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Abstract. For any integer n ≥ 2, each palindrome of n induces a circulant graph of

order n. It is known that for each integer n ≥ 2, there is a one-to-one correspondence

between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected)

circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of

the palindromes σ with gcd(σ) = 1 to the connected circulant graphs. It was also shown

that the number of palindromes σ of n with gcd(σ) = 1 is the same number of aperiodic

palindromes of n. Let an (resp. bn) be the number of aperiodic palindromes σ of n with

gcd(σ) = 1 (resp. gcd(σ) ̸= 1). Let cn (resp. dn) be the number of periodic palindromes

σ of n with gcd(σ) = 1 (resp. gcd(σ) ̸= 1). In this paper, we calculate the numbers

an, bn, cn, dn in two ways. In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in

terms of ad for d|n and d ̸= n. Afterwards, we find formulae for an, bn, cn, dn explicitly

in Theorem 2.5.

1. Introduction

A composition of n is an ordered word σ = σ1σ2 . . . σm of positive integers that
sum to n. A composition is aperiodic if it is not the concatenation of a proper part
of itself. A numeral palindrome (or simply, palindrome) is a composition which is
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unchanged by reversing the order of the summands (i.e., σ = σ−1, where σ−1 =
σm . . . σ2σ1 for σ = σ1σ2 . . . σm). For each composition σ = σ1σ2 · · ·σℓ, define
gcd(σ) := gcd{σ1, σ2, . . . , σℓ}. The gcd of the integers of a word σ is denoted by
gcd(σ), and σ is prime if gcd(σ) = 1. If an integer d divides gcd(σ) then we define
a composition 1

dσ by 1
dσ := σ1

d
σ2

d · · · σℓ

d . For each integer n ≥ 1, we define the set of
palindromes and aperiodic palindromes as follows:

P(n) = {σ | σ is a composition of n, σ = σ−1},

and

PA(n) = {σ ∈ P(n) | σ is aperiodic}.

The cardinality of these two sets are considered in [1, 2, 3, 4] (see also Lemma
2.1). A circulant graph is a graph whose automorphism group includes a cyclic
subgroup which acts transitively on the vertex set of the graph. It is shown in
[2, Theorem 3.1] that for each integer n ≥ 2, there is a one-to-one correspondence
between the set of palindromes of n and the set of circulant graphs of order n.
In particular, they showed in [2, Theorem 3.5] that for each integer n ≥ 2, there
is a one-to-one correspondence between the set of aperiodic palindromes of n and
the set of connected circulant graphs of order n. This bijection gives a one-to-one
correspondence of the palindromes having a gcd of 1 to the connected circulant
graphs. It was also shown that the number of prime palindromes of n is the same
number of aperiodic palindromes. In this paper, we divide the set P(n) into four
parts as follows.

Definition 1.1. For each integer n ≥ 2, we define An, Bn, Cn, Dn, an, bn, cn, dn by

An := {σ ∈ PA(n) | gcd(σ) = 1},
Bn := {σ ∈ PA(n) | gcd(σ) ̸= 1},
Cn := {σ ∈ P(n) \ PA(n) | gcd(σ) = 1},
Dn := {σ ∈ P(n) \ PA(n) | gcd(σ) ̸= 1}

and an := |An|, bn := |Bn|, cn := |Cn|, dn := |Dn|. Set a1 = 1, b1 = 0, c1 = 0 and
d1 = 0.

In this paper we calculate the numbers an, bn, cn, dn (n ≥ 2) in two ways. In
Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for d|n and
d ̸= n. These recurrence relations enable us to calculate the numbers an, bn, cn, dn
recursively. Afterwards, we find formulae for an, bn, cn, dn explicitly in Theorem
2.5. By using these formulae, we can compute an, bn, cn, dn without using recursive
relations. Moreover, we calculate an, bn, cn, dn with n up to 20 in Table 1.

2. Main Results

In this section, we prove main results Theorem 2.3 and Theorem 2.5. To do
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this, we first need to review some basic results. The following lemma comes from
Definition 1.1 and [2, Corollaries 3.2 and 3.6].

Lemma 2.1. For each integer n ≥ 2, the following hold:

(i) an + bn + cn + dn = |P(n)| = 2⌊
n
2 ⌋,

(ii) an + bn = |PA(n)| =
∑

d|n µ
(
n
d

)
2⌊

d
2 ⌋,

where µ is the Möbius function.

Note that the numbers µ(n) for 1 ≤ n ≤ 20 are given in Table 1. For our
convenience, we need to review some notation. We refer the reader to [2] for more
details. For an aperiodic palindrome ω of k, denote by σ = ωr the palindrome of
n = kr we get by concatenating r copies of ω.

Lemma 2.2. For any integer n ≥ 2, we have dn =
∑

d|n d ̸=n cd.

Proof. We will show that there is a bijection between the set Dn and the disjoint
union of the sets Cd over all d|n, d ̸= n. For each σ ∈ Dn, there exist an integer
2 ≤ d < n with d|n and an aperiodic palindrome ω ∈ PA

(
n
d

)
satisfying σ = ωd,

where gcd(σ) = gcd(ω) ̸= 1. Put σ′ :=
(

1
gcd(ω)ω

)d

. Then 1
gcd(ω)ω is an aperiodic

palindrome in PA

(
n

gcd(ω)d

)
and gcd

(
1

gcd(ω)ω
)

= gcd(σ′) = 1. Hence σ′ ∈ Cd′

for d′ := n
gcd(ω) satisfying d′|n and d′ ̸= n. Hence it is straightforward that map

f : Dn → ∪d|n,d ̸=nCd defined by f(σ) = σ′ is injective and thus dn ≤
∑

d|n d ̸=n cd.

On the other hand, let σ ∈ Cd for some d satisfying d|n and d ̸= n. Then there exist
an integer ℓ ≥ 2 and an aperiodic palindrome ω ∈ PA

(
d
ℓ

)
such that σ = ωℓ and

gcd(σ) = gcd(ω) = 1 all hold. Put σ′ :=
(
n
dω

)ℓ
. As gcd(σ′) = gcd

(
n
dω

)
= n

d ̸= 1,
σ′ ∈ Dn. This shows f is onto and thus f is a bijection. This completes the proof.2

In Theorem 2.3, we find recurrence relations for an, bn, cn, dn in terms of ad for
d|n and d ̸= n. We first show bn = cn and we find a recurrence relation for cn in
terms of ad for d|n and d ̸= n. Using this recurrence relation for cn, we will also
find recurrence relations for an and dn.

Theorem 2.3. For each integer n ≥ 2, the following hold:

(i) an = 2⌊
n
2 ⌋ −

∑
d|n d ̸=n τ

(
n
d

)
ad,

(ii) bn = cn =
∑

d|n d ̸=n ad,

(iii) dn =
∑

d|n d ̸=n

(
τ
(
n
d

)
− 2

)
ad,

where τ(m) is the number of divisors of an integer m.

Proof. Let an integer n ≥ 2 be given.
(ii): It is shown in [2, Theorem 3.5] that there is a one-to-one correspondence
between the set of aperiodic palindromes of n and the set of connected circulant



352 S. Bang, Y.-Q. Feng and J. Lee

graphs of order n. Hence we have an + bn = an + cn and this shows bn = cn. Now
we will prove cn =

∑
d|n d ̸=n ad by showing that there is a bijection between the set

Cn and the disjoint union of the sets Ad over all d|n, d ̸= n. Let σ ∈ Cn. Then
there exist an integer ℓ ≥ 2 and an aperiodic palindrome ω ∈ An

ℓ
such that σ = ωℓ

and gcd(σ) = gcd(ω) = 1 all hold with ℓ|n. Since ℓ ≥ 2, d := n
ℓ satisfies ω ∈ Ad,

d|n and 1 ≤ d < n. On the other hand, if σ ∈ Ad for some d ̸= n satisfying d|n
then gcd(σ) = 1. Hence palindrome ω := σ

n
d satisfies gcd(ω) = gcd(σ) = 1 and

thus ω ∈ Cn.
(i) and (iii): It follows by Lemma 2.1 (i), Lemma 2.2 and Theorem 2.3 (ii) that

2⌊
n
2 ⌋ − an = bn + cn + dn = 2cn + dn = 2

∑
d|n d ̸=n

ad +
∑

d|n d ̸=n

cd

= 2
∑

d|n d ̸=n

ad +

 ∑
d|n d̸=n

 ∑
α|d α ̸=d

aα


= 2

∑
d|n d ̸=n

ad +

 ∑
d|n d̸=n

(
τ
(n
d

)
− 2

)
ad

 =
∑

d|n d̸=n

τ
(n
d

)
ad

holds, where τ(m) is the number of divisors of m (Note that the numbers τ(n) for
1 ≤ n ≤ 20 are given in Table 1.). This shows the result (i). By Lemma 2.1 (i) and
Theorem 2.3 (i)-(ii), we have

2⌊
n
2 ⌋ = an + bn + cn + dn =

2⌊
n
2 ⌋ −

∑
d|n d ̸=n

τ
(n
d

)
ad

+ 2

 ∑
d|n d̸=n

ad

+ dn

which shows part (iii). This completes the proof. 2

By Theorem 2.3, we can compute the numbers an, bn, cn, dn recursively. The
result for an, bn, cn, dn with n up to 20 are given in the following example.

Example 2.4. The numbers τ(n) (1 ≤ n ≤ 20) are listed in Table 1. Using these
numbers and Theorem 2.3, the numbers an, bn, cn, dn for n up to 20 are calculated
in Table 1. For our convenience, let αn and βn be the number of connected and
disconnected circulant graphs of order n, respectively. Then αn = an + cn = an +
bn = |PA(n)| and βn = bn+dn = cn+dn = |P(n)\PA(n)|. The numbers αn, βn for
n up to 20 are also calculated in Table 1. We note here that for any positive integer
n the number γn of circulant graphs of order n is equal to αn + βn = |P(n)| = 2⌊

n
2 ⌋

(see Lemma 2.1 (i) and [2, Theorem 3.1]).

Now, we find formulae for an, bn, cn, dn in Theorem 2.5. These results enable
us to compute the values an, bn, cn, dn directly without using recursive relations (cf.
Theorem 2.3). We first find a formula for an, and using the formula for an we find
formulae for bn, cn, dn.

Theorem 2.5. For each integer n ≥ 2, the following hold:
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an bn cn dn τ(n) f(n) µ(n) αn βn γn

n = 1 1 0 0 0 1 1 1 1 0 20 = 1
n = 2 0 1 1 0 2 -2 -1 1 1 21 = 2
n = 3 0 1 1 0 2 -2 -1 1 1 21 = 2
n = 4 1 1 1 1 3 1 0 2 2 22 = 4
n = 5 2 1 1 0 2 -2 -1 3 1 22 = 4
n = 6 4 1 1 2 4 4 1 5 3 23 = 8
n = 7 6 1 1 0 2 -2 -1 7 1 23 = 8
n = 8 10 2 2 2 4 0 0 12 4 24 = 16
n = 9 13 1 1 1 3 1 0 14 2 24 = 16
n = 10 24 3 3 2 4 4 1 27 5 25 = 32
n = 11 30 1 1 0 2 -2 -1 31 1 25 = 32
n = 12 48 6 6 4 6 -2 0 54 10 26 = 64
n = 13 62 1 1 0 2 -2 -1 63 1 26 = 64
n = 14 112 7 7 2 4 4 1 119 9 27 = 128
n = 15 120 3 3 2 4 4 1 123 5 27 = 128
n = 16 228 12 12 4 5 0 0 240 16 28 = 256
n = 17 254 1 1 0 2 -2 -1 255 1 28 = 256
n = 18 472 18 18 4 6 -2 0 490 22 29 = 512
n = 19 510 1 1 0 2 -2 -1 511 1 29 = 512
n = 20 962 28 28 6 6 -2 0 990 34 210 = 1024

Table 1: an, bn, cn, dn, αn, βn (1 ≤ n ≤ 20)

(i) an =
∑
d|n

f
(n
d

)
2⌊

d
2 ⌋,

(ii) bn = cn =
∑
d|n

(
µ
(n
d

)
− f

(n
d

))
2⌊

d
2 ⌋,

(iii) dn =
∑

d|n d ̸=n

(
f
(n
d

)
− 2µ

(n
d

))
2⌊

d
2 ⌋,

where µ is the Möbius function and the function f is defined as follows:
for each integer m = pm1

1 · · · pmr
r ≥ 1 with r distinct primes,

f(m) =

{
(−2)|{1≤i≤r| mi=1}| if max{mi | 1 ≤ i ≤ r} ≤ 2,

0 if max{mi | 1 ≤ i ≤ r} ≥ 3.

Proof. (i): Let n ≥ 2 be an integer. It follows by Lemma 2.1 (ii) and Theorem 2.3
(ii) that

|PA(n)| = an + bn = an + cn = an +
∑

d|n, d ̸=n

ad =
∑
d|n

ad.

By applying the Möbius inversion formula, an =
∑

d|n µ
(
n
d

)
|PA(d)| holds,
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where µ is the Möbius function. Now, by Lemma 2.1 (ii), we have

an =
∑
d|n

µ
(n
d

)
|PA(d)| =

∑
d|n

µ
(n
d

)∑
α|d

µ

(
d

α

)
2⌊

α
2 ⌋


=

∑
α|n

∑
d′|nα

µ
( n

αd′

)
µ(d′)2⌊

α
2 ⌋.

It is not hard to show that for each integer m = pm1
1 · · · pmr

r ≥ 1 with r distinct
primes,

∑
e|m µ

(
m
e

)
µ(e) = f(m) holds. Note that the numbers f(n) for 1 ≤ n ≤ 20

are given in Table 1. Since
∑

d′|nα
µ
(

n
αd′

)
µ(d′) = f

(
n
α

)
, we have (i).

(ii): As bn = cn = |PA(n)| − an =
∑

d|n
(
µ
(
n
d

)
− f

(
n
d

))
2⌊

d
2 ⌋ follows by Theorem

2.3 (ii), Lemma 2.1 (ii) and Theorem 2.5 (i), the result (ii) follows immediately.
(iii): It follows by Lemma 2.1 (i), Theorem 2.3 (ii) and Theorem 2.5 (i)-(ii) that

dn = 2⌊
n
2 ⌋ − (an + bn + cn) = 2⌊

n
2 ⌋ − (an + 2bn)

= 2⌊
n
2 ⌋ +

∑
d|n

(
f
(n
d

)
− 2µ

(n
d

))
2⌊

d
2 ⌋

=
∑

d|n d ̸=n

(
f
(n
d

)
− 2µ

(n
d

))
2⌊

d
2 ⌋

holds. This completes the proof. 2

Remark 2.6. The formulae in Theorem 2.5 give us a way to compute the
values an, bn, cn, dn directly. For example, we can also obtain the numbers
an, bn, cn, dn (1 ≤ n ≤ 20) in Table 1 by using Theorem 2.5 and the numbers
f(n), µ(n) (1 ≤ n ≤ 20) which are also listed in Table 1.

Remark 2.7. Circulant graphs can be described as follows. For a subset S ⊆ Zn

satisfying S = −S (mod n), a circulant graph of order n denoted by G(n, S) is a
graph with vertex set {0, 1, . . . , n− 1} and edge set E, where {i, j} ∈ E if and only
if i ̸= j and j− i ∈ S (mod n). For each composition σ = σ1σ2 · · ·σℓ of n, we define
a subset Ωσ = {s1, s2 · · · sℓ} ⊆ Zn, where s1 = 0, si =

∑i−1
j=1 σj for each i = 2, . . . , ℓ.

For example, for compositions σ = n and σ′ =

n ones︷ ︸︸ ︷
11 · · · 1 we have Ωσ = {0} and

Ωσ′ = {0, 1, 2, . . . , n − 1}. For each palindrome σ ∈ P(n), the corresponding set
Ωσ defines a circulant graph G(n,Ωσ) of order n. Any aperiodic (resp. periodic)
palindrome σ does not imply that G(n,Ωσ) is connected (resp. disconnected). For
example, σ = 242 ∈ PA(8) is aperiodic with disconnected graph G(8, {0, 2, 6}), and
σ = (121)2 ∈ P(8) \ PA(8) is periodic with connected graph G(8, {0, 1, 3, 4, 5, 7}).
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Now we can reformulate Definition 1.1 as the following:

An = {σ ∈ PA(n) | G(n,Ωσ) is a connected graph of order n.},
Bn = {σ ∈ PA(n) | G(n,Ωσ) is a disconnected graph of order n.},
Cn = {σ ∈ P(n) \ PA(n) | G(n,Ωσ) is a connected graph of order n.},
Dn = {σ ∈ P(n) \ PA(n) | G(n,Ωσ) is a disconnected graph of order n.}.

Hence the results of this paper give us the number of circulant graphs in the above
four cases.
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