DOI QR코드

DOI QR Code

Analysis of charge and magnetic characteristics of brake wear particles

브레이크 마모입자의 하전 및 자성 특성 분석

  • Chaeyeon Jo (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Dongho Shin (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Gunhee Lee (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Sang-Hee Woo (Department of Mobility Power Research, Korea Institute of Machinery & Materials) ;
  • Seokhwan Lee (Department of Mobility Power Research, Korea Institute of Machinery & Materials) ;
  • Bangwoo Han (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Jungho Hwang (Department of Mechanical Engineering, Yonsei University)
  • 조채연 (한국기계연구원 지속가능환경연구실) ;
  • 신동호 (한국기계연구원 지속가능환경연구실) ;
  • 이건희 (한국기계연구원 지속가능환경연구실) ;
  • 우상희 (한국기계연구원 모빌리티동력연구실) ;
  • 이석환 (한국기계연구원 모빌리티동력연구실) ;
  • 한방우 (한국기계연구원 지속가능환경연구실) ;
  • 황정호 (연세대학교 기계공학부)
  • Received : 2023.04.25
  • Accepted : 2023.06.05
  • Published : 2023.06.30

Abstract

The charge and magnetic characteristics of LM (Low-metallic) and NAO (Non-asbestos-organic) brake wear particles were analyzed. The ratio of charged particles from total particles is about 86% of the LM pad and about 92% of the NAO pad. Number of charge per particle from the NAO pad is also higher than that of the LM pad. The ratio of magnetic particles from total particles increases with the particle size. The ratio of magnetic particles from the LM pad is about 15% for the particles with the size of 1 ㎛, and about 74% for ones with 5 ㎛. The ratio from the NAO pad is about 5% for the particles with the size from 0.5 ㎛ to 2 ㎛, and about 80% for the particles with 5 ㎛. Through the analysis of the components of the two pads with SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), it was found that the LM pad was occupied with more iron fraction than the NAO pad and that PM2.5-10 was occupied with more iron fraction than PM2.5. The particles smaller than 10 ㎛ (i.e. PM10) from the LM pad contained about 83% of charged particles, about 43% of magnetic particles, and about 93% of charged or magnetic particles. PM10 from the NAO pad contained about 88% of charged particles, about 15% of magnetic particles, and about 89% of charged or magnetic particles.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부 및 한국산업기술평가관리원(KEIT) 연구비 지원으로 수행하였고, 이에 감사드립니다. (grant no. 20007027)

References

  1. Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., and Hopke, P.K. (2009). Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2, Atmospheric Environment, 43(17), 2770-2780. doi:10.1016/j.atmosenv.2009.02.039.
  2. Amato, F., Cassee, F.R., Denier van der Gon, H.A.C., Gehrig, R., Gustafsson, M., Hafner, W., Harrison, R.M., Jozwicka, M., Kelly, F.J., Moreno, T., Prevot, A.S.H., Schaap, M., Sunyer, J., and Querol, X. (2014). Urban air quality: The challenge of traffic non-exhaust emissions, Journal of Hazardous Materials, 275, 31-36. doi:10.1016/j.jhazmat.2014.04.053.
  3. Buckeridge, D.L., Glazier, R., Harvey, B.J., Escobar, M., Amrhein, C., and Frank, J. (2002). Effect of motor vehicle emissions on respiratory health in an urban area, Environmental health perspectives, 110(3), 293-300. doi:10.1289/ehp.02110293.
  4. Denier van der Gon, H.A.C., Gerlofs-Nijland, M.E., Gehrig, R., Gustafsson, M., Janssen, N., Harrison, R.M., Hulskotte, J., Johansson, C., Jozwicka, M., Keuken, M., Krijgsheld, K., Ntziachristos, L., Riediker, M., and Cassee, F.R. (2013). The PolicyRelevance of WearEmissions fromRoad Transport, Nowand in the Future-An International Workshop Report and Consensus Statement, Journal of the Air & Waste Management Association, 63 (2), 136-149. doi:10.1080/10962247.2012.741055.
  5. Grigoratos, T. and Martini, G. (2015). Brake wear particle emissions: a review. Environmental science and pollution research, 22 (4), 2491-2504. doi:10.1007/s11356-014-3696-8.
  6. Harrison, R.M., Jones, A.M., Gietl, J., Yin, J., and Green, D.C. (2012). Estimation of the contributions of brake dust, tire wear, and resuspension to non exhaust traffic particles derived from atmospheric measurements, Environmental science & technology, 46 (12), 6523-6529. doi:10.1021/es300894r.
  7. Hascoet, M. and Adamczak, L. (2020). At source brake dust collection system, Results in engineering, 5 (November 2019). doi:10.1016/j.rineng.2019.100083.
  8. Hinds, William C., Y.Z. (1999). Aerosol Technology : Properties, Behavior, and Measurement of Airborne Particles, WILEY-INTERSCIENCE, 338-341
  9. Hwang, I.S. and Lee, Y.L. (2021). A Study on Mini-cyclone for Collection of Fine Dust in Vehicle Brakes, Journal of the Korean Society of Manufacturing Technology Engineers, 30 (2), 142- 147. doi:10.7735/ksmte.2021.30.2.142.
  10. Lawrence, S., Sokhi, R., and Ravindra, K. (2016). Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques, Environmental Pollution, 210, 419-428. doi:10.1016/j.envpol.2016.01.011.
  11. Marjamki, M., Keskinen, J., Chen, D.R., and Pui, D.Y.H. (2000). Performance evaluation of the electrical low-pressure impactor (ELPI), J. Aerosol Sci, 31 (2):249-261. doi:10.1016/S0021-8502(99)00052-X.
  12. Mo, J., Tian, E., and Pan, J. (2020). New electrostatic precipitator with dielectric coatings to efficiently and safely remove sub-micro particles in the building environment. Sustainable cities and society, 55 (November 2019), 102063. doi:10.1016/j.scs.2020.102063.
  13. Pant, P. and Harrison, R.M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review, Atmospheric Environment, 77, 78-97. doi:10.1016/j.atmosenv.2013.04.028.
  14. Park, J.-H. (2019). The Optimal Design of Magnet Type Dust Collector for the Removal of Iron Particulate Matters, Journal of The Korean Society For Urban Railway, 7 (2), 133-140. doi:10.24284/jkosur.2019.6.7.2.133.
  15. Peng, T., Yan, Q., Li, G., Zhang, X., Wen, Z., and Jin, X. (2017). The Braking Behaviors of Cu-Based Metallic Brake Pad for High-Speed Train Under Different Initial Braking Speed, Tribology letters, 65 (4), 1-13. doi:10.1007/s11249-017-0914-9.
  16. Rissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandstrom, T., Blomberg, A., and Londahl, J. (2012). Experimental determination of deposition of diesel exhaust particles in the human respiratory tract, Journal of aerosol science, 48, 18-33. doi:10.1016/j.jaerosci.2012.01.005.
  17. Stadler, Z., Krnel, K., and Kosmac, T. (2007). Friction behavior of sintered metallic brake pads on a C/C-SiC composite brake disc, Journal of the European Ceramic Society, 27 (2-3),1411- 1417. doi:10.1016/j.jeurceramsoc.2006.04.032.
  18. Wei, L., Choy, Y.S., and Cheung, C.S. (2019). A study of brake contact pairs under different friction conditions with respect to characteristics of brake pad surfaces, Tribol. Int, 138 (February):99-110. doi:10.1016/j.triboint.2019.05.016.
  19. Woo, S., Kim, Y., Lee, Sunyoup, Choi, Y., and Lee, Seokhwan (2020). Characteristic of Brake Wear Particles under Various Test Driving Cycles, Journal of Korean Society for Atmospheric Environment, 36 (3), 346-359, doi:10.5572/KOSAE.2020.36.3.346
  20. Woo, S.H., Jang, H., Na, M.Y., Chang, H.J., and Lee, S. (2022). Characterization of brake particles emitted from non-asbestos organic and low-metallic brake pads under normal and harsh braking conditions, Atmospheric environment, 278 (March), 119089. doi:10.1016/j.atmosenv.2022.119089.