• 제목/요약/키워드: charge mobility

검색결과 245건 처리시간 0.028초

Improvement of carrier transport in silicon MOSFETs by using h-BN decorated dielectric

  • Liu, Xiaochi;Hwang, Euyheon;Yoo, Won Jong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.97-97
    • /
    • 2013
  • We present a comprehensive study on the integration of h-BN with silicon MOSFET. Temperature dependent mobility modeling is used to discern the effects of top-gate dielectric on carrier transport and identify limiting factors of the system. The result indicates that coulomb scattering and surface roughness scattering are the dominant scattering mechanisms for silicon MOSFETs at relatively low temperature. Interposing a layer of h-BN between $SiO_2$ and Si effectively weakens coulomb scattering by separating carriers in the silicon inversion layer from the charged centers as 2-dimensional h-BN is relatively inert and is expected to be free of dangling bonds or surface charge traps owing to the strong, in-plane, ionic bonding of the planar hexagonal lattice structure, thus leading to a significant improvement in mobility relative to undecorated system. Furthermore, the atomically planar surface of h-BN also suppresses surface roughness scattering in this Si MOSFET system, resulting in a monotonously increasing mobility curve along with gate voltage, which is different from the traditional one with a extremum in a certain voltage. Alternatively, high-k dielectrics can lead to enhanced transport properties through dielectric screening. Modeling indicates that we can achieve even higher mobility by using h-BN decorated $HfO_2$ as gate dielectric in silicon MOSFETs instead of h-BN decorated $SiO_2$.

  • PDF

Explaining the Drift Behavior of Caffeine and Glucosamine After Addition of Ethyl Lactate in the Buffer Gas of an Ion Mobility Spectrometer

  • Fernandez-Maestre, Roberto;Velasco, Andres Reyes;Hill, Herbert H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1023-1028
    • /
    • 2014
  • Protonated caffeine ($CH^+$) and glucosamine ($GH^+$) overlapped in an analysis with ion mobility spectrometryquadrupole mass spectrometry. Ethyl lactate vapor (L) at different concentrations from 0 to 22 mmol $m^{-3}$ was added as a buffer gas modifier to separate these signals. The drift times of $CH^+$ and $GH^+$ increased with L concentration. The drift time increase was associated to clustering equilibria of $CH^+$ and $GH^+$ with one molecule of L and the equilibrium of $GH^+$ was more displaced to the formation of $GLH^+$ than that of $GLH^+$. $GH^+$ clustered more to L than $CH^+$ because $GLH^+$ formed more stable hydrogen bonds (26.30 kcal/mol) than $GLH^+$ (24.66 kcal/mol) and the positive charge in $GH^+$ was more sterically accessible than in $CH^+$. The aim of this work was to use theoretical calculations to guide the selection of a buffer gas modifier for IMS separations of two compounds that overlap in the mobility spectra and predict this separation, simplifying that empirical process.

A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors

  • Yucel, H.;Birgul, O.;Uyar, E.;Cubukcu, S.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.731-737
    • /
    • 2019
  • In this study, a new measurement method based on voltage transients in CdZnTe detectors response to low energy photon irradiations is applied to measure the electron mobility (${\mu}_e$) and electron mobility-lifetime product $({\mu}{\tau})_e$ in a CdZnTe detector. In the proposed method, the pulse rise times are derived from low energy photon response to 59.5 keV($^{241}Am$), 88 keV($^{109}Cd$) and 122 keV($^{57}Co$) ${\gamma}-rays$ for the irradiation of the cathode surface at each detector for different bias voltages. The electron $({\mu}{\tau})_e$ product was then determined by measuring the variation in the photopeak amplitude as a function of bias voltage at a given photon energy using a pulse-height analyzer. The $({\mu}{\tau})_e$ values were found to be $(9.6{\pm}1.4){\times}10^{-3}cm^2V^{-1}$ for $1000mm^3$, $(8.4{\pm}1.6){\times}10^{-3}cm^2V^{-1}$ for $1687.5mm^3$ and $(7.6{\pm}1.1){\times}10^{-3}cm^2V^{-1}$ for $2250mm^3$ CdZnTe detectors. Those results were then compared with the literature $({\mu}{\tau})_e$ values for CdZnTe detectors. The present results indicate that, the electron mobility ${\mu}_e$ and electron $({\mu}{\tau})_e$ values in CdZnTe detectors can be measured easily by applying voltage transients response to low energy photons, utilizing a fast signal acquisition and data reduction and evaluation.

R3V6 Amphiphilic Peptide with High Mobility Group Box 1A Domain as an Efficient Carrier for Gene Delivery

  • Ryu, Jaehwan;Jeon, Pureum;Lee, Minhyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3665-3670
    • /
    • 2013
  • The R3V6 peptide includes a hydrophilic arginine stretch and a hydrophobic valine stretch. In previous studies, the R3V6 peptide was evaluated as a gene carrier and was found to have low cytotoxicity. However, the transfection efficiency of R3V6 was lower than that of poly-L-lysine (PLL) in N2A neuroblastoma cells. In this study, the transfection efficiency of R3V6 was improved in combination with high mobility group box 1A domain (HMGA). HMGA is originated from the nuclear protein and has many positively-charged amino acids. Therefore, HMGA binds to DNA via charge interaction. In addition, HMGA has a nuclear localization signal peptide and may increase the delivery efficiency of DNA into the nucleus. The ternary complex with HMGA, R3V6, and DNA was prepared and evaluated as a gene carrier. First, the HMGA/DNA complex was prepared with a negative surface charge. Then, R3V6 was added to the complex to coat the negative charges of the HMGA/DNA complex, forming the ternary complex of HMGA, R3V6, and DNA. A physical characterization study showed that the ternary complex was more stable than the PLL/DNA complex. The HMGA/R3V6/DNA complex had a higher transfection efficiency than the PLL/DNA, HMGA/DNA, or R3V6/DNA complexes in N2A cells. Furthermore, the HMGA/R3V6/DNA complex was not toxic to cells. Therefore, the HMGA/R3V6/DNA complex may be a useful gene delivery carrier.

Bacillus circulans F-2가 생산하는 $\alpha$-Amylase에 관한 연구 (제 1보) $\alpha$-Amylase의 정제 (Studies on $\alpha$-Amylase of Bacillus circulans F-2 (Part I) Purification of $\alpha$-amylase)

  • 정만재
    • 한국미생물·생명공학회지
    • /
    • 제9권4호
    • /
    • pp.185-190
    • /
    • 1981
  • 감자 생전분의 분해력이 강한 $\alpha$-amylase를 생산하는 Bacillus circulans F-2를 선발하고, 이 균주가 생산하는 $\alpha$-amylase를 정제하였으며, 정제효소의 polyacrylamide disc gel electrophoresis, SDS-polyacrylamide disc gel electrophoresis 및 soluble starch에 eo한 분해산물을 검사하고 그 결과를 요약하면 다음과 같다. 1 조효소액을 corn starch흡착, 유안분획, Bio-Gel P-100에 의한 gel filtration 및 DE-32 column chromatography에 의하여 specific activity 50.0 u/mg protein(원 비활성의 약 23배), 수율 25. 5%의 정제효소를 얻었다. 2. 정제효소에 대하여 polyacrylamide disc gel electrophoresis를 실시한 결과 $\alpha$-amylase activity를 가지는 아주 인접된 2ro의 Band가 나타났으나, SDS-polyacrylamide disc gel electrophoresis의 결과, polyacrylamide disc gel electrophoresis에서 나타난 2개의 Band는 charge가 약간 다른 charge isomer의 $\alpha$-amylase임을 시준하는 single band가 나타났다. 3. Polyacrylamide의 농도에 따른 2개 Band의 log mobility의 plot는 charge isomer를 가리키는 평행선을 나타내었다. 4. 두 효소단백질 Band의 작용 pattern을 알기 위하여 2개의 Band를 각각 분리하여 추출하고 soluble starch에 작용시켜 생성된 oligosaccharide의 pattern을 paper chromatography로 확인한 바 2개의 효소단백질 Band는 동일한 작용 pattern을 나타내었다. 5. Soluble starch로부터 생성되는 유일한 초기 가수분해산물은 maltohexaose이었다.

  • PDF

브레이크 마모입자의 하전 및 자성 특성 분석 (Analysis of charge and magnetic characteristics of brake wear particles)

  • 조채연;신동호;이건희;우상희;이석환;한방우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제19권2호
    • /
    • pp.31-42
    • /
    • 2023
  • The charge and magnetic characteristics of LM (Low-metallic) and NAO (Non-asbestos-organic) brake wear particles were analyzed. The ratio of charged particles from total particles is about 86% of the LM pad and about 92% of the NAO pad. Number of charge per particle from the NAO pad is also higher than that of the LM pad. The ratio of magnetic particles from total particles increases with the particle size. The ratio of magnetic particles from the LM pad is about 15% for the particles with the size of 1 ㎛, and about 74% for ones with 5 ㎛. The ratio from the NAO pad is about 5% for the particles with the size from 0.5 ㎛ to 2 ㎛, and about 80% for the particles with 5 ㎛. Through the analysis of the components of the two pads with SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), it was found that the LM pad was occupied with more iron fraction than the NAO pad and that PM2.5-10 was occupied with more iron fraction than PM2.5. The particles smaller than 10 ㎛ (i.e. PM10) from the LM pad contained about 83% of charged particles, about 43% of magnetic particles, and about 93% of charged or magnetic particles. PM10 from the NAO pad contained about 88% of charged particles, about 15% of magnetic particles, and about 89% of charged or magnetic particles.

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok;Bahng, Wook;Kim, Nam-Kyun;Ha, Jae-Geun;Koh, Jung-Hyuk;Koo, Sang-Mo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.236-239
    • /
    • 2012
  • In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF

전극 접촉영역의 선택적 표면처리를 통한 유기박막트랜지스터 전하주입특성 및 소자 성능 향상에 대한 연구 (Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate)

  • 최기헌;이화성
    • 접착 및 계면
    • /
    • 제21권3호
    • /
    • pp.86-92
    • /
    • 2020
  • 본 연구에서 소스/드레인 전극이 위치하는 기판의 접촉영역과 두 전극사이 채널영역의 표면 에너지를 선택적으로 다르게 제어하여 고분자 트랜지스터의 소자성능과 전하주입 특성에 미치는 영향을 확인하였다. 채널영역의 표면에너지를 낮게 유지하면서 접촉영역의 표면에너지를 높였을 때 고분자 트랜지스터의 전하이동도는 0.063 ㎠/V·s, 접촉저항은 132.2 kΩ·cm, 그리고 문턱전압이하 스윙은 0.6 V/dec로 나타났으며, 이는 원래 소자에 비해 각각 2배와 30배 이상 개선된 결과이다. 채널길이에 따른 계면 트랩밀도를 분석한 결과, 접촉영역에서 선택적 표면처리에 의해 고분자반도체 분자의 공액중첩 방향과 전하주입 방향이 일치되면서 전하트랩 밀도가 감소한 것이 성능향상의 주요한 원인으로 확인되었다. 본 연구에서 적용한 전극과 고분자 반도체의 접촉영역에 선택적 표면처리 방법은 기존의 계면저항을 낮추는 다양한 공정과 함께 활용됨으로써 트랜지스터 성능향상을 최대화할 수 있는 가능성을 가진다.

정공과 격자의 온도를 고려한 새로운 정공 이동도 모델 (New hole mobility model including hole and lattice)

  • 김중식;김진양;김찬호;신형순;박영준;민홍식
    • 전자공학회논문지D
    • /
    • 제35D권8호
    • /
    • pp.31-37
    • /
    • 1998
  • A new self-consistent hole mobility model that includes lattice and hole temeprature has been proposed. By including the lattice and hole temperatures as well as the effective transverse field and the interface fixed charge, the model predicted the saturation of hole drift velocity and showed the effects of coulomb scattering, surface phonon scattering, and surface roughness scattering. The calculated data by the model were compared with the reported experimental data and they were shown to agree quite well. The new model is expected to estimate the characteristics of very short channel devices in the in the hydrodynamic model simulation.

  • PDF