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Control of Dynamical Systems: An Intelligent Approach

Soukkou Ammar, Abdelhafid Khellaf, Salah Leulmi, and Mourad Grimes

Abstract: In this paper, we introduce a fuzzy nonlinear feedback approach to the control of a
class of chaotic dynamical systems. The fuzzy Parallel Distributed Compensation with Reduced
Rule Base approach (PDC_RRB) is proposed. The design procedure is conceptually simple and
considered to a nonlinear optimal and robust control problem due to the nonlinear nature of the
Takagi-Sugeno (TS) fuzzy system. Simulation results are provided to show the effictiveness of

the proposed methodology.
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1. INTRODUCTION

Chaos is a special feature of parametric nonlinear
dynamical systems. It is usually difficult to accurately
predict its future behaviour [1]. Recently, significant
attention has been focused on developing techniques
for the control of chaotic dynamical systems [2].
Generally, there are two ways to conirol chaos.
Feedback control methods are used to control chaos
by stabilizing a desired unstable periodic solution,
which is embedded in a chaotic attractor, and non-
feedback control methods [3] suppress chaotic
behavior by applying weak periodic perturbation to
some control parameters or variables. Although
several control methods have been extensively applied
to control regular and chaotic behavior of smooth
nonlinear dynamical systems, non-smooth systems
can also be controlled.

While chaos has become one of the most focusing
research topics in the literature, we have witnessed
rapidly growing interest in making the control systems
more intelligent. Among intelligent control
approaches, fuzzy control [2,4-6], neural networks
modelling and control [1,7,8] and genetic
optimization [9] have enjoyed remarkable success in
various applications.

The fuzzy control designed is carried out based on

Manuscript received October 8, 2006; revised June 29,
2007 and October 2, 2007; accepted February 19, 2008.
Recommended by Editorial Board member Eun Tai Kim under
the direction of Editor Young-Hoon Joo.

Soukkou Ammar and Mourad Grimes are with the
Department of Electronics, University of Jijel, BP. 98, Ouled
Aissa, lijel 18000, Algeria (e-mails: {soukkou a, grimes
morad}@yahoo.fr).

Abdelhafid Khellaf is with the Department of Electronics,
University of Ferhat Abbas-Setif 19000, Algeria Algeria (e-
mail: ah_khellaf@yahoo.fr).

Salah Leulmi is with the Department of Electrotechnics,
University of Skikda 21000, Algeria (e-mail: leulmi_salah
@yahoo.fr).

the fuzzy model via a so called Parallel Distributed
Compensation (PDC) strategy [10,11]. The idea is that
for each local linear model, a linear feedback control
is designed.

The resulting overall controller (which is nonlinear
in general) is a fuzzy blending of each individual
linear controller. To designing an optimal controller,
an efficient optimization technique should be used. In
particular, evolutionary computation has received
considerable attention in recent years [12]. Genetic
Algorithms (GAs) [13] are optimization routines that
operate in a similar manner to natural genetic
selection. GAs have been proposed as a learning
method that allows automatic generation of optimal
parameters for fuzzy controllers based on an objective
criterion. The concept of chaos being radically
different from statistical randomness is introduced in
this paper to solve the problem of maintaining the
population diversity of GA in the learning of
PDC RRB. Concering the performance of fuzzy
control systems, the optimality and robustness have
quite often been considered as the important issues.
Specifically, on the optimality issue for fuzzy control
systems [14]. In this paper, we propose a fuzzy
nonlinear feedback approach to the control of a class
of chaotic systems. Our aim is to alter the dynamics of
the given chaotic system appropriately by using the
control input to obtain a desirable behaviour, i.e. to
drive the system from chaos to periodic behaviour.
Another problem we address is to force a chaotic
system to track a reference trajectory. Furthermore,
we consider the Duffing chaotic system, the Van der
Pol oscillator and Chua’s circuit as illustrative
examples, and their numerical simulation results show
that, in spite of system uncertainties, the proposed
PDC_RRB controller can be successfully applied for
tracking a periodic orbit. The remaining part of this
paper is organized as follows. The design and learning
algorithm of the proposed system is described in
Section 2 and 3, respectively. Some simulation results
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to illustrate the effectiveness of the proposed control
system structure are displayed in Section 4. Finally,
Section 5 concludes the paper.

2. DESIGN PROCESS

2.1. Problem statement

The problem to be addressed is that of achieving
the optimal set-point control of a process driven by a
nonlinear controller. Consider a nonlinear system
described by

x(t) = g(x(t),u(t),dist (t))

y(t)=Cx(1)

i (0)=5(d 1) 0
x(o)zxo, te[O,tf]7

where xeR"”, ueR™ and yeR? are the state
vector, the control vector and the output vector,
respectively. d,, € R? represents a bounded external
disturbance, x, is the initial state
g:CT(R"xR")>R",2(0,00=0, and CeR”
is a constant matrix. In general, the objective of the

vector,

control is to find the optimal law " such that

lim |y (r) - »* (1) <&, @)

t—w

where & is a suitably chosen constant. That is the

faster y tracks the reference model yd, and the

performance index given by the user is minimized (the
better the controller will perform [15,16]). The
diagram of plant control loop is plotted in Fig. 1 that
contains four blocks:
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Fig. 1. Control and optimization structure.

i) Optimization / tuning block characterized by GA.

ii) Structural block representing the PDC_RRB.

iii) Decisions block defining the performances
criteria.

iv) System block to be controlled.

The interaction between these four blocks is

summarized by

1. Generating initial population of chromosomes
(each chromosome represents a optimal fuzzy
knowledge base).

2. Projecting of each chromosome on the structure of
PDC RRB.

3. For all chromosomes and all (xT , yd ) e £,

* Evaluate fitness &
* Classify the chromosomes according to their
fitness.

Steps 2 and 3 are repeated until a maximum number
of generations is carried out. After the evolution
process, the final generation of population consists of
highly fit strings that provide optimal or near optimal
solutions.

2.2. Proposed optimal controller

The history of the Parallel Distributed
Compensation (PDC) started with a model-based
design process proposed by Tanaka and Sugeno [17].
The PDC offers a scheme to design a fuzzy controller
from the TS fuzzy model. Compared with the widely
used PL, PD and PID controllers that require tuning
only two or three parameters, the TS controller using
PDC is extremely far removed from ease-of-use [10].
To overcome this disadvantage, a new control scheme
called Parallel Distributed Compensation with
Reduced Rule Base (PDC RRB), which can
significantly reduce the number of parameters in PDC,
is proposed in this work. The /™ rule of the proposed
PDC_RRB is as follows:

RY :r % is A", AND %, is 4J) THEN
i=l,...M . (3)
k0 5 i (),

where Al(i)~A,(,f) are linguistic values of the fuzzy

variables to express the universe of discourse of the

fuzzy set in the antecedent. k), (i=1,...M)
represent the feedback gain vector (resp. gain matrix
in the MIMO case). = [il,...,fm] is a vector input

(system states) and m is a number of input variables.

X = —x,d and x? is a state reference trajectory.

P =X

3

{5&5)} represents the certainty factor of the ith rule

[18,19]. The latter can take only two values; either 0
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or | ({ Eg) } =1/0, characterizes enabled/disabled

rule). u(') the ith rule controller at time ¢ and with is
the operator modelling the certainty factor of a rule
[20]. The overall state feedback fuzzy controller is
represented by

. _Zi:”w(f) (;C).ggj} Ul
u = =M (i -
Z;’:] w )(x) 4
Mo ; .
— _Zh(‘) (5)'51(;) .K(‘} X,
i=1

where
= =M _ (i},

; 1 W #0
W(’)(fc): Hﬂfj (;C), Z‘z=1 x) ‘5
=M 7 ) (%)=0,

‘ () (5 M 0 ()21
h(!)(i): d (.X') Zt=1 (x) (6)

To® ()20

K (x) is the grade of membership of ¥ in fuzzy

set Ay) and h(f)(i) denotes the normalized weight

of each fuzzy rule. From the expression (4), the
optimal control law will be represented by

#*

u =u? =¥ ()%, (7

where 7 (%) is the nonlinear feedback gain vector

(resp. gain matrix in the MIMO case) due to the
nonlinear nature of the Takagi-Sugeno fuzzy system.
The problem considered in this paper is to find the
optimal PDC RRB controller, i.e., the optimal

nonlinear gain W’ (%) based on the following

objectives:

(1) Minimize the absolute error between the output
signals and reference models.

(2) Reduce the quantity of the energy of the control
signals applied to the system.

(3) Minimize the number of fuzzy rules.

Those objectives are selected with respect to the
imposed constraints (fuzzy constraints membership
function and system control constraints). The discrete
step values of " equispaced over process operation
time are considered as optimization variables.

One of the most important issues in fuzzy systems
is how to reduce the rule base and their corresponding
computation requirements. Generally, the number of
fuzzy rules grows exponentially with the number of
input variables. Specifically, a single output fuzzy
system with m input variables and » fuzzy sets defined

for each input variable requires #™ number of fuzzy

rules. As it is well known, the curse-of-dimensionality
is an unsolved problem in the fields of fuzzy and
neuro-fuzzy systems [21]. To construct fuzzy systems
using as less as possible fuzzy rules with guaranteed
desired performances is a meaningful problem, which
has attracted much attention for a long time in the
fuzzy community [18,20,22,23]. Wan et al [24]
introduced a computational geometry approach to
determine the minimum number of rules required in
building a fuzzy model to achieve a given
approximation accuracy. In [25,26], the authors
present a systematic procedure of fuzzy control
system design that consists of fuzzy model
construction, rule reduction, and robust compensation
for nonlinear systems using a generalized form of TS
fuzzy systems. Conditions to reduce the number of
rules have been represented in term of LMIs. Lee [19]
presented two phases optimization of fuzzy controiler
with  weighted rule based on evolutionary
programming and the principle of maximum entropy.

The use of hierarchical structure in designing a
fuzzy system has been reported in [21,27,28]. The
hierarchical topology of fuzzy system permits to
reduce the size of rule base to some extend. The
number of fuzzy rules employed in a hierarchical
fuzzy system is proportional to the number of input
variables.

3. GENETIC LEARNING

Genetic learning (search) strategies are population
based  probabilistic  optimization  techniques
mimicking Darwin’s idea of natural selection [13].
Some of the advantages of a GA include that it [29}]:

* Optimizes with continuous or discrete variables.

* Doesn’t require derivative information.

* Simultaneously searches from a wide sampling of
the cost surface.

* Deals with a large number of variables.

» Is well suited for parallel computers.

* Optimizes variables with extremely complex cost
surfaces (they can jump out of a local minimum).

* Provides a list of optimum variables, not just a
single solution.

* May encode the variables so that the optimization
is done with the encoded variables, and works with
numerically generated data, experimental data, or
analytical functions.

The main purpose of introducing the GA to the
design of a fuzzy controller is not only to use the
robust and global benefits of GA but also to develop a
systematic design approach of the fuzzy controller.

The concrete steps realizing the genetic
optimization of PDC RRB are summarized as
follows:

1. Create some chromosomes randomly.
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2. Evaluation of fitness value: Calculate the fitness
value of each chromosome in the population:

F,=(1+J)", (8)

where J is the optimisation index (equation (15)).

3. Application of genetic operators: Selection,
crossover and mutation. The actual process of
mutation depends on the coding form. In binary
coding part of chromosome, mutation only
performs 1-bit flip, i.e., the bit value changes from
‘0’ to ‘1’ or from 1’ to “0’. If the mutation takes
place in the real coded part, we develop a chaotic
mutation operator inspired of the works presented
in [30-32].

4. Elitism: To put a limitation to the genetic
divergence, one of the elitism strategies has been
introduced. The latter, based on the technic of the
steady-state selection, permits to construct a new
more effective generation than the previous (the
best member in last generation (gen-1) will be
substituted into the worst member in the actual
generation).

If the stop criterion is satisfied, return the
chromosome with the best fitness, i.e., the optimal
PDC_RRB. Otherwise, go to step 2 and proceed with
the next generation. In the Fig. 2, Lxy; & Lyy, (real
coding) are the widths of the universes of discourses
of the fuzzy subsets of the input variables x; and x;
respectively. K,;, represent the scaling factors of the
input variables (real coding).

The partitions are symmetric about the membership
function ZE. This approach simplifies the computation
while typically giving robust and satisfactory results.
It also simplifies the optimisation testing of the GA.
We assume that MFs are strictly monotone decreasing
(or increasing) and continuous functions with respect

to x;, while x,f is a maximal left tolerance limit to

b, and x{ isamaximal right tolerance limit to .

X1, %)

HEEEEEE IR Y

K., fze

Fig. 2. Chromosome structure and corresponding rule
base.
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3.1. Chaotic mutation

Chaos theory indicates that gene mutation can be
regarded as action of chaos dynamic. So chaos is used
to improve mutation. Operator of mutation for real
coded GA is always random mutation. Generally
nonlinear [33-35] or Gaussian distribution [31]. The
logistic map display many of the generic features of
chaotic dynamical systems such as the transition from
regular to random behaviour, the presence of period-
doubling bifurcation cascades, the influence of
attractor and the underlying characteristics of a fractal.
The chaos model used is the logistic mapping [36]:

Xy = A-x; (1) (10)

in which Ae€[0,4] is a control parameter (chaos
attractor), i=0,1,2,...., and x is chaotic variable.
If Ae [3.56,4], then the above system enters into a
chaos state and chaotic variable x; is produced. The
chaotic variable is in the interval [0,1], and 1s

extreme sensitive to initial conditions. Fig. 3
illustrates the bifurcation for logistic mapping. For
each value of 4 the initial value of x was taken as 0.3

and the ordinate is x;,; for i=12,.,100. The

bifurcation occurs from 4 >3.0.
The performance of GA mainly depends on the
genetic operations applied to the chromosome,
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Fig. 3. Bifurcation for logistic mapping.
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mainly: the selection, crossover and mutation. The
mutation operator plays an important role in
maintaining the population diversity over the space of
interest through the GA. There are many merits of real
coded GA. There exists a number of mutation
operators defined in the literature, which of course,
depends on the representation used: binary or real
coding. The most used mutation operators classified
by the representation type are :

» Mutation operators for bit string.

* Mutation operators for real-coded string. Generally
three types are used in the literature: standard
mutation, uniform and non uniform mutation.
Given the vector (chromosome):

Ch‘()gen) :[Vl’ e Vs o ,Vm]’ (11)

.....

generation gen.

For binary string, the usual mutation operator just
performs a bit-flipping in one of the positions of the
individual [13]. The standard mutation operator of
real coding chromosomes consists in the addition of a
genes to be mutated a random values [37] as follows

Ve =Vk +N(0,0k), (12)

where N(0,0y) is random number drawn from a

Gaussian distribution with zero mean and standard
deviation og. In [38], the author applied this

operator with an adaptive covariance. In the uniform
mutation (boundary mutation) for real coding-type, a

random selected element Vi is replaced by Vg,

which is a random number in the

I:VKmin’ ;{nax}

The non-uniform mutation [39] modifies its
disruptive effect depending on the stage of
evolutionary process. The effect of this mutation
operator is to perform big exploratory steps in the
beginning of the evolutionary process and small steps
at the end.

The precision of real coded GA is generally much
better than that of binary coded GA [32]. In real coded
GA, generally, the arithmetic (resp. standard)
crossover operation and the uniform (resp. non-
uniform) mutation are designed to preserve the
constraint.

The chaotic mutation is introduced for maintaining
the population diversity during the evolution process
of the genetic algorithm. In this paper, the chaotic
mutation operator is defined as follows

range

Vg =V + Muty (V8™ -vE™), (13)

where

where A4 =3.88 is a control parameter.

4. SIMULATION

This section aims at illustrating some capabilities of
the proposed PDC_RRB controller to suppress chaos
in nonlinear chaotic systems. We use the Duffing
oscillator, the extended Van der Pol oscillator and the
Chua’s circuit to illustrate the efficiency of our
feedback strategy.

The optimisation of the PDC _RRB is to find the
‘best’ structure and the parameters, i.e., an optimal
fuzzy knowledge base, which can be represented as an
extremum problem of optimisation index. As
indicated in the following formula:

Minimize J, with

max_t

J= ,; F?(l)(k)-(icT (k)-0-%(k))

~

J) Error_States

J Rule_Base

Z(&@)m

Subjectto < 7
> W (2)%0 (in @)

Optimization index

where C(i)(k) are a time varying

i=1,2,3
weighting factors, which can be manipulated to get
the best response according to problem definition.

O=R=1%? (matrix identity),
maximum of time and Max_ R/ is the maximal number
of rules. A constraints are violated if Z(E&f)) =0

1

max_t is the

=M (i)~

and/or ZH w(')(x)zo
one of the optimization constraints is violated, THEN
reject the corresponding chromosome and regenerate
another chromosome. This process is repeated until all
optimization constraints satisfied.

The controller thus developed for this application is
initially characterized by: 5 fuzzy subsets for the first
input and 5 fuzzy subsets for the second input. This

in (4), respectively. IF
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Table. 1. Specifications of the GA.

Parameters Vatue/Type
Population Size 10
Max_Gen 500/100
Representation Mixed binary-real
Initialization Random
Scaling factors
Koo [Ksr1:Ksra]

[‘KFglaKFgl]

["19 1]

Dual-point with
probability P, = 0.8

Mixed, uniform and
chaotic with probability
P,=0.02

Feedback gains K @)

universe of discourses
LZE 1,2

Crossover operator

Mutation operator

gives 25 rules (Max_RI = 25 in (15)). Specifications
of the GA mechanisms are listed in Table 1.

Example 1: Consider the Duffing chaotic system
whose dynamics is as following {40,41]

{J.Cl =Xy (16)

K =01y —xp +12-cos(t) +u+dyy,

where u 1is the control input, d;, is a bounded
external disturbance given by

d

ist

(1)=0.001-sin(2f)exp(-0.1¢). (17)

If u=0 and d,, =0, then the system is chaotic
system. The phase plane is shown in Fig. 4 for initial
condition x; (0)=x,(0)=2.

Using the PDC RRB to control Duffing chaotic

0 - ——— —

Fig. 4. Phase plane without controller =0 and
disturbance d,; =0.

NB | ze | zE | PM | PB
NB
~ M 2 10)
% (1)
ZE
PM L8 |, 09)
PB
4

Fig. 6. The rule base of PDC_RRB.

system in order to force the states x; and x, to
track the given bounded reference signals:

(x{,x§) = (sin(r), cos(r)). (18)

In the phase plane, this reference trajectory is the
()c,d)2 +(x§1) =1. For

k=l,...,max_t

unit  circle: simulation,

C(l) (k)’izl 2,3

1000 in (15), respectively. [Kgpy,Kgpo]=1[5,20] and
[-K g1, Krg11=1-1000,1000] in Table 1. The
enabled rule numbers during the evolution of GA is
represented in Fig. 5.

Fig. 6 represents the rule base obtained at the end of
GA execution.

{0.1, 0.001, 0.1} and max_t=

i=18,19

u(i)(k)[ =—K(i) -(x—xd) &

i=7,10
KD = [-254.57 460.09]
K00 - [94.99 363.41] (19)

K18 - [-229.65 660.16]

K09 = [831.46 297.48]
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Fig. 7. System states using PDC_RRB.
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The simulation results shown in Figs. 7(a), (b}, (c)
and (d) illustrate that the controller achieve best
control performance. From these Figures, we can see

that x; and x, can track xld and :xg quickly.
Example 2: The chaotic system considered in this
example is the extended Van der Pol oscillator with an
additive controller described by the following
representation {3]:
').Cl =Xy
% =04(1-x)-x, —0.46-x - x
~0.1-% + fy c0s(0.86 1) +u,

(20)

where u is the control signal needed to be chosen. f;
=4.5 create chaotic behaviour in the dynamical system
(20) if no control is applied [42]. Fig. 8 illustrates an
example of the trajectory Van de Pol system. The
initial conditions were located at the origin. As can be
seen, the solutions are chaotic.

The control objective is to have the system states

(x,x;) follows a given reference trajectories

(xld ,xg ). Thus, the tracking errors must be as small

as possible and the closed-loop system must be
globally stable and robust, i.e., all its parameters are
uniformly bounded and the effect of the external
disturbances is attenuated to a prescribed level.

In this example, we consider again the control of
chaotic system (in (20)). Here we use the PDC_RRB
to control the extended Van der Pol chaotic oscillator
system state x=(x,, xz)r to track the periodic reference
trajectory

(1 (1), x4 (1) = (cos(@ - 1), —w - sin(w - 1)). 1)

k=\,...,max_t

For simulation, C(l) (k){ are equal to

i=1,2,3
{0.01, 0.001, 0.01} and max_t = 1400 in (13),

0
x,(0)

Fig. 8. A plot example of the trajectory Van der Pol
system.
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K £g11=[-1000, 1000] in Table 1. In this example, T
we choose the initial system state x(0)= (O,O)T . The s ]
controller was applied at r=60seconds. The “
enabled rule numbers during the evolution of GA is .
represented in Fig. 9. Only two rules remain at the end LA ]
of GA execution, as indicated the expression (22). i A ﬂ f fif 1 X Iﬂi
of- e eme — —— i | -+
RO . IF % is PM and &, is ZE THEN Uy U | x,{ \Ji
u17) =[263.50 74.53] (x—x%) 2 |
Mol e R D
R"™: IF % is PM and %, is PM THEN I
1 =[733.97 209.77]- (x—x¢) (c) Control signal.
Figs. 10(a), (b), (c), (d) and (e) present the T Conme T T -
simulation results by applying the PDC RRB " s /fg“ ]

controller (7) and (22) to the extended Van der Pol
oscillator (20) for tracking the desired periodic

reference trajectory (xld ,xf ). From Figs. 10(a) and

X

(b), it is clearly appears that when % =0 the periodic
reference trajectory and the system trajectories
diverge. However, as soon as the PDC_RRB
controller is started, the controlled trajectories of the
chaotic Van der Pol oscillator tend to the periodic
reference trajectory and the tracking control problem
is achieved as shown by Figs. 10(c) and (d). In order

to add evidence of the effectiveness and efficiency of (d) Phase plane.
the proposed PDC RRB controller, Fig. 10(e) b e — .
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(a) The state x; and its desired value. Fig. 10. System states using PDC_RRB.
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presents x; and x, in phase space under control actions
when the transient oscillatory period has been
eliminated. One can see that the attractor changes its
dynamical structure in such a way that the canonical
plane (x,x,) has a periodic structure.

Example 3: The chaotic Chua's circuit, as shown in
Fig. 11, is a simple electronic system, which consists
of one inductor (L), two capacitor (C;, C3), one linear
resistor (R) and one piecewise linear or nonlinear
resistor (g). It has been shown to possess very rich

nonlinear dynamics such as bifurcation and chaos [43].

The dynamic equations of Chua’s circuit in
dimensionless form is as follows [3]
=n(xn-x-g(x))+u
.7.62 =X~ Xy +X3 (23)

X3 ==7%,

where u is the control input to be chosen and

b-x;+a-b, x>l
g(xl)z a-x, |x1]>1 (24)
b'xl—a+b, x1<—1,

where x =v~ [E, x,=v~ [E, x3=1i;/ER, and
1=V, 2 =V, 3 =

E is a constant voltage. y; =C,/C;, y, = CZRZ/L.
a=RG, and b=RG,. In the model equation, the
state variables x; and x, represent the voltage
across the two capacitors, and variable x; is the
current through the inductor. Typical values of the
system parameters 7, =9, y, =100/7, a=-8/7
and b=-5/7 create chaotic behaviour in the
dynamical systems (23) when =0 as indicate
clearly Figs. 12(a), (b) and (c). We have selected the
initial conditions as (x;(0), x,(0), x3(0)) = (1.0, 0.0,
0.0).

In this case, we consider again the control of Chua’s
system (23). Here we use the PDC_RRB to control

the Chua’s system state x = (x;,xy,x;)" at the origin.

A hierarchical PDC_RRB is adopted in this case (Fig.
13). This structure provides flexible architecture for
modeling nonlinear systems and reduces the size of

i () R ig()lt)
AN >
% l |
RO Cl

& ch(f) vl(t)
%L § £ | ¢

\ 2

Fig. 11. Diagram of Chua’s circuit.

rule base to some extend. The problems in designing

of hierarchical structure include [21]:

* Select a proper hierarchical structure.

o Select the inputs for each Ts-fuzzy sub-model.

» Determine the initial configuration for each Ts-
fuzzy sub-model.

0.4
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0.2

01

[

0.1
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25 -2 1.5 -1 o5 [ 0.8 1 15 2 25

x

Fig. 12. Phase plane of the uncontrolled Chua’s
oscillator.

=

%,
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%, 2

Fig. 13. Hierarchical structure of the controller.
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* Optimize the fuzzy knowledge base by using the
genetic learning.

InFig. 13, X, =x; —x

, (1=1,2,3) and

-9 (5,%) %, (25)

The controller output is given by

i=-¥ (%,%) %

u=-97 (i, %) il - V0 (1, 53) T3
=0;()- % +DPy() - % +D3()- 53,
O, () =P, (1, %) - ], (%, %)
D, () =5, i, 5)- ] (5, %) 27)
D, () =-W1, (@, 5%).

(26)

ymax_t

For simulation, C(’)(k)i and max t in

expression (15) are equal to {0.01 0.0001, 0.001}
and 600, respectively. [Kqr; 1|5 Jels, 15], [-K Faii>

Kozl €[-1.0,1.0]  and  [-Kpg,,Kpg, ] €[-100.0,
100.0] in Table 1. The controller was applied at
t =100 seconds. The enabled rule numbers during
the evolution of GA is represented in Fig. 14.

Only two rules remain at the end of GA execution.

The rules base of PDC_RRB; and PDC_RRB;
obtained in the last generation are given by

R"Y . IF % is ZE and %, is ZE THEN
13 21059 0.36]- (x - x%),
R IF % is ZE and %, is PM THEN
7Y =045 -0.52]-(x—x%), 28)
R IF % is PM and %, is ZE THEN
18 =[0.74 0.57]- (x—x%),
R IF % is PM and %, is PM THEN
19 =10.18  0.34] (x—x%),
e
|
é 7 1 v’/~ - :”l
: A f
L SRR ! :
L SRR R R
4 Caed ! e " “ ! 5 R [ -
L ‘ ! 1‘ ‘A 4
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Fig. 14. Number of enabled rules.
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Fig. 15. System states using PDC_RRB.
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R : IF i is ZE and %; is ZE THEN
uY =[26.65 -97.10]- (x—x%),

R™): IF i is PB and % is PB THEN
w1 =[95.72 6.28] (x - x%).

29)

Figs. 15(a), (b), and (¢) show the individual
evolution of the states x;, x, and x;, respectively.

The states of the Chua’s circuit have been regulated
effectively and efficiency to the equilibrium point
&, x4, x§)=(0.0, 0.0, 0.0) and the
objective is attained. The corresponding input signal
of the system is depicted by Fig. 15(d).

The real-coded GA is robust, accurate and efficient
because the floating point representation is
conceptually closest to the real design space and
moreover, the sting length is reduced to the number of
design variables.

The chaotic mutation operator is used to solve the
problem of maintaining the population diversity of
GA in the learning process. The nonlinear optimal
controller designed (via fuzzy topology and the
genetic optimization) in this paper is very simple and
contains a minimal number of rules.

control

5. CONCLUSION

This paper contributes a new alternative for the
synthesis the fuzzy optimal controller with reduced
rule base. The genetic learning algorithm with chaotic
mutation is proposed for constructing a robust
nonlinear optimal controller. The developed controller
design techniques have been applied to the control of
chaotic systems. The chaotic mutation is introduced
for maintaining the population diversity during the
evolution process of the genetic algorithm. Simulation
results are provided to show the effectiveness of the
proposed methodology. Based on the simulation
results, the following main conclusions can be stated
about the proposed PDC_RRB:

* The design procedure is conceptually simple and
computationally efficient.

» Exploit the fine abilities and advantages of the
fuzzy logic, chaotic phenomenon and genetic
algorithms.

The advantages of the proposed designing method-
ologies are that it reduces the number of rules and the
computational time maintaining almost the same level
of desired performances.
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