• 제목/요약/키워드: centralizer algebra

검색결과 8건 처리시간 0.02초

REPRESENTATIONS FOR LIE SUPERALGEBRA spo(2m,1)

  • Lee, Chan-Young
    • 대한수학회지
    • /
    • 제36권3호
    • /
    • pp.593-607
    • /
    • 1999
  • Let denote the orthosymplectic Lie superalgebra spo (2m,1). For each irreducible -module, we describe its character in terms of tableaux. Using this result, we decompose kV, the k-fold tensor product of the natural representation V of , into its irreducible -submodules, and prove that the Brauer algebra Bk(1-2m) is isomorphic to the centralizer algebra of spo(2m, 1) on kV for m .

  • PDF

CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS ON SOME ALGEBRAS

  • He, Jun;Li, Jiankui;Qian, Wenhua
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.685-696
    • /
    • 2017
  • A linear mapping ${\phi}$ on an algebra $\mathcal{A}$ is called a centralizable mapping at $G{\in}{\mathcal{A}}$ if ${\phi}(AB)={\phi}(A)B= A{\phi}(B)$ for each A and B in $\mathcal{A}$ with AB = G, and ${\phi}$ is called a derivable mapping at $G{\in}{\mathcal{A}}$ if ${\phi}(AB)={\phi}(A)B+A{\phi}(B)$ for each A and B in $\mathcal{A}$ with AB = G. A point G in A is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (resp. derivation). We prove that every point in a von Neumann algebra or a triangular algebra is a full-centralizable point. We also prove that a point in a von Neumann algebra is a full-derivable point if and only if its central carrier is the unit.

C(S) extensions of S-I-BCK-algebras

  • Zhaomu Chen;Yisheng Huang;Roh, Eun-Hwan
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.499-518
    • /
    • 1995
  • In this paper we consider more systematically the centralizer C(S) of the set $S = {f_a $\mid$ f_a : X \to X ; x \longmapsto x * a, a \in X}$ with respect to the semigroup End(X) of all endomorphisms of an implicative BCK-algebra X with the condition (S). We obtain a series of interesting results. The main results are stated as follows : (1) C(S) with repect to a binary operation * defined in a certain way forms a bounded implicative BCK-algebra with the condition (S). (2) X can be imbedded in C(S) such that X is an ideal of C(S)/ (3) If X is not bounded, it can be imbedded in a bounded subalgebra T of C(S) such that X is a maximal ideal of T. (4) If $X (\neq {0})$ is semisimple, C(S) is BCK-isomorphic to $\prod_{i \in I}{A_i}$ in which ${A_i}_{i \in I}$ is simple ideal family of X.

  • PDF

Note on Cellular Structure of Edge Colored Partition Algebras

  • Kennedy, A. Joseph;Muniasamy, G.
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.669-682
    • /
    • 2016
  • In this paper, we study the cellular structure of the G-edge colored partition algebras, when G is a finite group. Further, we classified all the irreducible representations of these algebras using their cellular structure whenever G is a finite cyclic group. Also we prove that the ${\mathbb{Z}}/r{\mathbb{Z}}$-Edge colored partition algebras are quasi-hereditary over a field of characteristic zero which contains a primitive $r^{th}$ root of unity.

SOME PROPERTIES OF BILINEAR MAPPINGS ON THE TENSOR PRODUCT OF C -ALGEBRAS

  • Sarma, Anamika;Goswami, Nilakshi;Mishra, Vishnu Narayan
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.977-1003
    • /
    • 2019
  • Let 𝓐 and 𝓑 be two unital C-algebras and 𝓐 ⊗ 𝓑 be their algebraic tensor product. For two bilinear maps on 𝓐 and 𝓑 with some specific conditions, we derive a bilinear map on 𝓐 ⊗ 𝓑 and study some characteristics. Considering two 𝓐 ⊗ 𝓑 bimodules, a centralizer is also obtained for 𝓐 ⊗ 𝓑 corresponding to the given bilinear maps on 𝓐 and 𝓑. A relationship between orthogonal complements of subspaces of 𝓐 and 𝓑 and their tensor product is also deduced with suitable example.

HIGHEST WEIGHT VECTORS OF IRREDUCIBLE REPRESENTATIONS OF THE QUANTUM SUPERALGEBRA μq(gl(m, n))

  • Moon, Dong-Ho
    • 대한수학회지
    • /
    • 제40권1호
    • /
    • pp.1-28
    • /
    • 2003
  • The Iwahori-Hecke algebra $H_{k}$ ( $q^2$) of type A acts on the k-fold tensor product space of the natural representation of the quantum superalgebra (equation omitted)$_{q}$(gl(m, n)). We show the Hecke algebra $H_{k}$ ( $q^2$) and the quantum superalgebra (equation omitted)$_{q}$(gl(m n)) have commuting actions on the tensor product space, and determine the centralizer of each other. Using this result together with Gyoja's q-analogue of the Young symmetrizers, we construct highest weight vectors of irreducible summands of the tensor product space.

On the Tensor Product of m-Partition Algebras

  • Kennedy, A. Joseph;Jaish, P.
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.679-710
    • /
    • 2021
  • We study the tensor product algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm), where Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm) and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ ⋯ ⊗ Pk(nm) and the pairs of m-vacillating tableaux of shape [λ] ∈ Γkm, Γkm = {[λ] = (λ1, λ2, …, λm)|λi ∈ Γk, i ∈ {1, 2, …, m}} where Γk = {λi ⊢ t|0 ≤ t ≤ k}. Also, we provide proof of the identity $(n_1n_2{\cdots}n_m)^k={\sum}_{[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ f[λ]mk[λ] where mk[λ] is the multiplicity of the irreducible representation of $S{_{n_1}}{\times}S{_{n_2}}{\times}....{\times}S{_{n_m}}$ module indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$, where f[λ] is the degree of the corresponding representation indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ and ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}=\{[{\lambda}]=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_m){\mid}{\lambda}_i{\in}{\Lambda}^k_{n_i},i{\in}\{1,2,{\ldots},m\}\}$ where ${\Lambda}^k_{n_i}=\{{\mu}=({\mu}_1,{\mu}_2,{\ldots},{\mu}_t){\vdash}n_i{\mid}n_i-{\mu}_1{\leq}k\}$.