

〈 5, 6, 9, 8 〉, 〈 5, 0, 3, 2 〉, 〈 5, 7, 1, 9 〉, 〈 5, 7, 1, 9 〉,
〈 6, 7, 0, 9 〉, 〈 6, 1, 4, 3 〉, 〈 6, 8, 2, 0 〉, 〈 6, 8, 2, 0 〉,
〈 7, 8, 1, 0 〉, 〈 7, 2, 5, 4 〉, 〈 7, 9, 3, 1 〉, 〈 7, 9, 3, 1 〉,
〈 8, 9, 2, 1 〉, 〈 8, 3, 6, 5 〉, 〈 8, 0, 4, 2 〉, 〈 8, 0, 4, 2 〉,
〈 9, 0, 3, 2 〉. 〈 9, 4, 7, 6 〉. 〈 9, 1, 5, 3 〉. 〈 9, 1, 5, 3 〉.
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Case (4). Suppose n = 4k with k ≥ 2. Then n
2 = 2k and Dn = {±1,±2, . . . ,

±(2k − 1), 2k}. With differences ±1, ±3, ±(2k− 2) and ±2k, take the f -
sequences ρ1 = (2k−2, 2k,−(2k−2), 2k), ρ2 = (1, 3,−1,−3), ρ3 = (3, 2k−
2, 2k−2, 1) and ρ4 = (2k,−3,−(2k−2), 1), and obtain s-sequences σρ1 = 〈0, 2k−
2, 4k−2, 2k〉, σρ2 = 〈0, 1, 4, 3〉, σρ3 = 〈0, 3, 2k+1, 4k−1〉 and σρ4 = 〈0, 2k, 2k−
3, 4k−1〉. Then, we take flags φ∗1 = (φ+, φ−, φ−, φ+), φ∗2 = (φ−, φ−, φ+, φ−),
φ∗3 = (φ+, φ−, φ−, φ+), and φ∗4 = (φ−, φ+, φ+, φ+). From φ∗1(σρ1), we generate

the n
2 -class {τ j∗ (φ∗1(σρ1)) | j = 0, 1, . . . , n2 −1}, and generate an n-class from

φ∗i (σρi) for each i = 2, 3, 4. As in Case (3), it can be checked that, in the
γ4-cycles of these classes, every edge of distance d appears exactly once for
d = 1, 3, 2k−2, 2k, and that these classes are invariant under τ∗.

If k ≥ 3, the set Dn \ {±1,±3,±(2k−2), 2k} is nonempty. We partition
this set into k−2 subsets {±αi,±βi} such that αi+βi 6≡ 0 (mod n) for i =
1, 2, . . . , k−2. As in Case (1), generate 2(k−2) standard n-classes from ρi =
(αi, βi,−αi,−βi) for i = 1, 2, . . . , k−2. Then, each edge of distance d appears
exactly once in the 4-cycles of these classes if d 6= 1, 3, 2k−2, 2k. These classes
are already invariant under τ∗.

If we let C be the union of these 2(k−2) standard n-classes and the 4 classes
above, C is a circulant γ4-decomposition of Kn(2), invariant under τ∗.

Example 3.3. Let n = 4k = 8. Then k = 2 and D8 = {±1,±2,±3, 4}. By
Case (4), we have ρ1 = (2, 4,−2, 4), ρ2 = (1, 3,−1,−3), ρ3 = (3, 2, 2, 1) and
ρ4 = (4,−3,−2, 1), and σρ1 = (0, 2, 6, 4), σρ2 = (0, 1, 4, 3), σρ3 = (0, 3, 5, 7),
and σρ4 = (0, 4, 1, 7). The classes generated by the method in Case (4) are as
follows:

〈 0, 2, 6, 4 〉, 〈 0, 1, 4, 3 〉, 〈 0, 3, 5, 7 〉, 〈 0, 4, 1, 7 〉,
〈 1, 3, 7, 5 〉, 〈 1, 2, 5, 4 〉, 〈 1, 4, 6, 0 〉, 〈 1, 5, 2, 0 〉,
〈 2, 4, 0, 6 〉, 〈 2, 3, 6, 5 〉, 〈 2, 5, 7, 1 〉, 〈 2, 6, 3, 1 〉,
〈 3, 5, 1, 7 〉. 〈 3, 4, 7, 6 〉, 〈 3, 6, 0, 2 〉, 〈 3, 7, 4, 2 〉,

〈 4, 5, 0, 7 〉, 〈 4, 7, 1, 3 〉, 〈 4, 0, 5, 3 〉,
〈 5, 6, 1, 0 〉, 〈 5, 0, 2, 4 〉, 〈 5, 1, 6, 4 〉,
〈 6, 7, 2, 1 〉, 〈 6, 1, 3, 5 〉, 〈 6, 2, 7, 5 〉,
〈 7, 0, 3, 2 〉. 〈 7, 2, 4, 6 〉. 〈 7, 3, 0, 6 〉.

Summarizing the discussion in this section and combining with Lemma 3.1,
we have the following lemma.

Lemma 3.2. For every integer n ≥ 4, Kn(2) has a γ4-decomposition, and the
decomposition can be circulant if n ≥ 5, in the sense that it is invariant under
τ∗.

Let n ≥ 5 and t be any positive integer. For each i = 1, 2, . . . , t, we blow
up the partite set Ai = {i, i} of Kn(2) to A′i = {i1, i2, . . . , it, i1, i2, . . . , it}, and
use these sets as the partite sets of Kn(2t). A gregarious 4-cycle of Kn(2t)

is then of the form 〈φ0(a)j , φ1(b)k, φ2(c)j , φ3(d)k〉 for some gregarious 4-cycle
〈φ0(a), φ1(b), φ2(c), φ3(d)〉 of Kn(2) and j, k in {1, 2, . . . , t}. We extend the
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cyclic permutation τ = (0, 1, 2, . . . , n−1) on Zn to a mapping τ∗∗ of 4-cycles of
Kn(2t) by defining

τ∗∗〈φ0(a)j , φ1(b)k, φ2(c)j , φ3(d)k〉 = 〈φ0(τ(a))j , φ1(τ(b))k, φ2(τ(c))j , φ3(τ(d))k〉
= 〈φ0(a+1)j , φ1(b+1)k, φ2(c+1)j , φ3(d+1)k〉.

Let C be the circulant γ4-decomposition of Kn(2) constructed earlier in this
section. We will apply the the standard “expanding points method” in [5] to
C to produce a γ4-decomposition C∗ of Kn(2t).

First, suppose n is odd. Then, from Case (1) and Case (2), C has n−1
2

n-classes C(1), C(2), . . . , C(n−1
2 ) of 4-cycles such that C =

⋃n−1
2

i=1 C
(i). If C(i)

is the n-class generated by the 4-cycle 〈φ0(s0), φ1(s1), φ2(s2), φ3(s3)〉 of Kn(2),
then, for j = 1, 2, . . . , t and k = 1, 2, . . . , t,

C
(i)
jk = {τ r∗∗〈φ0(s0)j , φ1(s1)k, φ2(s2)j , φ3(s3)k〉 | 0 ≤ r ≤ n−1}

= {〈φ0(s0+r)j , φ1(s1+r)k, φ2(s2+r)j , φ3(s3+r)k〉 | 0 ≤ r ≤ n−1}

is the n-class ofKn(2t) generated by the 4-cycle 〈φ0(s0)j , φ1(s1)k, φ2(s2)j , φ3(s3)k〉.
Note that this class is invariant under τ∗∗ as C(i) is invariant under τ∗. Thus,
if we let

C∗ =
⋃
{C(i)

jk | 0 ≤ r ≤ n−1, 1 ≤ j ≤ t, 1 ≤ k ≤ t},
then C∗ is a γ4-decomposition of Kn(2t) and invariant under τ∗∗.

Now, suppose n is even. Then, from Case (3) and Case (4), C has one n
2 -class

C(1) and n−2
2 n-classes C(2), . . . , C(n

2 ) of 4-cycles such that C =
⋃n

2
i=1 C

(i). We
proceed similarly to the case when n is odd, and we can show that Kn(2t) has
a γ4-decomposition invariant under τ∗∗.

Combining this with Lemmas 1.2 and 3.2, we have the following theorem.

Theorem 3.3. For every integer n ≥ 4 and t ≥ 1, Kn(2t) has a γ4-decomposition,
and the decomposition can be circulant if n ≥ 5, in the sense that it is invariant
under τ∗∗.

The notations preceding Theorem 3.1 will be needed in the next section.

4. Multipartite graphs with one partite set of different size

Let Kh,n(m) denote K(h,m,m, . . . ,m) with m repeated n times. We assume
h is even, and then m is also even by Lemma 1.1. So let m = 2t. In the light
of Theorem 3.1, we may assume that h 6= m, and then we may assume n ≥ 4
due to Lemma 1.3.

Let the partite sets of Kh,n(2t) be Ai = {i1, i2, . . . , it, i1, i2, . . . , it} for i =
0, 1, . . . , n−1 and B = {a1, b1, a2, b2, . . . , ah/2, bh/2}. An edge of Kh,n(2t) is

called an α-edge if it joins two vertices in
⋃n−1
i=0Ai, and a β-edge if it involves a

vertex in B. A gregarious 4-cycle of Kh,n(2t) is said to be of type I if it involves
α-edges only, and of type II if it involves β-edges.
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The graph Kh,n(2t) has n(n−1)(2t)2
2 = 2n(n−1)t2 α-edges and 2hnt β-edges.

Note that a 4-cycle of type II consists of two α-edges and two β-edges. Thus,
for Kh,n(2t) to have a γ4-decomposition, we need to have 2hnt ≤ 2n(n−1)t2,
and so h ≤ (n−1)t. Regard Kn(2t) as a subgraph of Kh,n(2t). Thus, a 4-cycle
in Kn(2t) is a 4-cycle of type II in Kh,n(2t).

Suppose n ≥ 5 and let h is odd such that h ≤ (n−1)t. Assume n is odd.
Let C∗ be the γ4-decomposition of Kn(2t) obtained from C as in the preceding
section. Using notations there, we have

C∗ =
⋃
{C(i)

jk | 1 ≤ i ≤ n−1
2 , 1 ≤ j ≤ t, 1 ≤ k ≤ t}.

Let E = {(i, k) | 1 ≤ i ≤ n−1
2 , 1 ≤ k ≤ t}, and let F be a subset of E with

h
2 elements. This is possible since h

2 ≤
(n−1)t

2 = |E|. Since |B| = h, we can

partition B into h
2 subsets {a(i,k), b(i,k)} for (i, k) ∈ F , using elements of F as

indices for the vertices in B. For each (i, k) ∈ F and j = 1, 2, . . . , t, assume

C
(i)
jk = {〈φ0(s0+r)j , φ1(s1+r)k, φ2(s2+r)j , φ3(s3+r)k〉 | 0 ≤ r ≤ n−1},

and split each 4-cycle in C
(i)
jk into two paths of length 2 and join the end vertices

of the paths to a(i,k) and b(i,k), to produce two 4-cycles

〈a(i,k), φ0(s0+r)j , φ1(s1+r)k, φ2(s2+r)j〉, 〈b(i,k), φ2(s2+r)j , φ3(s3+r)k, φ0(s0+r)j〉
of type II. The following figure depicts this process.
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Let C
(i)∗
jk be the set of these 4-cycles of type II obtained from 4-cycles in C

(i)
jk

and put F =
⋃
{C(i)∗

jk | (i, k) ∈ F, 1 ≤ j ≤ t}. By the edges of cycles in F , the
vertex a(i,k) is joined to each vertex of the set

Na(i,k)
= {φ0(r)j , φ2(r)j | 0 ≤ r ≤ n−1, 1 ≤ j ≤ t}.

Note that, at the constructions of γ4-cycles in Section 3, we always have
(φ0, φ2) = (φ+, φ−) or (φ0, φ2) = (φ−, φ+). Thus, Na(i,k)

= {rj , rj | r =

0, 1, . . . , n−1, j = 1, 2, . . . , t} =
⋃n−1
r=0Ar. That is, every α-edge involving a(i,k)

is used by 4-cycles in F . The same is true for the α-edges involving b(i,k). Note

that, we keep the 4-cycles in C
(i)
jk untouched if (i, k) 6∈ F . Thus, the class

C∗∗ =
(⋃
{C(i)

jk | (i, k) ∈ E \ F, 1 ≤ j ≤ t}
) ⋃
F
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is a γ4-decomposition of Kh,n(2t).

If n is even, it gets more complicated. In this case, we have

C∗ =
⋃
{C(i)

jk | 1 ≤ i ≤ n
2 , 1 ≤ j ≤ t, 1 ≤ k ≤ t},

where C
(1)
jk are n-classes and C

(i)
jk are n

2 -classes for i = 2, 3, . . . , n2 . Put E =

{(i, k) | 2 ≤ i ≤ n
2 , 1 ≤ k ≤ t}. Recall that h

2 ≤
(n−1)t

2 . Assume h
2 ≤

(n−2)t
2 .

Let F be a subset of E with h
2 elements, and repeat the above procedure except

that we put

C∗∗ =
(⋃
{C(i)

jk | (i, k) ∈ E\F, 1 ≤ j ≤ t}
) ⋃ (⋃

{C(1)
jk | 1 ≤ j ≤ t, 1 ≤ k ≤ t}

) ⋃
F .

Then, C∗∗ is a γ4-decomposition of Kh,n(2t).

Summarizing the discussion above, we have the following theorem.

Theorem 4.1. Suppose n ≥ 5 and h is even with h ≤ (n−1)t. If n is odd or
n is even with h ≤ (n−2)t, then Kh,n(2t) is γ4-decomposable.

Corollary 4.2. Suppose n ≥ 5 and h is even with h ≤ n−1. Then, Kht,n(2t)

is γ4-decomposable for every t ≥ 1.

Proof. Since h is even, h ≤ n−1 implies h ≤ n−2 if n is even. By the above
theorem, Kh,n(2) is γ4-decomposable, and then, by Lemma 1.2, Kht,n(2t) is also
γ4-decomposable for every integer t ≥ 1. �

Example 4.1. Consider K4,8(2) with partite sets B = {a1, b1, a2, b2} and

Ai = {i, i} for i = 0, 1, . . . , 7. We have a γ4-decomposition of K8(2) in Example
3.3. Take the last two n-classes of them and proceed as explained above. Then,
we obtain four n-classes of 4-cycles of type II in K4,8(2), listed at the last four
columns in the following table. These four n-classes of K4,8(2) together with
the n

2 -class and the unused n-class above yields a γ4-decomposition of K4,8(2)

as below.

〈 0, 2, 6, 4 〉, 〈 0, 1, 4, 3 〉, 〈 a1, 0, 3, 5 〉, 〈 b1, 5, 7, 0 〉, 〈 a2, 0, 4, 1 〉, 〈 b2, 1, 7, 0 〉,
〈 1, 3, 7, 5 〉, 〈 1, 2, 5, 4 〉, 〈 a1, 1, 4, 6 〉, 〈 b1, 6, 0, 1 〉, 〈 a2, 1, 5, 2 〉, 〈 b2, 2, 0, 1 〉,
〈 2, 4, 0, 6 〉, 〈 2, 3, 6, 5 〉, 〈 a1, 2, 5, 7 〉, 〈 b1, 7, 1, 2 〉, 〈 a2, 2, 6, 3 〉, 〈 b2, 3, 1, 2 〉,
〈 3, 5, 1, 7 〉. 〈 3, 4, 7, 6 〉, 〈 a1, 3, 6, 0 〉, 〈 b1, 0, 2, 3 〉, 〈 a2, 3, 7, 4 〉, 〈 b2, 4, 2, 3 〉,

〈 4, 5, 0, 7 〉, 〈 a1, 4, 7, 1 〉, 〈 b1, 1, 3, 4 〉, 〈 a2, 4, 0, 5 〉, 〈 b2, 5, 3, 4 〉,
〈 5, 6, 1, 0 〉, 〈 a1, 5, 0, 2 〉, 〈 b1, 2, 4, 5 〉, 〈 a2, 5, 1, 6 〉, 〈 b2, 6, 4, 5 〉,
〈 6, 7, 2, 1 〉, 〈 a1, 6, 1, 3 〉, 〈 b1, 3, 5, 6 〉, 〈 a2, 6, 2, 7 〉, 〈 b2, 7, 5, 6 〉,
〈 7, 0, 3, 2 〉. 〈 a1, 7, 2, 4 〉. 〈 b1, 4, 6, 7 〉. 〈 a2, 7, 3, 0 〉. 〈 b2, 0, 6, 7 〉.

We remark that no γ4-decompositions of graphs in this section are circulant
since the graphs are not regular, that is, the graphs have vertices of distinct
degrees.
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5. Join of γ4-decomposable graphs

Throughout this section, let A1, A2, . . . , Am and B1, B2, . . . , Bn be pairwise
disjoint sets, and put hi = |Ai| for i = 1, 2, . . . ,m and kj = |Bj | for j =
1, 2, . . . , n.

Lemma 5.1. If K(A1, A2, . . . , An) is γ4-decomposable, then hp ≤
∑
i 6=p hi for

each p = 1, 2, . . . , n.

Proof. There are hp · (
∑
i6=p hi) edges which join a vertex in Ap to a vertex in⋃

i6=pAi. We say that these edges are of type Ip. There are
∑

1≤i<j≤m, i,j 6=p hihj
edges which join vertices in

⋃
i6=pAi among themselves. We say that these edges

are of type IIp. Any gregarious 4-cycle having a vertex in Ap involves two edges
of type Ip and two edges of type IIp. Thus, to have a γ4-decomposition, we
need more edges of type IIp than edges of type Ip. Therefore, we have

hp(
∑
i 6=p hi) ≤

∑
1≤i<j≤m, i,j 6=p hihj ≤ (

∑
i6=p hi)

2,

which yields the desired inequality. �

The conclusion of the above lemma is not true if we allow arbitrary 4-
cycles in the decomposition. For example, K(6, 2, 2) and K(10, 2, 2, 2, 2) are
decomposable into (not necessarily gregarious) 4-cycles, but they do not satisfy
the conclusion in the above lemma.

The following lemma is a simple restatement of a well-known result on per-
fect matchings in multipartite graphs.

Lemma 5.2. Let m ≥ 2 and
∑m
i=1 hi be even. Then,

⋃m
i=1Ai can be

partitioned into subsets consisting of of two vertices from distinct Ai and Aj if
and only if hp ≤

∑
i 6=p hi for each p = 1, 2, . . . ,m.

For graphs G1 = (V1, E1) and G2 = (V2, E2), the join G1+G2 of the two
graphs is the graph G = (V,E) where V = V1 ∪ V2 and E = E1 ∪ E2 ∪ {v1v2 |
v1 ∈ V1, v2 ∈ V2}. With this notation, we have that K(h1, h2, . . . , hm) =
K(hi1 , . . . , hij )+K(hij+1 , . . . , him) for any partition {{i1, . . . , ij}, {ij+1, . . . , im}}
of {1, 2, . . . ,m}. The union G1 ∪ G2 of graphs G1 and G2 is the graph
G = (V,E) where V = V1 ∪ V2 and E = E1 ∪ E2. Thus, we have that
G1 +G2 = G1 ∪G2 ∪K(V1, V2).

Lemma 5.3. Let
∑m
i=1 hi and

∑n
j=1 kj be even with m ≥ 2 and n ≥ 2. If

hp ≤
∑
i 6=p hi (p = 1, 2, . . . ,m) and kq ≤

∑
j 6=q kj (q = 1, 2, . . . , n),

then the graph K(
⋃m
i=1Ai,

⋃n
i=1Bi) has a decomposition into 4-cycles such that

no two vertices of a 4-cycle belong to the same subset Ai or Bj.
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Proof. By the above lemma,
⋃m
i=1Ai has a partition Φ into subsets consisting

of two elements from distinct Ai and Aj , and
⋃n
i=1Bi has a partition Ψ into

subsets consisting of two elements from distinct Bi and Bj . Note that

K(
⋃m
i=1Ai,

⋃n
i=1Bi) =

⋃ {
K({a1, a2}, {b1, b2})

∣∣ {a1, a2} ∈ Φ, {b1, b2} ∈ Ψ
}
.

However, since each K({a1, a2}, {b1, b2}) is simply the 4-cycle 〈 a1, b1, a2, b2 〉,
these 4-cycles constitute a desired decomposition. �

Theorem 5.4. Let
∑m
i=1 hi and

∑n
j=1 kj be even. If K(A1, . . . , Am) and

K(B1, . . . , Bn) are γ4-decomposable, then so is K(A1, . . . , Am, B1, . . . , Bn).

Proof. Because

K(A1, . . . , Am, B1, . . . , Bn)

= K(A1, . . . , Am)
⋃
K(B1, . . . , Bn)

⋃
K(
⋃m
i=1Ai,

⋃l
i=1Bn),

we only need to show that K(
⋃m
i=1Ai,

⋃n
i=1Bi) is γ4-decomposable. This fol-

lows immediately from Lemmas 5.1 and 5.3. Thus, the theorem is proved. �

With the above theorem, we can build up various γ4-decomposable graphs
from known γ4-decomposable graphs.

Note. Only after producing the main results of this paper, the authors
became aware of the fact that Billington and Hoffman [3] have also considered
gregarious 4-cycle decompositions (see [3]) and much of our results overlaps
theirs. However, the approach and the decompositions are different.
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