• Title/Summary/Keyword: chaotic control

Search Result 188, Processing Time 0.025 seconds

Controller Design using PreFilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 제어기 설계)

  • Choi, Un-Ha;Kim, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.651-653
    • /
    • 1998
  • This thesis propose the prefilter type control strategies using modified chaotic neural networks #or the trajectory control of robotic manipulator. Since the structure of chaotic neural networks and neurons, chaotic neural networks can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis PUMA robot is designed by CNN. The CNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on- line learning and the performance is excellent. The CNN controller have much better controllability and shorter calculation time compared to the RNN controller. Another advantage of the proposed controller could be attached to conventional robot controller without hardware changes.

  • PDF

An Optimized PI Controller Design for Three Phase PFC Converters Based on Multi-Objective Chaotic Particle Swarm Optimization

  • Guo, Xin;Ren, Hai-Peng;Liu, Ding
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.610-620
    • /
    • 2016
  • The compound active clamp zero voltage soft switching (CACZVS) three-phase power factor correction (PFC) converter has many advantages, such as high efficiency, high power factor, bi-directional energy flow, and soft switching of all the switches. Triple closed-loop PI controllers are used for the three-phase power factor correction converter. The control objectives of the converter include a fast transient response, high accuracy, and unity power factor. There are six parameters of the controllers that need to be tuned in order to obtain multi-objective optimization. However, six of the parameters are mutually dependent for the objectives. This is beyond the scope of the traditional experience based PI parameters tuning method. In this paper, an improved chaotic particle swarm optimization (CPSO) method has been proposed to optimize the controller parameters. In the proposed method, multi-dimensional chaotic sequences generated by spatiotemporal chaos map are used as initial particles to get a better initial distribution and to avoid local minimums. Pareto optimal solutions are also used to avoid the weight selection difficulty of the multi-objectives. Simulation and experiment results show the effectiveness and superiority of the proposed method.

Control of Dynamical Systems: An Intelligent Approach

  • Ammar, Soukkou;Khellaf, Abdelhafid;Leulmi, Salah;Grimes, Mourad
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.583-595
    • /
    • 2008
  • In this paper, we introduce a fuzzy nonlinear feedback approach to the control of a class of chaotic dynamical systems. The fuzzy Parallel Distributed Compensation with Reduced Rule Base approach (PDC_RRB) is proposed. The design procedure is conceptually simple and considered to a nonlinear optimal and robust control problem due to the nonlinear nature of the Takagi-Sugeno (TS) fuzzy system. Simulation results are provided to show the effictiveness of the proposed methodology.

Control of chaos in nonlinear chemical reactor

  • Lee, Joon-Suh;Yang, Dae-Ryook;Lee, In-Beum;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.48-53
    • /
    • 1993
  • In this paper, it is shown that chaotic nonlinear chemical process can be controlled based on the Poincare map based control algorithm. An isothermal autocatalytic CSTR, which has chaotic dynamics, is successfully controlled and period 2 orbit is generated in a normal chaotic region with small perturbation of the control parameter.

  • PDF

Control of Discrete-Time Chaotic Systems Using Model-Based Control (모델 기준 제어를 이용한 이산치 혼돈 시스템의 제어)

  • Park, Kwang-Sung;Joo, Jin-Man;Park, Jin-Bae;Choi, Yoon-Ho;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1056-1059
    • /
    • 1996
  • In this study, a new OSA controller is proposed for controlling discrete-time chaotic systems efficiently. A new OSA controller uses NARMAX models, and its feedback gain is designed on the basis of conventional linear control theory. In order to evaluate the performance of a new OSA controller, a new OSA controller is applied to Henon system which is a discrete-time chaotic system, and then the control performance of a new OSA controller are compared with that of the previous model-base controller through computer simulations.

  • PDF

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Gharebaghi, Saeed Asil;Zangooeia, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.347-357
    • /
    • 2017
  • The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

The chaotic motion analysis by hardware implementation of Bonhoeffer Van der Pol oscillation model (Bonhoeffer Van der Pol 오실레이터 모델의 하드웨어 구현에 의한 카오스 운동 해석)

  • Bae, Yeong-Cheol;Seo, Sam-Mun;Im, Hwa-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.877-882
    • /
    • 1996
  • The effects of periodic and chaotic behaviour in the Bonhoeffer-Van der Pol (BVP) oscillation of the nerve membrane driven by a periodic stimulating current A1 coswtare investigated through hardware implementation.For hardware implementation of the BVP model. real element values were escaled with computer simulation results to determine the parameter real value.As the parameter A1 varied in the range 0 to 1.3, the BVP model showed an ordinary and reversed period-doubling cascade and a chaotic state. At the low driving amplitude ofa1 the period-doubling showed and at the high driving amplitude of A1 the chaotic state occured. To analyse the BVP model for chaotic behaviour Phase Plane, Time series are used to verify that properties.

  • PDF

The Design of Stable Fuzzy Controller for Chaotic Nonlinear Systems (혼돈 비선형 시스템을 위한 안정된 퍼지 제어기의 설계)

  • 최종태;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.429-432
    • /
    • 1998
  • This paper is to design stable fuzzy controller so as to control chaotic nonlinear systems effectively via fuzzy control system and Parallel Distributed Compensation (PDC) design. To design fuzzy control system, nonlinear systems are represented by Takagi-sugeno(TS) fuzzy models. The PDC is employed to design fuzzy controllers from the TS fuzzy models. The stability analysis and control design problems is to find a common Lyapunov function for a set of linear matrix inequalitys(LMIs). The designed fuzzy controller is applied to Rossler system. The simulation results show the effectiveness of our controller.

  • PDF

Implementation of Chaotic UWB Systems for Low Rate WPAN

  • Lee, Cheol-Hyo;Kim, Jae-Young;Kim, Young-Kkwan;Choi, Sun-Kyu;Jang, Ui-Gi
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • In order to support ultrawide-band signal generation for low rate WPAN, several types of signal generation mechanisms are suggested such as Chaos, Impluse, and Chirp signals by the activity of IEEE 802.15.4a. The communication system applied chaos theory may have ultrawide-band characteristics with spread spectrum and immunity from multipath effect. In order to use the advantage of chaotic signal generation, we introduce the system implementation of communication and networking systems with the chaos UWB signal. This system may be composed of mainly three parts in hardware architecture : RF transmission with chaotic signal generation, signal receiver using amplifiers and filters, and 8051 & FPGA unit. The most difficult part is to implement the chaotic signal generator and build transceiver with it. The implementation of the system is devidced into two parts i.e. RF blocks and digital blocks with amplifiers, filters, ADC, 8051 processor, and FPGA. In this paper, we introduce the system block diagram for chaotic communications. Mainly the RF block is important for the system to have good performance based on the chaotic signal generator. And the main control board functions for controlling RF blocks, processing Tx and Rx data, and networking in MAC layer.

  • PDF

Temperature Analysis of the Voltage Contolled Chaotic Circuit (전압 제어형 카오스회로의 온도특성 해석)

  • Park, Yongsu;Zhou, Jichao;Song, Hanjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3976-3982
    • /
    • 2013
  • This paper presents a temperature analysis of the chaotic behavior in the voltage controlled CMOS chaotic circuit. The circuit is based on a simple nonlinear function block which is needed for chaotic signal generation. It consists of a NFB (nonlinear function block), a level shifter and non-overlapping two-phase clock for sample and hold. By SPICE simulation, chaotic dynamics such as frequency spectra and bifurcations according to the temperature variations were analyzed. And, it was showed that the circuit can generate discrete chaotic signals within control voltage in the range from 1.2 V to 2.3 V in a specific temperature condition of $25^{\circ}C$.