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A REMARK ON CIRCULANT DECOMPOSITIONS OF

COMPLETE MULTIPARTITE GRAPHS BY GREGARIOUS

CYCLES

Jung Rae Cho

Abstract. Let k, m and t be positive integers with m ≥ 4 and even. It is

shown that Kkm+1(2t) has a decomposition into gregarious m-cycles. Also,
it is shown that Kkm(2t) has a decomposition into gregarious m-cycles if
(m−1)2+3

4m
< k. In this article, we make a remark that the decompositions

can be circulant in the sense that it is preserved by the cyclic permutation

of the partite sets, and we will exhibit it by examples.

1. Introduction

Decompositions of graphs into edge-disjoint cycles has been an active research
area for many years. Especially, decompositions by cycles of a fixed length has
been considered in many different ways. It is shown that a complete graph of
odd orderdegree, or a complete graph of even order minus a 1-factor, has a de-
composition into k-cycles if k divides the number of edges (see [1], [14] and [15]
as well as their references). The key factor for all these works was the decom-
position of complete bipartite graphs obtained by Sotteau ([19]). Then, many
authors began to consider cycle decompositions with special properties ([4], [5],
[12], [13]). Especially, Billington and Hoffman ([2]) introduced the notion of gre-
garious cycles in tripartite graphs. However, the definition of gregarious cycles
has been modified in later research articles ([2], [4], [8]).

In this article, we will adopt the notations and the terminology used in [6].
Let Kn(t) denote the complete multipartite graph with n partite sets of size
t. We call a cycle in a multipartite graph gregarious if it involves at most one
vertex from any particular partite set. For simplicity, by γm-cycle we will mean
a gregarious cycle of length m, and by γm-decomposition a decomposition by
γm-cycles.
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Billington and Hoffman ([3]) and Cho and et el. ([8]) independently showed
that Kn(2t) has a γ4-decomposition for n ≥ 4 if and only if the number of
edges is divided by 4. In [9], Cho and Gould showed that Kn(2t) also has a γ6-
decomposition if and only if the number of edges is divided by 6. Then, similar
decompositions of Kn(t) by gregarious cycles of various fixed length followed
([16], [17], [18]).

We say that a decomposition is circulant if it is preserved by the cyclic
permutation of the partite sets. That is, if the graph is drawn with the n
partite sets placed on a circle (or an n-gon), then the graph is invariant under
the rotation by 2π

n . It will be clearly understood in later explanations and
examples later.

In this article, we remark that the decompositions in [7] and [11] are circulant,
and exhibit some decompositions by examples.

Because of the following theorem, we may only consider Kkm(2) and Kkm+1(2)

instead of Kkm(2t) and Kkm+1(2t).

Theorem 1.1. Let t be positive integers, m an even integer with m ≥ 4, and
n ≥ m. If Kn(2) has a circulant γm-decomposition, then so does Kn(2t).

Proof. We adopt the folklore “blow up” method used in [5] and [10]. We blow
up each vertex a of Kn(2) by replacing it with t new vertices and label them
a1, a2, . . . , at. We now join the vertex ai to the vertex bj if ab is an edge in Kn(2).
Obviously, this new graph is Km(2t). Let Φ be a circulant γm-decomposition of

Kn(2). If λ = 〈a(1), a(2), . . . , a(m)〉 is a γm-cycle in Φ then, for i = 1, 2, . . . , t and
j = 1, 2, . . . , t,

λij = 〈a(1)i , a
(2)
j , a

(3)
i , a

(4)
j , . . . , a

(m−1)
i , a

(m)
j 〉,

are t2 edge-disjoint γm-cycles ofKn(2t). The collection of all such cycles ofKn(2t)

obtained in this way constitutes a circulant γm-decomposition of Kn(2t). �

2. Cycles from feasible sequences of differences

Throughout the article, m is even with m ≥ 4.

If n = km + 1, let Zn = {0, 1, . . . , n−1} and use the arithmetic modulo n.
Then Dn = {±1,±2, . . . ,±n−12 } is a complete set of differences of two distinct

elements in Zn. In this case, let the partite sets of Kn(2) be A0 = {0, 0},
A1 = {1, 1}, · · · , An−1 = {n−1, n−1}, and put V = ∪n−1i=0 Ai.

If n = km, let Z∞n−1 = {∞, 0, 1, . . . , n−2}. Extending the arithmetic of
Zn−1 = {0, 1, . . . , n−2} to Z∞n−1, we define a ±∞ = ∞± a = ∞ for a ∈ Zn−1
and ∞±∞ = 0. Then, since n is even, the set Dn = {∞,±1,±2, . . . ,±n−22 }
is a complete set of differences of two distinct elements in Z∞n−1. In this case,

let the partite sets of Kn(2) be A∞ = {∞,∞}, A0 = {0, 0}, A1 = {1, 1}, · · · ,
An−2 = {n−2, n−2}, an put V = A∞ ∪

(
∪n−2i=0 Ai

)
.
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When n = km+1, we draw Kn(2) on a circle, evenly arranging the partite
sets. When n = km, we draw Kn(2) on a circular cone, by putting A∞ at the
top vertex of the cone and arranging A0, A1, · · · , An−2 at the circle of the cone.

An edge between a vertex in Ai and a vertex in Aj is called an edge of distance
d if i−j = ±d for some ±d in Dn. In particular, if d =∞ the edge is called an
edge of infinite distance because of the obvious reason. For example, in K13(2),

the edges 0 4 and 11 2 are edges of distance 4. In K12(2), the edge 10 2 is an

edge of distance 3, while ∞3 is an edge of infinite distance.

Let ρ = (r1, r2, . . . , rm) a sequence of elements in Dn. The sequence of initial
sums, or the s-sequence for short, of ρ is the σρ = (s0, s1, s2, . . . , sm−1) defined

by s0 = 0 and si =
∑i
j=1 rj for i = 1, 2, . . . ,m−1. Note that all entries of σρ

belong to Zn or all to Z∞n−1, and that si = si−1 + ri for each i = 1, 2, . . . ,m−1.

Let ρ = (r1, r2, . . . , rm) be a sequence of elements in Dn. We assume that,
when n = km and ρ involves ∞, ρ is of the form (r1, r2, . . . , rm−2,∞,∞) with
none of r1, r2, . . . , rm−2 being ∞. Then, ρ is called a feasible sequence or an
f-sequence for short, if

(i)
∑m
i=1 ri = 0, that is, the total sum of the terms of the sequence is zero,

and
(ii)

∑k
i=j ri 6= 0 for all j, k with 1 < j or k < m, that is, any proper partial

sum of consecutive entries is nonzero.

We may consider an s-sequence σρ as an ordering of partite sets involved in
a trail or circuit, and if ρ is an f-sequence then the trail or circuit is a γm-cycle
of Kkm(2).

Let φ+ and φ− be mappings of Zn or Z∞n−1 into V defined by φ+(a) = a and
φ−(a) = a for all a in Zn or Z∞n−1. A flag is a sequence φ∗ = (φ0, φ1, . . . , φm−1)
of φ+ and φ−. Given a flag φ∗, we also use the same notation φ∗ to denote the
mapping defined on (Z∞n−1)m by

φ∗(a0, a1, . . . , am−1) = 〈φ0(a0), φ1(a1), . . . , φm−1(am−1)〉.
Let τ : V → V be the mapping defined by τ(a) = a+1 and τ(a) = a+1 for

a in Zn or Z∞n−1. That is, τ is the permutation on the vertex set V , defined by
a product of cycles as

τ = (0, 1, 2, · · · , n−1)(0, 1, 2, · · · , n−1), when n = km+1,

or the permutation

τ = (0, 1, 2, · · · , n−2)(0, 1, 2, · · · , n−2)(∞)(∞), when n = km.

Thus, τ can be regraded as a permutation of partite sets as well.

Now, we define a mapping τ∗ on the set of γm-cycles by

τ∗(〈α0, α1, . . . , αm−1〉) = 〈τ(α0), τ(α1), . . . , τ(αm−1)〉,
where α0, α1, . . . , αm−1 are elements of V .
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Now, if a pair (ρ, φ∗) of an f-sequence and a flag is given, we can generate
a class of γm-cycles. {τ i∗(φ∗(σρ)) | i ∈ Zn} if n = km+1 or {τ i∗(φ∗(σρ)) | i ∈
Zn−1} if n = km. Note that both classes are invariant under τ∗. We call a
decomposition circulant if the decomposition is invariant under τ∗.

The above procedure is the method to produce a γm-decomposition of Kn(2)

or Kn+1(2). The remaining problem then is how to choose pairs of f-sequences
and flags so that, in the γm-cycles produced by these pairs, each of the edges
p q, p q, p q and p q of distance d appears exactly once for every possible distance
d.

Note that, in the above procedure, a γm-decomposition is obtained from a set
of specified γm-cycles by applying τ∗ repeatedly. Therefore, the decomposition
is circulant.

We will also see a basic difference between the γm-decompositions when n =
km+1 and n = km.

3. Examples when n = km

In this section, m is even with m ≥ 4 and (m−1)2+3
4m < k. Put n = km. The

number of edges in Kkm(2) is 2km(km−1) = 2km(n−1). The author of [11]
obtained a γm-decomposition by producing 2k(n−1) edge-disjoint γm-cycles in
2k classes, each containing n−1 γm-cycles.

Given Kkm(2), the procedure to produce pairs of f-sequences and flags is ex-
plained in [11]. We present two examples in this section following the procedure.

Example 3.1. (m is not divisible by 4.) Let m = 6 and k = 2. We have
n = km = 12 and D12 = {∞,±1,±2,±3,±4,±5}. Following [11], we have two
f-sequences

ρ = (1, 2, 1, 2,∞,−∞) and λ = (3,−4, 5, 4,−3,−5).

Then the corresponding s-sequences are

σρ = (0, 1, 3, 4, 6,∞) and σλ = (0, 3, 10, 4, 8, 5).

Apply two flags

φ∗1 = (φ+, φ+, φ−, φ−, φ−, φ−) and φ∗2 = (φ−, φ+, φ+, φ−, φ+, φ+)

specified in [11] to σρ, and we obtain two γ6-cycles

φ∗1(σρ) = 〈0, 1, 3, 4, 6,∞〉 and φ∗2(σρ) = 〈0, 1, 3, 4, 6,∞〉.

Apply two flags

ψ∗1 = (φ+, φ+, φ+, φ+, φ−, φ−) and ψ∗2 = (φ−, φ+, φ−, φ−, φ−, φ+)

specified in [11] to σλ, and we obtain two γ6-cycles

ψ∗1(σλ) = 〈0, 3, 10, 4, 8, 5〉 and ψ∗2(σλ) = 〈0, 3, 10, 4, 8, 5〉.
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Now, we apply τ i∗ for i = 0, 1, · · · , 10 to each of the above four γ6-cycles, and
then obtain the circulant γ6-decomposition

{τ i∗(φ∗1(σρ)), τ
i
∗(φ
∗
2(σρ)), τ

i
∗(ψ
∗
1(σλ)), τ i∗(ψ

∗
2(σλ)) | 0 ≤ i ≤ 10},

which can be partitioned into four classes, each with 11 γ6-cycles. We list them
as below. In Figure A, two γ6-cycles φ∗1(σρ) = 〈0, 1, 3, 4, 6,∞〉 and τ5∗ (φ∗1(σρ)) =
〈5, 6, 8, 9, 0,∞〉 of K12(2) are exhibited. Note that τ5∗ (φ∗1(σρ)) is obtained by

rotating vertices of φ∗1(σρ) on the circle by angle 4 · 2π11 counterclockwise while
fixing the vertex ∞.

〈 0, 1, 3, 4, 6,∞〉, 〈 0, 1, 3, 4, 6,∞〉, 〈 0, 3,10,4, 8, 5 〉, 〈 0, 3,10,4, 8, 5 〉,
〈 1, 2, 4, 5, 7,∞〉, 〈 1, 2, 4, 5, 7,∞〉, 〈 1, 4, 0, 5, 9, 6 〉, 〈 1, 4, 0, 5, 9, 6 〉,
〈 2, 3, 5, 6, 8,∞〉, 〈 2, 3, 5, 6, 8,∞〉, 〈 2, 5, 1, 6,10,7 〉, 〈 2, 5, 1, 6,10,7 〉,
〈 3, 4, 6, 7, 9,∞〉, 〈 3, 4, 6, 7, 9,∞〉, 〈 3, 6, 2, 7, 0, 8 〉, 〈 3, 6, 2, 7, 0, 8 〉,
〈 4, 5, 7, 8,10,∞〉, 〈 4, 5, 7, 8,10,∞〉, 〈 4, 7, 3, 8, 1, 9 〉, 〈 4, 7, 3, 8, 1, 9 〉,
〈 5, 6, 8, 9, 0,∞〉, 〈 5, 6, 8, 9, 0,∞〉, 〈 5, 8, 4, 9, 2,10 〉, 〈 5, 8, 4, 9, 2,10 〉,
〈 6, 7, 9,10,1,∞〉, 〈 6, 7, 9,10,1,∞〉, 〈 6, 9, 5,10,3, 0 〉, 〈 6, 9, 5,10,3, 0 〉,
〈 7, 8,10,0, 2,∞〉, 〈 7, 8,10,0, 2,∞〉, 〈 7,10,6, 0, 4, 1 〉, 〈 7,10,6, 0, 4, 1 〉,
〈 8, 9, 0, 1, 3,∞〉, 〈 8, 9, 0, 1, 3,∞〉, 〈 8, 0, 7, 1, 5, 2 〉, 〈 8, 0, 7, 1, 5, 2 〉,
〈 9,10,1, 2, 4,∞〉, 〈 9,10,1, 2, 4,∞〉, 〈 9, 1, 8, 2, 6, 3 〉, 〈 9, 1, 8, 2, 6, 3 〉,
〈 10,0, 2, 3, 5,∞〉, 〈 10,0, 2, 3, 5,∞〉, 〈 10,2, 9, 3, 7, 4 〉, 〈 10,2, 9, 3, 7, 4 〉.

Example 3.2. (m is divisible by 4.) Let m = 8 and k = 3. Then n = km = 24
and D24 = {∞,±1,±2, . . . ,±11}. Following [11], we have three f-sequences

ρ = (1, 2, 3, 1, 2, 3,∞,−∞), λ = (4,−5, 6,−7,−6, 5,−4, 7)

and η = (8,−9, 10,−11,−10, 9,−8, 11),

and the corresponding s-sequences are

σρ = (0, 1, 3, 6, 7, 9, 12,∞), σλ = (0, 4, 22, 5, 21, 15, 20, 16)

and ση = (0, 8, 22, 9, 21, 11, 20, 12),
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respectively. Applying two flags

φ∗1 = (φ+, φ+, φ−, φ−, φ−, φ+, φ−, φ−) and φ∗2 = (φ−, φ+, φ+, φ+, φ−, φ−, φ+, φ+)

specified in [11] to σρ, we obtain two γ8-cycles

φ∗1(σρ) = 〈0,1,3,6,7,9,12,∞〉 and φ∗2(σρ) = 〈0,1,3,6,7,9,12,∞〉.
Applying another two flags

ψ∗1 = (φ+, φ+, φ+, φ+, φ+, φ−, φ+, φ−) and ψ∗2 = (φ−, φ−, φ−, φ−, φ−, φ+, φ−, φ+)

specified in [11] to both σλ and ση, we obtain four γ8-cycles

ψ∗1(σλ) = 〈0,4,22,5,21,15,20,16〉, ψ∗2(σλ) = 〈0,4,22,5,21,15,20,16〉,
ψ∗1(ση) = 〈0, 8,22,9,21,11,20,12〉, ψ∗2(ση) = 〈0, 8,22,9,21,11,20,12〉.

Applying τ i∗ for i = 0, 1, · · · , 22 to each of the above six γ8-cycles, we obtain six
classes, each with 23 γ8-cycles. These constitute a circulant γ8-decomposition
of K24(2).

4. Examples when n = km+ 1

In this section, m is even with m ≥ 4. Put n = km + 1. The number
of edges in Kkm+1(2) is 2(km+1)km = 2kmn. The author of [7] obtained a
γm-decomposition by producing 2kn edge-disjoint γm-cycles in 2k classes, each
containing n γm-cycles.

Given Kkm+1(2), the procedure to produce pairs of f-sequences and flags is
explained in [7]. We present two examples in this section following the proce-
dure.

Example 4.1. (m is not divisible by 4.) Let m = 10 and k = 2. Then,
n = km + 1 = 21 and D21 = {±1,±2, . . . ,±10}. Following [7], we have two
f-sequences

ρ = (1,−2,3,−4,5,4,−3,2,−1,−5) and λ = (6,−7,8,−9,10,9,−8,7,−6,−10).

Then, the corresponding s-sequences are

σρ = (0, 1, 20, 2, 19, 3, 7, 4, 6, 5) and σλ = (0, 6, 20, 7, 19, 8, 17, 9, 16, 10),

respectively. Applying two flags

φ∗
1 = (φ+, φ+, φ+, φ+, φ+, φ+, φ−, φ+, φ−, φ−) and φ∗

2 = (φ−, φ+, φ−, φ+, φ−, φ−, φ−, φ−, φ−, φ+)

specified in [11] to both σρ and σλ, we obtain the following four starter cycles.

φ∗
1(σρ) = 〈 0, 1, 20, 2, 19, 3, 7, 4, 6, 5 〉, φ∗

2(σρ) = 〈 0, 1, 20, 2, 19, 3, 7, 4, 6, 5 〉,
φ∗
1(σλ) = 〈 0, 6, 20, 7, 19, 8, 17, 9, 16, 10 〉, φ∗

2(σλ) = 〈 0, 6, 20, 7, 19, 8, 17, 9, 16, 10 〉.

Applying τ i∗ for i = 0, 1, · · · , 20 to each of the above γ10-cycles, we obtain four
classes, each with 21 gregarious 10-cycles. These constitute a circulant γ10-
decomposition of K21(2). In Figure B, two γ10-cycles φ∗1(σρ) and τ9∗ (φ∗1(σρ)) =

〈 9,10,8,11,7,12,16,13,15,14 〉 of K21(2) are exhibited. Note that, τ9∗ (φ∗1(σρ)) is

obtained by rotating φ∗1(σρ) by angle 8 · 2π21 counterclockwise.
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Example 4.2. (m is divisible by 4.) Let m = 8 and k = 3. Then, n = km+1 =
25 and D25 = {±1,±2, . . . ,±12}. Following [7], we have three f-sequences

ρ = (1,−2,3,−4,−3,2,−1,4), λ = (5,−6,7,−8,−7,6,−5,8)

and η = (9,−10,11,−12,−11,10,−9,12).

The corresponding s-sequences are

σρ = (0, 1, 24, 2, 23, 20, 22, 21), σλ = (0, 5, 24, 6, 23, 16, 22, 17)

and ση = (0, 9, 24, 10, 23, 12, 22, 13),

respectively. Applying two flags

φ∗1 = (φ+, φ+, φ+, φ+, φ+, φ−, φ+, φ−) and φ∗2 = (φ−, φ−, φ−, φ−, φ−, φ+, φ−, φ+)

specified in [7] to each of the three s-sequences, we obtain the following six
starter cycles.

φ∗1(σρ) = 〈 0, 1,24, 2, 23,20,22,21 〉, φ∗2(σρ) = 〈 0, 1,24, 2, 23,20,22,21 〉,
φ∗1(σλ) = 〈 0,5,24, 6, 23,16,22,17 〉, φ∗2(σλ) = 〈 0,5,24, 6, 23,16,22,17 〉,
φ∗1(ση) = 〈 0, 9,24,10,23,12,22,13 〉, φ∗2(ση) = 〈 0, 9,24,10,23,12,22,13 〉.

Applying τ i∗ for i = 0, 1, · · · , 24 to each of the above γ8-cycles, we obtain
six classes, each with 25 gregarious 8-cycles. These constitute a circulant γ8-
decomposition of K25(2).
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