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ABSTRACT

In this paper, it is shown that chaotic nonlinear
chemical process can be controlied based on the
Poincare map based control algorithm. An isothemmal
autocatalytic CSTR, which has chaotic dynamics, is
successfully controlled and period 2 orbit is generated
in a normal chaotic region with smail perturbation of

the control parameter.

INTRODUCTION

Nonlinear oscillation and chaos, peculiar characteristics
of nonlinear systems, can be found in many chemical
processes because of their inherently nonlinear and
structurally unstable dynamics. Recently, numbers of
papers have been showing that typical chemical processes
have chaotic feature[l, 2, 3, 4, 5]. Because of
omnipresence of chaos among chemical processes,
control of chaotic system recently becomes a focal point
of great interest.

In order to suppress chaos, if the dynamics of the
processes shows undesirable chaotic behavior and
eliminating chaos bg changing design parameters is not
allowed, a method of controlling chaos is necessary.
Some methods which regulate chaos have been appeared
lately, in the literatures [6, 7, 10, 14, 15]. For example,

* Fowler [6] devised an algorithm using a state estimator
. based on the Kalman filter which can regulate chaotic
Lorenz equation. Hartley and Mossayebi[14] showed
that proportional - integral controller can regulate chaotic
Lorenz system in normally chaotic region. Ott et al. [7}
developed an algorithm, based upon Poincare section and

return map of given nonlinear dynamical system and
successfully applied to Henon's map. The power of the
method has been demonstrated in a few physical and
chemical systems [8, 9, 11, 12, 13].

In this paper, we demonstrated the Poincare map
based approach to control a chaotic reaction system
consisted of parallel cubic autocatalators.

AUTOCATALYTIC CONTINUOUSLY STIRRED
TANK REACTOR

We consider a system consisting of two parallel,
isothermal autocatalytic reactions taking place in a CSTR
(Continuously Stirred Tank Reactor). The kinetics of the
system proceeds according to the following steps
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which are governed by the following rate equations
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When the reaction is carried out in a CSTR, the system
can be described by three ordinary differential equations.
If we define the dimesionless concentration for C,, C,,
and C,,,
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Damkohler numbers for species A, D and B,
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ratios of species in the feed and dimensionless time,

1 =5A0 yp =Cp0 o _tQ
Cgo, © Cho, v (6)

then the equations governing the system are given by

dx
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At Da, = 18000, Da, = 80, Da, = 80, ¥, = 1.5 and 7,=4.2,
the continuous autonomous system of eqs (7)-(9), shows
chaos [5]. The trajectories of egqs (7) - (9) eventually
approaches to chaotic attractor independent of initial
condition after sufficient period of time. Two
dimensional phase plane of the system, x | versus x , and
X, versus x, are shown in Fig. 1 and Fig. 2, respectively.
The calculations were carried out on a IBM RS/6000 350
using the LSODE subroutine. The relative error tolerance
and the absolute error tolerance was held at 10°. We
obtain a first retum map, which is a plot of n+1 th versus
n th piercing values of a state variable, on the following

“surface section
x, =0.25 and %1 >0 10)

as indicated in Fig. 1 by the horizontal line. First retum
map of given system are localized in a thin band as
shown in Fig. 3. The map does not have any fixed point,
i.e. the first return map does not intersect bisectrix.
Henon's algorithm [16] was applied to obtain numerical

piercing values during the integration.

POINCARE MAP BASED CONTROL

The main idca of the method is based on the fact that
chaotic attractor is very sensitive to small perturbations
because chaotic attractor has densely embedded within it
an infinite number of unstable periodic orbits. The
method can be applied to infinite dimensional systems,
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Fig. 3. Period | return map of x, at surface section x, = 0.025.



but here we restrict our attention to two dimensional map.
We consider two dimensional map on the Poincare

section with a scalar control variable

Xn+1= F(Xp, 1) ' an

where x € R2 are the state variable, F: R25R? and n=
0, 1, 2, .... . The control input u is manipulatable in a
small range around a nominal value u, . If the control u
is varied slightly from the nominal input u, =0 tosome
nearby point u = u, the fixed point Xp(1) may changes
from  xg(u)lu-0=xp(0) to xp(@)lu=z=xr(@), We define
here the vector g as

Ixp(u) _xg(u) - xp(0)
" du u (12)

in the near neighborhood of the nominal value u, . Near
the fixed point xg(0), linearly approximation of map (1)
can be expressed as

Xn+1 -XF(#) = AlXn -Xp(u)] (13)

where A is a Jacobian of F evaluated at x§(0). Au and As
are unstable and stable eigenvalues, respectively, i.e.

P> 1>A4 (14)

Unstable and Stable eigenvectors pu and pg are defined
as

Apy = Aypu
Ap, = Asp, s

and contravariant basis vectors fu and fa are given by

fi-pu=1
P =1 (16)
1Py =f-py=0

Note that the eigenvalues, eigenvector and the vector g
are experimentally assessable. A can be expressed by
using predefined eigenvalues and eigenvectors

A:[pups]["“ O]U)HPS]']

0 XA a7n

The contravariant basis vectors and the eigenvectors have
the following property

il f10
{ﬂ}[p"p']_[o 1 (18)
or 'rr
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Hence the matrix A can be written as

11
A =[Pufs] {A(')“ z] [ frj\= ()»upuf;}-"';‘-spsr:)

a9
Therefore the linearized difference equation (14) is given
by
Xnt1 XE(U) = (AuPufi+Aspsf]Xn -Xp(1)] 20)

From the definition of vector g, We can find that
Xp(u) = ug + xr(0) 7))
Using the equation (21), We have

Xn+1 = Ung + Xp(0) +(lupuf|’f+;¥spsr1)[xn - ug + xr(0)]
22)

The purpose of this algorithm is to suppress chaotic

behavior of Xn+1 and let the value stay in the close

neighborhood of xr(0), We choose control u, , 50 that

i Xns1=0 23)

From equation (22) and equation (23), control input u,
can be expressed in terms of the unstable eingenvalue, the
unstable contravarient vectos and g as

_ (1= AEExp(0) + Ayfl Xq
- DiTg (4)

n

We impose a constraint on control

un.min< u, < un .max (25)

When calculated v, > v, oru, . >u , Welet u, =

nmin n

U, .. OF U, =u . Note that X is on the left term of the
eq (24), so controlu, is calculated when the flow of egs
(7) - (9) pierces the surface of section. Usually the retum
map F is not explicitly obtained, numerical estimation of
eigenvalues, eigenvectors and the vector g is required to
implement the controller.
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CONTROLLING CHAOS

We choose the ratio of species A to species B in the feed,
7, as the manipulatable parameter. We let Y,=Ta+u,
and change slightly control u around nominal value T2 .
The control u is not required to change in wide range. To
implement the chaos controller the eigenvalues and the
eigenvectors should be obtained the close
neighborhood of desired fixed point. Period 2 return
map of the system has one fixed point. The map slightly
moves as T, changes from 4.200 to 4.201 and 4.202 for
both variable x, and x, (See (a) (b} and (c) in Fig. 4 and
Fig. 5). Furthermore near the fixed point, which is the

in

intersection with bisectrix, the set of points shows
linearity as shown in Fig. 6. The fixed point at v =0 and
0.002 are approximately x{0) = [0.3006 0.03365]" and
x«0.002) = [0.2997 0.033704]" . The vector g evaluated
at x{0) is  [-0.450 -0.027}". The eigenvalues and the
eigen vectors of the map of u, = 0 near fixed point were
Ay = -2.146, As=0.999, Pu=[-0997-0.074]" and Ps =
{-0.994 -0.111]7. Unstable contravariant vector isfu =
[ - 3.002 26.803]". Then the controller of eq (23) is

0.62932x10 + [6.4444 -57.536][ ::" ]
- n
Un= S1.97
(26)
and we letu,, andu,, as 0002 and - 0.002,

respectively. The control u, is calculated every even
piercing time at the surface section. After the orbit of
system (7) - (9) shows post transient response, we attempt
to control chaos. After T =146 the controller is let active.
Just after the controller become active, the calculated
value of the control in eq (26) is not in between constraint
imposed, so the controller output u, shows u,,,, or u, ...
After 1 becomes éreater than 156, the controller output

shows the values between u,,, and u, . . x, and x,

converges to two fixed points and continue to stay in the
close neiborhood of the points. The system does not have
any fixed point in period 1 retum map as shown in Fig. 3,
it is impossible to apply the map based control to let the
system be period 1 orbit. The controller output is
sensitively dependent on the vector g, the value should be

carefully evaluated.

CONCLUSIONS

It is shown that chaotic Autocatalytic CSTR is
controllable by using the Poincare map based control
algorithm, The algorithm does not necessarily require
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Fig. 5 Period 2 return map of x,,
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(@) Y, =4.200, (b) v,=4.201, (c) y, = 4.202.




detailed dynamical equation, but only experimentally
obtained eigenvalues and eigenvalues of the return map

in the vicinity of fixed point and the vector g which is
assessable based on the observation of fixed point

movement by small perturbations of the control

parameter. In this study, stable period 2 orbit is

successfully obtained in the normal chaotic chemical &
process.
NOTATION
A Jacobian of F 1T 7T
R 200 600 1000 1400

C.. G5, C,  concentrations in the reactor and outlet

flow of species A, B and D TIME ¢
E’l‘:" Coor Coo ;;'::l:z:]c;n:;::r (;:::;::::AB and D Fig. 7 Time series data of x,,,, controller is active after T = 146.
D, Damkohler number for species B
D, Damkohler number for species D
f .f, stable and unstable contravariant vector
F map on the poincare section
g fixed point movement vector 3sx10°
k, .k, k, reaction rate constant
Q flow rate 7 38
t time 34
u, u, control input and control input at n th

piercing 32
U, nominal value of control input ' 6(;0 ’ 10‘00 N 170;
U U maximum and minimum value of the

controller output TIME ©
v reactor volume
X, dimensionless concentration of species A Fig. 8 Time series data of X, » cOntroller is active after t = 146,

dimensionless concentration of species B
X, dimensionless concentration of species D
Xg fixed point of map F
X, n th value of the map F 4.202

4.201
Greek letters
L ratio of species A to B in the inlet flow 54200
T2 ratio of species D to B in the inlet flow 4.199
YA, Yc, Yo reaction rate of species A, Cand D
4.198

A, Ay stable and unstable eignevalues of F 150 160 170 180 190 200
Ps, Pu stable and unstable eigenvectors TIME <
T dimensionless time
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Fig. 9 Time series of ;.
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