Browse > Article
http://dx.doi.org/10.17702/jai.2020.21.3.86

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate  

Choi, Giheon (Department of Materials Science and Chemical Engineering, Hanyang University)
Lee, Hwa Sung (Department of Materials Science and Chemical Engineering, Hanyang University)
Publication Information
Journal of Adhesion and Interface / v.21, no.3, 2020 , pp. 86-92 More about this Journal
Abstract
We confirmed the effects on the device performances and the charge injection characteristics of organic field-effect transistor (OFET) by selectively differently controlling the surface energies on the contact region of the substrate where the source/drain electrodes are located and the channel region between the two electrodes. When the surface energies of the channel and contact regions were kept low and increased, respectively, the field-effect mobility of the OFET devices was 0.063 ㎠/V·s, the contact resistance was 132.2 kΩ·cm, and the subthreshold swing was 0.6 V/dec. They are the results of twice and 30 times improvements compared to the pristine FET device, respectively. As the results of analyzing the interfacial trap density according to the channel length, a major reason of the improved device performances could be anticipated that the pi-pi overlapping direction of polymer semiconductor molecules and the charge injection pathway from electrode is coincided by selective surface treatment in the contact region, which finally induces the decreases of the charge trap density in the polymer semiconducting film. The selective surface treatment method for the contact region between the electrode and the polymer semiconductor used in this study has the potential to maximize the electrical performances of organic electronics by being utilized with various existing processes to lower the interface resistance.
Keywords
organic field-effect transistor; surface energy; charge injection; contact resistance; field-effect mobility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J.-M. Zuo, D. Shukla, Y. Diao, Nat. Commun., 8, 16070 (2017).   DOI
2 A. F. Paterson, L. Tsetseris, R. Li, A. Basu, H. Faber, A.-H. Emwas, J. Panidi, Z. Fei, M. R. Niazi, D. H. Anjum, M. Heeney, T. D. Anthopoulos, Adv. Mater., 31, 1900871 (2019).   DOI
3 E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, D. J. Gundlach, Nat. Commun., 7, 10908 (2016).   DOI
4 Y. Xu, Y. Li, S. Li, F. Balestra, G. Ghibaudo, W. Li, Y.-F. Lin, H. Sun, J. Wan, X. Wang, Y. Guo, Y. Shi, Y.-Y. Noh, Adv. Funct. Mater., 30, 1904508 (2020).   DOI
5 M. Waldrip, O. D. Jurchescu, D. J. Gundlach, E. G. Bittle, Adv. Funct. Mater., 30, 1904576 (2020).   DOI
6 S. Choi, C. Fuentes-Hernandez, C.-Y. Wang, T. M. Khan, F. A. Larrain, Y. Zhang, S. Barlow, S. R. Marder, B. Kippelen, ACS Appl. Mater. Interfaces, 8, 24744 (2016).   DOI
7 Z. A. Lamport, K. J. Barth, H. Lee, E. Gann, S. Engmann, H. Chen, M. Guthold, I. McCulloch, J. E. Anthony, L. J. Richter, D. M. DeLongchamp, O. D. Jurchescu, Nat. Commun., 9, 5130 (2018).   DOI
8 D. He, J. Qiao, L. Zhang, J. Wang, T. Lan, J. Qian, Y. Li, Y. Shi, Y. Chai, W. Lan, L. K. Ono, Y. Qi, J.-B. Xu, W. Ji, X. Wang, Sci. Adv., 3, e1701186 (2017).   DOI
9 L. Jiang, J. Liu, Y. Shi, D. Zhu, H. Zhang, Y. Hu, J. Yu, W. Hu, L. Jiang, J. Mater. Chem. C, 7, 3436 (2019).   DOI
10 J. W. Borchert, B. Peng, F. Letzkus, J. N. Burghartz, P. K.L. Chan, K. Zojer, S. Ludwigs, H. Klauk, Nat. Commun., 10, 1119 (2019).   DOI
11 A. Yamamura, S. Watanabe, M. Uno, M. Mitani, C. Mitsui, J. Tsurumi, N. Isahaya, Y. Kanaoka, T. Okamoto, J. Takeya, Sci. Adv., 4, eaao5758 (2018).   DOI
12 D. He, J. Qiao, L. Zhang, J. Wang, T. Lan, J. Qian, Y. Li, Y. Shi, Y. Chai, W. Lan, L. K. Ono, Y. Qi, J.-B. Xu, W. Ji, X. Wang, Sci. Adv., 3, e1701186 (2017).   DOI
13 C. Liu, Y. Xu, Y.-Y. Noh, Mater. Today, 18, 79 (2015).   DOI
14 Q. Wang, S. Jiang, B. Zhang, E.-Y. Shin, Y.-Y. Noh, Y. Xu, Y. Shi, Y. Li, J. Phys. Chem. Lett., 11, 1466 (2020).   DOI
15 J. Lee, A.-R. Han, H. Yu, T. J. Shin, C. Yang, J. H. Oh, J. Am. Chem. Soc., 135, 9540 (2013).   DOI
16 S. Oh, G. Choi, H. Cho, J. Ha, M. R. R. Khan, H. S. Lee, J. Phys. Chem. C, 124, 161 (2020).   DOI
17 S. Obataz, Y. Shimo, Phys. Chem. Chem. Phys., 15, 9265 (2013).   DOI
18 D. Gargi, R. J. Kline, D. M. DeLongchamp, D. A. Fischer, M. F. Toney, B. T. O'Connor, J. Phys. Chem. C, 117, 17421 (2013).   DOI
19 B. Meredig, A. Salleo, R. Gee, ACS Nano, 3, 2881 (2009).   DOI
20 F.M. Fowkes, J. Phys. Chem., 66, 382 (1962).   DOI
21 D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969).   DOI
22 Y. Qiu, P. Wei, Z. Wang, W. Lu, Y. Jiang, C. Zhang, Y. Qu, G. Lu, Phys. Status Solidi RRL, 12, 1800297 (2018).   DOI
23 H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater., 17, 2 (2017).   DOI
24 A. F. Paterson, A. D. Mottram, H. Faber, M. R. Niazi, Z. Fei, M. Heeney, T. D. Anthopoulos, Adv. Electron. Mater., 9, 1800723 (2019).
25 H. Kim, T. N. Ng, Adv. Electron. Mater., 4, 1700631 (2018).   DOI
26 K. Pei, A. H. Y. Lau, P. K. L. Chan, Phys. Chem. Chem. Phys., 22, 7100 (2020).   DOI