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RICCI CURVATURE, CIRCULANTS, AND EXTENDED

MATCHING CONDITIONS

Mehmet Daǧlı, Oktay Olmez, and Jonathan D. H. Smith

Abstract. Ricci curvature for locally finite graphs, as proposed by Lin,

Lu and Yau, provides a useful isomorphism invariant. A Matching Condi-
tion was introduced as a key tool for computation of this Ricci curvature.

The scope of the Matching Condition is quite broad, but it does not
cover all cases. Thus the current paper introduces extended versions of

the Matching Condition, and applies them to the computation of the Ricci

curvature of a class of circulants determined by certain number-theoretic
data. The classical Matching Condition is also applied to determine the

Ricci curvature for other families of circulants, along with Cayley graphs

of abelian groups that are generated by the complements of (unions of)
subgroups.

1. Introduction

This paper is devoted to the study of the Lin-Lu-Yau version of Ricci curva-
ture, as an isomorphism invariant for locally finite graphs. In [7], the Matching
Condition for an edge of a graph (Definition 2.1) was introduced as a tool for
the computation of these Ricci curvatures. However, there are various cases
where the Matching Condition cannot be applied, for example the 5-cycle C5.
Thus the current paper introduces new Extended Matching Conditions (§2),
more specifically of types 2 (Definition 2.5) and 3 (Definition 2.9). For example,
(each edge in) C5 satisfies the Extended Matching Condition of Type 2. The
respective Theorems 2.7 and 2.10 then provide formulas for the Ricci curvature
of an edge satisfying the Extended Matching Condition of Type 2 or 3.

The applications of Ricci curvature discussed here are mainly focused on the
class of circulant graphs. We employ various conventions for the specification
of these graphs. The basic convention Cn(J) denotes the circulant graph on
the vertex set Z/n of residues modulo a positive integer n, with edges {r, s}
precisely when r− s or s− r lies in the jump set J . In this notation, the set J
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may be replaced by a list of its elements. The n-element cycle, corresponding
to a jump set {u} with u coprime to n, is denoted as usual by Cn.

Section 3 uses the Extended Matching Conditions of Types 2 and 3 to com-
pute the Ricci curvature of circulants Cn(u, v) with prime n ≡ 1 mod 4 and
u2 + v2 = 0 in Z/n. The main result of that section, Theorem 3.4, shows that
these circulants are Ricci-flat for n > 5, with the exceptions of C13(2, 3) and
C17(1, 4).

Section 4 studies the Cayley graph Γ(G,S) of the complement S = GrH of
a subgroup H of a finite abelian group G. This class of graphs includes many
circulants (§4.3). Theorem 4.3 computes

2 + |G| − 2|H|
|G| − |H|

as the constant Ricci curvature of Γ(G,S), using the classical Matching Con-
dition.

The remaining part of the paper, Section 5, computes the constant Ricci
curvature of a circulant Cn(J), where n is a product of mutually coprime
factors pi > 3, and the jump set J is the complement Z/n r S of the union
S =

⋃m
i=1 piZ/n of subgroups of the cyclic group Z/n. Relevant counting

lemmas are assembled in §5.2. A matching derived in §5.3 then enables the
classical Matching Condition to be applied, producing the formula

2 +
∏m

i=1(pi − 2)∏m
i=1(pi − 1)

for the Ricci curvature of Cn(J) that is exhibited in Theorem 5.13. The con-
cluding Remark 5.14 discusses potential extensions of the theorem, but these
remain open in general.

1.1. Notational conventions

We regard a simple graph (V,E) as a relational structure, with E as an
irreflexive symmetric binary relation on V . Thus for x ∈ V , we have xE as the
set of neighbors of x. Elements of E are written as doubletons from V .

The symbol ] denotes the disjoint union of sets. In this paper, the symbol
may normally be regarded as the usual union, coming with a certificate that
the uniands are actually disjoint.

1.2. Ricci curvatures and Ricci flatness

Since inequivalent but similar notions of Ricci curvature for a simple graph
(V,E) are now current in the literature, we feel that it may be helpful to make
some comments. Recall that for a vertex x in V , the ε-ball bεx centered at x is
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the probability distribution on V defined by

bεx(v) =


1− ε, v = x ;

ε
/
|xE |, v ∈ xE ;

0, otherwise.

For an edge {x, y} in E, the Wasserstein distance W (bεx, b
ε
y) is the cost of an

optimal transport (minimizing total distance × probability weight) from bεx
to bεy. Then κε(x, y) = 1 − W (bεx, b

ε
y), and the Lin-Lu-Yau version of Ricci

curvature is κ(x, y) = limε→0
1
εκε(x, y). See [7] for the details, including the

dual role played by 1-Lipschitz functions f : V → R. The Ricci curvature
for graphs proposed by Lin, Lu and Yau in [4] is a variant of that proposed
by Ollivier [6], who considered the case ε = 1 and ε = 1

2 in the probability
distribution. Here, the corresponding quantity 1 − ε is often described as the
idleness [2].

Although both definitions have some similar properties, they vary in several
aspects. The difference can be seen, for example, by considering Ricci-flat
graphs, i.e., graphs with constant curvature 0. Recently, Lin and Lu classified
all Ricci-flat connected graphs with girth at least five [5]. They showed that
if G is a Ricci-flat graph with girth g(G) ≥ 5, then G is one of the following
graphs: the infinite path, a cycle Cn with n ≥ 6, the dodecahedral graph, the
Petersen graph, or the half-dodecahedral graph. They also constructed several
Ricci-flat graphs with girth 3 or 4. An analogue of this study with Ollivier’s
definition of Ricci curvature was conducted by Bhattacharya and Mukherjee
[1]. They proved that a connected graph G with girth g(G) ≥ 5 is Ricci-flat
in the sense of Ollivier if and only if G is one of the following: a path Pn with
n ≥ 2, the infinite ray, the infinite path, a cycle Cn with n ≥ 5, or the star
graph Tn with n ≥ 3. Except for the infinite path and cycles Cn with n ≥ 6, the
respective Ricci-flat graphs according to Lin-Lu-Yau and Ollivier are different.

2. Matching Conditions

Throughout this section, we will consider a locally finite simple graph G =
(V,E).

2.1. The classical Matching Condition

Definition 2.1 ([7, Definition 6.1]). An edge {x, y} of the graph G is said to
satisfy the Matching Condition if there is a perfect matching (in the graph-
theoretical sense) between the two sets xE r

(
{y} ∪ yE

)
and yE r

(
{x} ∪ xE

)
.

If an edge {x, y} of a graph G satisfies the Matching Condition, then x and
y have the same degree in G [7, Lemma 6.2(a)].

Theorem 2.2 ([7, Theorem 6.3]). In a locally finite graph G = (V,E), suppose
that {x, y} is an edge satisfying the Matching Condition. Then

κ(x, y) =
(
2 +

∣∣xE ∩ yE∣∣) /δ,
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where δ is the common degree of x and y.

2.2. The Extended Matching Condition

For a vertex p of G and subset S of V , we will adopt the usual metric space
convention

d(p, S) = inf{d(p, s) | s ∈ S}.
Suppose that {x, y} is an edge of G. For p in xE r

(
{y} ∪ yE

)
and S =

yE r
(
{x} ∪ xE

)
, note d(p, S) ≤ 3. Similarly, note d(q, T ) ≤ 3 for q in yE r(

{x} ∪ xE
)

and T = xE r
(
{y} ∪ yE

)
.

Definition 2.3. Let {x, y} be an edge of G. Suppose that there are disjoint
partitions

xE r
(
{y} ∪ yE

)
= P1 ] P2 ] P3

and

yE r
(
{x} ∪ xE

)
= Q1 ]Q2 ]Q3

such that for 1 ≤ i ≤ 3, each vertex in Pi is matched to a unique vertex in Qi

by a path of length i, and vice versa. Then the edge {x, y} is said to satisfy
the Extended Matching Condition.

If P2 and P3 are empty, the Extended Matching Condition reduces to the
original Matching Condition of Definition 2.1. The following observation ex-
tends [7, Lemma 6.2(a)].

Lemma 2.4. Suppose that an edge {x, y} of G satisfies the Extended Matching
Condition. Then the vertices x and y have the same degree in G.

Proof. Note that∣∣xE∣∣ =
∣∣xE r

(
{y} ∪ yE

)∣∣+
∣∣xE ∩ yE∣∣+ 1

= |P1|+ |P2|+ |P3|+
∣∣xE ∩ yE∣∣+ 1

= |Q1|+ |Q2|+ |Q3|+
∣∣xE ∩ yE∣∣+ 1

=
∣∣yE r

(
{x} ∪ xE

)∣∣+
∣∣xE ∩ yE∣∣+ 1 =

∣∣yE∣∣ .
Thus the degrees of x and y coincide. �

2.3. The Extended Matching Condition of Type 2

Definition 2.5. The Extended Matching Condition of Definition 2.3 is said to
be of Type 2 if the following hold:

(a) P2 is a singleton {p};
(b) Q2 is a singleton {q};
(c) d(p,Q1) ≥ 2;
(d) d(q, P1) ≥ 2; and
(e) P3 = Q3 = ∅.
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Example 2.6. Each edge within C5 satisfies the Extended Matching Condition
of Type 2. For example, with x = 0 and y = 1, one has p = 4 and q = 2, while
P1 and Q1 are empty.

Theorem 2.7. In a locally finite graph G = (V,E), suppose that {x, y} is an
edge satisfying the Extended Matching Condition of Type 2. Then

κ(x, y) =
(
1 +

∣∣xE ∩ yE∣∣) /δ,
where δ is the common degree of x and y.

Proof. Let ε be a small positive number. The measure bεx assigns weight 1− ε
to the vertex x, and weight ε/δ to each vertex in xE . The measure bεy assigns

weight 1−ε to the vertex y, and weight ε/δ to each vertex in yE . Both measures
assign weight 0 to the remaining vertices. Set c = |xE ∩ yE |.

A coupling from bεx to bεy is obtained as follows. First, transfer the weight

1− ε− ε/δ from the vertex x to the vertex y. Then, for each vertex in xE ∩yE ,
leave the weight ε/δ there alone. Next, transfer the weights ε/δ from each
vertex in xE r

(
{p, y} ∪ yE

)
to the corresponding vertex in yE r

(
{q, x} ∪ xE

)
along the matching edge. Finally, transfer the weight ε/δ from the vertex p to
the vertex q along a path of distance 2. Then the transportation cost is

(2.1) W (bεx, b
ε
y) ≤ 1− ε− ε

δ
+
ε

δ
(δ − c− 2) +

ε

δ
· 2 = 1− (c+ 1)

ε

δ
.

Next, consider the function f : V → R defined by

f(v) =

 1, v ∈ P1 ∪ P2 ∪ {x};
−1, v ∈ Q2;

0, otherwise.

Note that the function f is 1-Lipschitz, since d(x, q) = d(p, q) = 2 and d(q, P1) ≥
2. Then

W (bεx, b
ε
y) ≥

(
1− ε− ε

δ

)
· 1 +

ε

δ
(δ − c− 1) · 1− ε

δ
(−1) = 1− (c+ 1)

ε

δ
.

It follows that κ(x, y) = (1 + c)/δ =
(
1 +

∣∣xE ∩ yE∣∣) /δ. �

Example 2.8. The circulant C10(1, 4) is connected and edge-transitive, with
an automorphism group that includes the transpositions

(0 5) , (1 6) , (2 7) , (3 8) , (4 9) .

Each edge {x, y} of C10(1, 4) satisfies the Extended Matching Condition of
Type 2, with

∣∣xE ∩ yE∣∣ = 0 and δ = 4. For example, taking x = 0 and y = 1,
one has P1 = {4, 6}, Q1 = {5, 7}, p = 9 and q = 2. Thus κ(x, y) = 1/4.

2.4. The Extended Matching Condition of Type 3

Definition 2.9. The Extended Matching Condition of Definition 2.3 is said to
be of Type 3 if the following hold:

(a) P3 is a singleton {p};
(b) Q3 is a singleton {q};
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(c) d(p,Q1) = 3;
(d) d(q, P1) = 3; and
(e) P2 = Q2 = ∅.

Theorem 2.10. In a locally finite graph G = (V,E), suppose that {x, y} is an
edge satisfying the Extended Matching Condition of Type 3. Then

κ(x, y) =
∣∣xE ∩ yE∣∣ /δ,

where δ is the common degree of x and y.

Proof. The proof is similar to the proof of Theorem 2.7, but with

f(v) =


1, v ∈ P1 ∪ {x} ∪ pE ,
−1, v ∈ Q3,

2, v ∈ P3,
0, otherwise,

as the 1-Lipschitz function f : V → R. �

3. Sums of two squares

The Extended Matching Conditions of Types 2 and 3 will now be used to
compute the Ricci curvature of circulants Cn(u, v) with prime n ≡ 1 mod 4 and
u2 +v2 = 0 in Z/n. Since the latter condition, taking 0 < u 6= v ≤ n/2, implies
that n itself is the largest power of n that divides the integer u2+v2 < n2/4, the
“Sum of Two Squares Theorem” [3, Th. 366] forces the congruence restriction
on n.

3.1. Preliminary lemmas

Lemma 3.1. Consider a circulant Cn(u, v) with prime n ≡ 1 mod 4, and
nonzero residues u, v in Z/n with u2 + v2 = 0. Then Cn(u, v) is isomorphic to
a circulant Cn(a, b) with a, b coprime and a2 + b2 = 0.

Proof. Suppose that the integers u and v have greatest common divisor d, say
u = da and v = db with a and b coprime. Then the prime number n divides
the integer u2 + v2 = d2(a2 + b2). Since the residues u and v are nonzero, n
does not divide d. Thus a2 + b2 = 0 in Z/n, and

Z/n → Z/n;x 7→ dx

yields an isomorphism from Cn(a, b) to Cn(u, v). �

Lemma 3.2. For a modulus n, consider non-zero coprime residues a, b in Z/n.

(a) The circulant Cn(a, b) is connected.
(b) If n ≡ 1 mod 4 is a prime with a2 + b2 = 0, the circulant Cn(a, b) is

edge-transitive.
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Proof. (a) Because the integers a and b are coprime, there are integers l and
m with la+mb = 1. It follows that any two residues in Z/n are connected by
a series of steps forward or backward by a or b.

(b) For any residue c in Z/n, the maps

x 7→ c− x, x 7→ c+ x, and x 7→ a−1bx

are automorphisms of Cn(a, b). The edges of Cn(a, b) are either of the form
{i, i + a} or {j, j + b} for residues i, j. Now x 7→ k − i + x maps the edge
{i, i + a} to {k, k + a}, while x 7→ l − j + x maps {j, j + b} to {l, l + b}.
Finally, x 7→ j − a−1bi + a−1bx maps {i, i + a} to {j, j + b}. Thus Cn(a, b) is
edge-transitive. �

Example 3.3. The circulant C5(1, 2) is the complete graph K5. As such, it
has constant Ricci curvature 5/4 [4, 7].

3.2. The main result

Theorem 3.4. Let n ≡ 1 mod 4 be a prime number greater than 5. Consider
non-zero coprime residues a, b in Z/n with a2 + b2 = 0.

(a) In Cn(a, b), the neighbor sets 0E and aE are disjoint.
(b) The circulants C13(2, 3) and C17(1, 4) have Ricci curvature 1/4. Oth-

erwise, Cn(a, b) is flat.

Proof. (a) Note 0E = {a, b,−a,−b} and aE = {0, a + b, a − b, 2a}. Since the
residues a and b are nonzero, the only potential for a nontrivial intersection
would occur if 2a = ±b or 2b = ±a. Assume, without loss of generality,
that 4a2 = b2 = −a2. Then n divides 5a2, so n = 5. This case (treated in
Example 3.3) is now excluded by the hypothesis.

(b) By Lemma 3.2(b), it will suffice to compute κ(0, a). With reference to
the notations of Definitions 2.3, 2.5 and 2.9, write:{

P1 = {a− b, a+ b}, p = 2a,

Q1 = {−b, b}, q = −a.

There is a matching
a− b a+ b
| |
−b b

from P1 to Q1. Now d(p,Q1) ≥ 2, since d(p,Q1) = 1 would imply the con-
tradictions a ∈ {0, b} or 9a2 = b2, whence n = 5. Similarly, d(q, P1) ≥ 2 and
d(−a, 2a) ≥ 2. However, d(−a, 2a) ≤ 3. Thus two cases remain.

Case I: d(−a, 2a) = 2. Here, the neighbor sets

(−a)E = {0,−a− b,−a+ b,−2a} and (2a)E = {a, 3a, 2a− b, 2a+ b}
intersect, and it follows from Theorem 2.7 that κ = 1/4. This situation arises
in two subcases.
Case I(a): 3a = −a± b, so b2 = 16a2, yielding the circulant C17(1, 4).
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Case I(b): −a± b = 2a∓ b, so 4b2 = 9a2, for the circulant C13(2, 3).
Case II: d(−a, 2a) = 3. Here, the neighbor sets (−a)E and (2a)E are disjoint,
so Theorem 2.10 shows that Cn(a, b) is Ricci flat. �

4. Subgroup complements

4.1. Cayley graphs

Let S be a subset of an additive group G, with 0 /∈ S = −S. The Cayley
graph Γ(G,S) of G with respect to S is the simple graph with vertex set G,
in which two vertices g and g′ are adjacent if and only if g − g′ ∈ S. This
section will use the classical Matching Condition to obtain a formula for the
Ricci curvature of certain Cayley graphs defined on finite abelian groups, and
in particular for certain circulants implemented by these Cayley graphs.

Lemma 4.1. Suppose that S is a subset of an additive group G, with 0 /∈ S =
−S. Then for each element l of G, the invertible translation

R+(l) : G→ G;x 7→ x+ l

is an automorphism of Γ(G,S).

Proof. Suppose that {g, g′} is an edge of Γ(G,S), say g = s + g′ with s ∈ S.
Then g + l = s+ g′ + l, so that {g + l, g′ + l} is also an edge of Γ(G,S). �

Lemma 4.2. Let S be the complement G r H of a proper subgroup H of a
finite additive group G.

(a) The set S is closed under negation.
(b) The subset S generates G.
(c) The Cayley graph Γ(G,S) is connected.

Proof. (a) Negation is a permutation of the set G. Then since the subset H of
G is closed under negation, so is its complement S.

(b) Consider an element s of the complement of H. Then each element h of
H is the difference (h+ s)− s of elements of S.

(c) Consider elements g and g′ of G. By (b), the group element g − g′ is a
sum of elements of S. Thus g and g′ are connected by a path in Γ(G,S), along
edges corresponding to the summands of g − g′. �

4.2. Ricci curvature of Cayley graphs

Theorem 4.3. Let H be a proper subgroup of a finite abelian group G. Take
S = GrH. Then the Cayley graph Γ(G,S) has

κ =
2 + |G| − 2|H|
|G| − |H|

as its constant Ricci curvature.
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Proof. Let E be the edge set of Γ(G,S), so that

{g, g′} ∈ E ⇔ g − g′ /∈ H.

We will compute the Ricci curvature κ(0, s) for an arbitrary element s of S.
Note that 0E = GrH, whence

sE = 0E + s = (GrH) + s = Gr (H + s)

by Lemma 4.1. Thus

0E =
(
0E ∩ sE

)
]
(
0E ∩ sE

)
=
(
0E ∩ sE

)
]
(
0E ∩ (H + s)

)
=
(
0E ∩ sE

)
] (H + s)

and

sE =
(
sE ∩ 0E

)
]
(
sE ∩ 0E

)
=
(
sE ∩ 0E

)
]
(
sE ∩H

)
=
(
0E ∩ sE

)
]H.

In particular,

(4.1) 0E ∩ sE = Gr
(
H ] (H + s)

)
.

The existence of a matching between

0E r
(
{s} ∪ sE

)
= (H + s) r {s}

and

sE r ({0} ∪ 0E) = H r {0}

follows since G is abelian: There is an edge between the two vertices h+ s and
h for all h ∈ H r {0}. Thus Γ(G,S) satisfies the Matching Condition.

Using (4.1), Theorem 2.2 shows that

κ(0, s) =
2 + |0E ∩ sE |
|G| − |H|

=
2 + |Gr

(
H ] (H + s)

)
|

|G| − |H|
=

2 + |G| − 2|H|
|G| − |H|

.

Now an arbitrary edge of Γ(G,S) has the form {g, s+ g} = {0, s}+ g for some
g ∈ G and s ∈ S. By Lemma 4.1, the translation R+(g) is an automorphism
of Γ(G,S). Thus

κ(g, s+ g) = κ(0, s) =
2 + |G| − 2|H|
|G| − |H|

,

as required to complete the proof of the theorem. �
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4.3. Circulants from subgroup complements

To conclude the current section, we exhibit a direct application of Theo-
rem 4.3 to the determination of Ricci curvatures of circulants. Consider the
product n = pq of positive integers p and q, with p > 1. Consider the circulant
Cn(J), with J = {s ∈ Z/n r pZ/n | s ≤ bn/2c}.

Corollary 4.4. The circulant graph Cn(J) has

κ =
2 + q(p− 2)

q(p− 1)

as its constant Ricci curvature.

Proof. Take G = Z/n and H = pZ/n in Theorem 4.3, so |H| = q. �

Example 4.5. If q = 1, then Corollary 4.4 offers one more derivation of the
well-known formula n/(n − 1) [4, 7] for the constant Ricci curvature of the
complete graph Kn = Cn(1, 2, . . . , bn/2c).

5. Subgroup union complements

Consider a product

(5.1) n =

m∏
i=1

pi

of mutually coprime integer factors pi > 3. Within the cyclic group Z/n,
consider the union

S =

m⋃
i=1

piZ/n

of subgroups, and the jump set

(5.2) J+ = {s ∈ Z/n r S | s ≤ bn/2c}.

The goal of this section is to compute the (constant) Ricci curvature of the
circulant Cn(J+). Note that Example 4.5 represents the case m = 1.

5.1. Notational conventions

Although the jump set (5.2) follows the standard convention for specifying a
circulant structure on Z/n, in listing jumps of up to bn/2c that may be forward
or backward, it will actually be more convenient for the purposes of this section
to take the equivalent full jump set J = Z/n r S, and refer to the circulant
Cn(J) rather than Cn(J+).

There is an isomorphism

(5.3) Z/n →
m⊕
i=1

Z/pi
;nZ + x 7→ (p1Z + x, . . . , pmZ + x)
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given by the Chinese Remainder Theorem. Since it is easier to work in Z/p1
⊕

· · · ⊕ Z/pm
than in Z/n, we will use the following notational conventions for

isomorphic images under (5.3):

The image of the jump set J is

(5.4) J ′ = {(j1, . . . , jm) | ∀ 1 ≤ k ≤ m, jk 6= 0},
and the image of Cn(J) is written as Cn(J ′).

Let j ∈ J and jk = pkZ + j ∈ Z/pk
for each 1 ≤ k ≤ m. For given 1 ≤ k ≤ m,

the isomorphic images of the subgroup pkZ/n of Z/n and its coset j + pkZ/n
are respectively given by

(5.5) S′k =
{

(s1, . . . , sm) ∈
m⊕
i=1

Z/pi

∣∣∣ sk = 0
}

and

(5.6) T ′k =
{

(t1, . . . , tm) ∈
m⊕
i=1

Z/pi

∣∣∣ tk = jk

}
.

Therefore, the unions

(5.7) S′ =

m⋃
k=1

S′k and T ′ =

m⋃
k=1

T ′k

are the isomorphic images of S and j + S, respectively.

5.2. Counting lemmas

This section prepares four technical lemmas for subsequent use. The first of
the four is a standard identity for binomial coefficients.

Lemma 5.1. The identity

(5.8)

l∑
k=0

(
m

k

)(
m− k
l − k

)
=

(
m

l

)
2l

holds for positive integers l and m with 0 ≤ l ≤ m.

Proof. Consider a set M with m elements. The right hand side of (5.8) counts
the number of subset chains

(5.9) K ⊆ L ⊆M
with |L| = l, by first making any one of

(
m
l

)
choices for the l-element subset L

of N , and then choosing K from any of the 2l subsets of L.
The left hand side of (5.8) counts the same number of subset chains (5.9) by

first selecting an integer k from {0, . . . , l}, next making any one of
(
m
k

)
choices

for a k-element subset K of M , and finally, from among the m − k elements
of M rK, choosing any one of the

(
m−k
l−k
)

subsets of size l − k to make up the
complement of K in L. �



212 M. DAǦLI, O. OLMEZ, AND J. D. H. SMITH

We now resume the notation of §5.1.

Lemma 5.2. Consider the circulant Cn(J) on the vertex set Z/n, with jump
set J = Z/n r S, edge set E, and j ∈ J .

(a) |0E | =
∏m

i=1(pi − 1).
(b) |j + S| = n−

∏m
i=1(pi − 1).

Proof. (a) With the notation of §5.1, we take subset complements as appropri-
ate in the isomorphic sets Z/n or

⊕m
i=1 Z/pi

. Using (5.7), we have

(5.10) |0E | = |J | = |S| = |S′ | =

∣∣∣∣∣
m⋃

k=1

Sk

∣∣∣∣∣ =

∣∣∣∣∣
m⋂

k=1

Sk

∣∣∣∣∣ =

m∏
i=1

(pi − 1)

as required.
(b) By (5.10), we have

|j + S| = |S| = |Z/n| − |S| = n−
m∏
i=1

(pi − 1)

as required. �

Lemma 5.3. The cardinality of S ∩ (j + S) is given by

(5.11) |S ∩ (j + S)| =
m∑
l=2

(−1)l(2l − 2)
∑

1≤i1<···<il≤m

n

pi1 · · · pil
.

Proof. We compute the cardinality of S′ ∩T ′ instead of S ∩ (j+S). Note that
S′k ∩ T ′k = ∅ for each k, and S′k ∩ T ′l = {(s1, . . . , sm) | sk = 0, sl = jl} for k 6= l.
Thus

(5.12) S′ ∩ T ′ = {(s1, . . . , sm) | ∃ 1 ≤ k, l ≤ m, sk = 0 and sl = jl}.
We use the inclusion-exclusion principle, step by step, to compute the cardi-
nality of S′ ∩ T ′.

We start by counting the number of m-tuples containing at least one 0-
component and one jl-component (“j-component” for short) in S′∩T ′. One lo-
cation for 0 and one location for j from an m-tuple can be selected in

(
m
1

)(
m−1

1

)
ways. Thus the number of such elements in S′ ∩ T ′ is given by(

m

1

)(
m− 1

1

) ∑
1≤i1,i2≤m

n

pi1pi2
=

(
m
1

)(
m−1

1

)(
m
2

) ∑
1≤i1<i2≤m

n

pi1pi2
.

However, this number exceeds the cardinality of S′ ∩ T ′, since each m-tuple
containing one 0-component and two j-components, or two 0-components and
one j-component, is counted twice. In fact, two locations for 0 and one location
for j, or one location for 0 and two locations for j, within an m-tuple, can be
selected in

(
n
2

)(
n−2

1

)
+
(
n
1

)(
n−1

2

)
ways. Therefore, we subtract the number(

m
2

)(
m−2

1

)
+
(
m
1

)(
m−1

2

)(
m
3

) ∑
1≤i1<i2<i3≤m

n

pi1pi2pi3
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from our initial count. But then, we obtain a count which is smaller than the
actual cardinality of S′∩T ′, since each m-tuple containing three 0 components
and one j-component, two 0-components and two j-components, or one 0-
component and three j-components, is then subtracted twice. To correct, we
add their number to the count. In fact, whenever we select a total of l locations
for 0 and j, we add the number

(5.13)
(−1)l

∑l−1
k=1

(
m
k

)(
m−k
l−k
)(

m
l

) ∑
1≤i1<···<il≤m

n

pi1 · · · pil

to the count. Since m is finite, the recursive procedure stops after m− 1 steps.
By Lemma 5.1, we have

(5.14) (−1)l
l−1∑
k=1

(
m

l

)(
m− k
l − k

)/(
m

l

)
= (−1)l(2l − 2).

Thus, using (5.14) to simplify the summands (5.13), the formula (5.11) is ob-
tained. �

Lemma 5.4. Consider the circulant Cn(J) on the vertex set Z/n, with jump
set J = Z/n r S, edge set E, and j ∈ J .

(a) The neighbor set of 0 is

(5.15) 0E = (0E ∩ jE) ∪ ((j + S) r S) .

(b) The neighbor set of j is

(5.16) jE = (0E ∩ jE) ∪ (S r (j + S)) .

(c) The cardinality of 0E ∩ jE is given by

|0E ∩ jE | =
m∏
i=1

(pi − 2).

Proof. (a) Note that jE = j + J = Z/n r (j + S). Since

0E r jE = (Z/n r S) r (Z/n r (j + S))

= S r j + S = S ∩ (j + S) = (j + S) r S,

we have 0E = (0E ∩ jE) ∪ (0E r jE) = (0E ∩ jE) ∪ ((j + S) r S).
(b) Since

jE r 0E = (Z/n r (j + S)) r (Z/n r S)

= j + S r S = ( j + S ) ∩ S = S r (j + S),

we have jE = (jE ∩ 0E) ∪ (jE r 0E) = (0E ∩ jE) ∪ (S r (j + S)).
(c) By Lemmas 5.2 and 5.3, it follows that

|0E ∩ jE | = |0E | − |j + S|+ |S ∩ (j + S)|
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=

m∏
i=1

(pi − 1)−

(
n−

m∏
i=1

(pi − 1)

)

+

m∑
l=2

(−1)l(2l − 2)
∑

1≤i1<···<il≤m

n

pi1 · · · pil

= −n+ 2

m∏
i=1

(pi − 1) +

m∑
l=2

(−1)l(2l − 2)
∑

1≤i1<···<il≤m

n

pi1 · · · pil

= n+

m∑
l=1

(−1)l2
∑

1≤i1<···<il≤m

n

pi1 · · · pil

+

m∑
l=2

(−1)l(2l − 2)
∑

1≤i1<···<il≤m

n

pi1 · · · pil

= n− 2
∑

1≤i1≤m

n

pi1
+

m∑
l=2

(−1)l2l
∑

1≤i1<···<il≤m

n

pi1 · · · pil

= n+
m∑
l=1

(−1)l2l
∑

1≤i1<···<il≤m

n

pi1 · · · pil
=

∏
1≤i≤m

(pi − 2),

as required. �

5.3. A perfect matching

The goal of this section is to prove the following.

Lemma 5.5. For each element j ∈ J = Z/n r S, there is a perfect matching
between the sets

S r ({0} ∪ (j + S)) and (j + S) r ({j} ∪ S)

in the circulant Cn(J).

The proof of Lemma 5.5 relies on the regularity properties of certain bipartite
graphs, induced subgraphs of Cn(J ′), constructed in a chain of definitions.
Specifically, for each subset

(5.17) ∅ ⊂ I ⊂ {1, . . . ,m}
(with 0 < |I| < m), a bipartite graph GI will be presented.

As before, set jk = Z/pk
+ j ∈ Z/pk

r {0} for 1 ≤ k ≤ m. Consider the
respective isomorphic images S′ and T ′ of S and j + S given in (5.7). Taking
(5.12) into account, one then has

S′ r T ′ = {(s1, . . . , sm) | ∃ 1 ≤ k ≤ m, sk = 0 and ∀ 1 ≤ l ≤ m, sl 6= jl}
and

T ′ r S′ = {(t1, . . . , tm) | ∃ 1 ≤ k ≤ m, tk = jk and ∀ 1 ≤ l ≤ m, tl 6= 0}
as the respective isomorphic images of S r (j + S) and (j + S) r S.
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Definition 5.6. For a subset (5.17), define the subset

SI = {(s1, . . . , sm) | ∀ i /∈ I, si /∈ {0, ji} and ∀ i ∈ I, si = 0}
of S′ r T ′. Such a subset is described as a source part.

Lemma 5.7. (a) Consider I1 6= I2 ⊂ {1, . . . ,m}. Then SI1 ∩ SI2 = ∅.
(b) The source parts provide a disjoint union decomposition

S′ r
(
{(0, . . . , 0)} ∪ T ′

)
=

⊎
∅⊂I⊂{1,...,m}

SI

of the isomorphic image of S r ({0} ∪ (j + S)).

Definition 5.8. For a subset (5.17), define the subset

TI = {(t1, . . . , tm) | ∀ i /∈ I, ti /∈ {0, ji} and ∀ i ∈ I, ti = ji}
of T ′ r S′. Such a subset is described as a target part.

Lemma 5.9. (a) Consider I ⊂ {1, . . . ,m}. Then SI ∩ TI = ∅.
(b) Consider I1 6= I2 ⊂ {1, . . . ,m}. Then TI1 ∩ TI2 = ∅.
(c) The target parts provide a disjoint union decomposition

T ′ r
(
{(j1, . . . , jm)} ∪ S′

)
=

⊎
∅⊂I⊂{1,...,m}

TI

of the isomorphic image of (j + S) r ({j} ∪ (S)).

Definition 5.10. Consider a subset (5.17).

(a) Define VI = SI ] TI .
(b) Define

EI =
{{

(s1, . . . , sm), (t1, . . . , tm)
} ∣∣∣

(s1, . . . , sm) ∈ SI , (t1, . . . , tm) ∈ TI , ∀ 1 ≤ j ≤ m, sj 6= tj

}
.

(c) Define GI to be the bipartite graph with vertex set VI and edge set EI .

Lemma 5.11. For each non-empty, proper subset I of {1, . . . ,m}, the bipartite
graph GI is the subgraph of Cn(J ′) induced on SI ∪ TI .

Proof. Consider the form (5.4) of J ′. �

Lemma 5.12. Consider a subset (5.17). Write d =
∏

i/∈I(pi − 3).

(a) One has ∣∣(s1, . . . , sm)EI
∣∣ = d

for (s1, . . . , sm) ∈ SI .
(b) One has ∣∣(t1, . . . , tm)EI

∣∣ = d

for (t1, . . . , tm) ∈ TI .
(c) The bipartite graph GI is d-regular.
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(d) The graph GI has a perfect matching.

Proof. (a) For (s1, . . . , sm) ∈ SI , consider a neighbor (t1, . . . , tm) ∈ TI . For
i ∈ I, one has si = 0 and ti = ji, so there are no choices for these coordinates
of (t1, . . . , tm). On the other hand, for i /∈ I, the coordinate ti may be chosen
from any one of the pi − 3 elements of Z/pi r {0, ji, si}.

(b) is proved similarly to (a).
(c) follows from (a) and (b).
(d) follows from (c). �

The proof of Lemma 5.5 now follows from Lemmas 5.7, 5.9 and 5.12: Take
the perfect matching between the sets

S r ({0} ∪ (j + S)) and (j + S) r ({j} ∪ S)

in the circulant Cn(J) isomorphic to the perfect matching between the sets

S′ r
(
{(0, . . . , 0)} ∪ T ′

)
and T ′ r

(
{(j1, . . . , jm)} ∪ S′

)
in the circulant Cn(J ′) that is given by the disjoint union of the perfect
matchings from Lemma 5.12(d) in the induced subgraphs GI for all ∅ ⊂ I ⊂
{1, . . . ,m}.

5.4. The Ricci curvature

Theorem 5.13. The circulant graph Cn(J) with jump set J = Zn r S has
constant Ricci curvature

(5.18) κ =
2 +

∏m
i=1(pi − 2)∏m

i=1(pi − 1)
.

Proof. Since Cn(J) has rotational symmetry, it suffices to compute κ(0, j) for
an arbitrary element j of J . By (5.15), we have

0E = (0E ∩ jE) ∪ ((j + S) r S) ,

and by (5.16), we have

jE = (0E ∩ jE) ∪ (S r (j + S)) .

By Lemma 5.5, there is a matching between the sets (j + S) r ({j} ∪ S) and
Sr ({0} ∪ (j + S)). Thus Cn(J) satisfies the Matching Condition. Since |0E ∩
jE | =

∏m
i=1(pi − 2) by Lemma 5.4(c), Theorem 2.2 yields

κ =
2 + |0E ∩ jE |

δ
=

2 +
∏m

i=1(pi − 2)∏m
i=1(pi − 1)

,

as required. �

Remark 5.14. We conjecture that the condition pi > 3 imposed on the factor-
ization n =

∏m
i=1 pi may be relaxed to pi > 2. For example, a matching can

be constructed for m = 2, p1 = 3 and 3 - p2 so that the formula (5.18) remains
valid. However, for general multiples n of 3, a different matching construction
is needed, since Lemma 5.12(d) may fail in this case.
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