CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS ON SOME ALGEBRAS

Jun He, Jiankui Li, and Wenhua Qian

Abstract

A linear mapping ϕ on an algebra \mathcal{A} is called a centralizable mapping at $G \in \mathcal{A}$ if $\phi(A B)=\phi(A) B=A \phi(B)$ for each A and B in \mathcal{A} with $A B=G$, and ϕ is called a derivable mapping at $G \in \mathcal{A}$ if $\phi(A B)=\phi(A) B+A \phi(B)$ for each A and B in \mathcal{A} with $A B=G$. A point G in \mathcal{A} is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (resp. derivation). We prove that every point in a von Neumann algebra or a triangular algebra is a full-centralizable point. We also prove that a point in a von Neumann algebra is a full-derivable point if and only if its central carrier is the unit.

1. Introduction

Let \mathcal{A} be an associative algebra over the complex field \mathbb{C}, and ϕ be a linear mapping from \mathcal{A} into itself. ϕ is called a centralizer if $\phi(A B)=\phi(A) B=$ $A \phi(B)$ for each A and B in \mathcal{A}. Obviously, if \mathcal{A} is an algebra with unit I, then ϕ is a centralizer if and only if $\phi(A)=\phi(I) A=A \phi(I)$ for every A in \mathcal{A}. ϕ is called a derivation if $\phi(A B)=\phi(A) B+A \phi(B)$ for each A and B in \mathcal{A}.

A linear mapping $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is called a centralizable mapping at $G \in \mathcal{A}$ if $\phi(A B)=\phi(A) B=A \phi(B)$ for each A and B in \mathcal{A} with $A B=G$, and ϕ is called a derivable mapping at $G \in \mathcal{A}$ if $\phi(A B)=\phi(A) B+A \phi(B)$ for each A and B in \mathcal{A} with $A B=G$. An element G in \mathcal{A} is called a full-centralizable point (resp. full-derivable point) if every centralizable (resp. derivable) mapping at G is a centralizer (resp. derivation).

In [3], Brešar proves that if \mathcal{R} is a prime ring with a nontrival idempotent, then 0 is a full-centralizable point. In [18], X. Qi and J. Hou characterize centralizable and derivable mappings at 0 in triangular algebras. In [17], X. Qi proves that every nontrival idempotent in a prime ring is a full-centralizable point. In [19], W. Xu, R. An and J. Hou prove that every element in $B(\mathcal{H})$ is

[^0]a full-centralizable point, where \mathcal{H} is a Hilbert space. For more information on centralizable and derivable mappings, we refer to $[2,7,11,12,14,20]$.

For a von Neumann algebra \mathcal{A}, the central carrier $\mathcal{C}(A)$ of an element A in \mathcal{A} is the projection $I-P$, where P is the union of all central projections P_{α} in \mathcal{A} such that $P_{\alpha} A=0$.

This paper is organized as follows. In Section 2, by using the techniques about central carriers, we show that every element in a von Neumann algebra is a full-centralizable point.

Let \mathcal{A} and \mathcal{B} be two unital algebras over the complex field \mathbb{C}, and \mathcal{M} be a unital $(\mathcal{A}, \mathcal{B})$-bimodule which is faithful both as a left \mathcal{A}-module and a right \mathcal{B}-module. The algebra

$$
\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})=\left\{\left[\begin{array}{cc}
A & M \\
0 & B
\end{array}\right]: A \in \mathcal{A}, B \in \mathcal{B}, M \in \mathcal{M}\right\}
$$

under the usual matrix addition and matrix multiplication is called a triangular algebra.

In Section 3, we show that if \mathcal{A} and \mathcal{B} are two unital Banach algebras, then every element in $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is a full-centralizable point.

In Section 4, we show that for every point G in a von Neumann algebra \mathcal{A}, if Δ is a derivable mapping at G, then $\Delta=D+\phi$, where $D: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation and $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is a centralizer. Moreover, we prove that G is a full-derivable point if and only if $\mathcal{C}(G)=I$.

2. Centralizers on von Neumann algebras

In this section, \mathcal{A} denotes a unital algebra and $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is a centralizable mapping at a given point $G \in \mathcal{A}$. The main result is the following theorem.

Theorem 2.1. Let \mathcal{A} be a von Neumann algebra acting on a Hilbert space \mathcal{H}. Then every element G in \mathcal{A} is a full-centralizable point.

Before proving Theorem 2.1, we need the following several lemmas.
Lemma 2.2. Let \mathcal{A} be a unital Banach algebra with the form $\mathcal{A}=\sum_{i \in \Lambda} \oplus \mathcal{A}_{i}$. Then $\phi\left(\mathcal{A}_{i}\right) \subseteq \mathcal{A}_{i}$. Moreover, suppose $G=\sum_{i \in \Lambda} G_{i}$, where $G_{i} \in \mathcal{A}_{i}$. If G_{i} is a full-centralizable point in \mathcal{A}_{i} for every $i \in \Lambda$, then G is a full-centralizable point in \mathcal{A}.

Proof. Let I_{i} be the unit in \mathcal{A}_{i}. Suppose that A_{i} is an invertible element in \mathcal{A}_{i}, and t is an arbitrary nonzero element in \mathbb{C}. It is easy to check that

$$
\left(I-I_{i}+t^{-1} G A_{i}^{-1}\right)\left(\left(I-I_{i}\right) G+t A_{i}\right)=G
$$

So we have

$$
\left(I-I_{i}+t^{-1} G A_{i}^{-1}\right) \phi\left(\left(I-I_{i}\right) G+t A_{i}\right)=\phi(G)
$$

Considering the coefficient of t, since t is arbitrarily chosen, we have $(I-$ $\left.I_{i}\right) \phi\left(A_{i}\right)=0$. It follows that $\phi\left(A_{i}\right)=I_{i} \phi\left(A_{i}\right) \in \mathcal{A}_{i}$ for all invertible elements. Since \mathcal{A}_{i} is a Banach algebra, every element can be written into the sum of two
invertible elements. So the above equation holds for all elements in \mathcal{A}_{i}. That is to say $\phi\left(\mathcal{A}_{i}\right) \subseteq \mathcal{A}_{i}$.

Let $\phi_{i}=\left.\phi\right|_{\mathcal{A}_{i}}$. For every A in \mathcal{A}, we write $A=\sum_{i \in \Lambda} A_{i}$. Assume $A B=G$. Since $A_{i} B_{i}=G_{i}$ and $\phi\left(\mathcal{A}_{i}\right) \subseteq \mathcal{A}_{i}$, we have

$$
\sum_{i \in \Lambda} \phi\left(G_{i}\right)=\sum_{i \in \Lambda} \phi\left(A_{i}\right) \sum_{i \in \Lambda} B_{i}=\sum_{i \in \Lambda} \phi\left(A_{i}\right) B_{i}
$$

It implies that $\phi_{i}\left(G_{i}\right)=\phi_{i}\left(A_{i}\right) B_{i}$. Similarly, we can obtain $\phi_{i}\left(G_{i}\right)=A_{i} \phi_{i}\left(B_{i}\right)$. By assumption, G_{i} is a full-centralizable point, so ϕ_{i} is a centralizer. Hence

$$
\phi(A)=\sum_{i \in \Lambda} \phi_{i}\left(A_{i}\right)=\sum_{i \in \Lambda} \phi_{i}\left(I_{i}\right) A_{i}=\sum_{i \in \Lambda} \phi_{i}\left(I_{i}\right) \sum_{i \in \Lambda} A_{i}=\phi(I) A .
$$

Similarly, we can prove $\phi(A)=A \phi(I)$. Hence G is a full-centralizable point.
Lemma 2.3. Let \mathcal{A} be a C^{*}-algebra. If G^{*} is a full-centralizable point in \mathcal{A}, then G is a full-centralizable point in \mathcal{A}.
Proof. Define a linear mapping $\widetilde{\phi}: \mathcal{A} \rightarrow \mathcal{A}$ by: $\widetilde{\phi}(A)=\left(\phi\left(A^{*}\right)\right)^{*}$ for every A in \mathcal{A}. For each A and B in \mathcal{A} with $A B=G^{*}$, we have $B^{*} A^{*}=G$. It follows that $\phi(G)=\phi\left(B^{*}\right) A^{*}=B^{*} \phi\left(A^{*}\right)$. By the definition of $\widetilde{\phi}$, we obtain $\widetilde{\phi}\left(G^{*}\right)=\widetilde{\phi}(A) B=A \widetilde{\phi}(B)$. Since G^{*} is a full-centralizable point in \mathcal{A}, we have that $\widetilde{\phi}$ is a centralizer. Thus ϕ is also a centralizer. Hence G is a fullcentralizable point in \mathcal{A}.

For a unital algebra \mathcal{A} and a unital \mathcal{A}-bimodule \mathcal{M}, an element $A \in \mathcal{A}$ is called a left separating point (resp. right separating point) of \mathcal{M} if $A M=0$ implies $M=0(M A=0$ implies $M=0)$ for every $M \in \mathcal{M}$.
Lemma 2.4. Let \mathcal{A} be a unital Banach algebra and G be a left and right separating point in \mathcal{A}. Then G is a full-centralizable point.
Proof. For every invertible element X in \mathcal{A}, we have

$$
\phi(I) G=\phi(G)=\phi\left(X X^{-1} G\right)=\phi(X) X^{-1} G
$$

Since G is a right separating point, we obtain $\phi(I)=\phi(X) X^{-1}$. It follows that $\phi(X)=\phi(I) X$ for each invertible element X and so for all elements in \mathcal{A}. Similarly, we have that $\phi(X)=X \phi(I)$. Hence G is a full-centralizable point.

Lemma 2.5. Let \mathcal{A} be a von Neumann algebra. Then $G=0$ is a fullcentralizable point.

Proof. For any projection P in \mathcal{A}, since $P(I-P)=(I-P) P=0$, we have

$$
\phi(P)(I-P)=P \phi(I-P)=\phi(I-P) P=(I-P) \phi(P)=0
$$

It follows that $\phi(P)=\phi(I) P=P \phi(I)$. By [6, Proposition 2.4] and [4, Corollary 1.2], we know that ϕ is continuous. Since $\mathcal{A}=\overline{\operatorname{span}\left\{P \in \mathcal{A}: P=P^{*}=P^{2}\right\}}$,
it follows that $\phi(A)=\phi(I) A=A \phi(I)$ for every $A \in \mathcal{A}$. Hence G is a fullcentralizable point.

Lemma 2.6. Let \mathcal{A} be a von Neumann algebra acting on a Hilbert space \mathcal{H} and P be the range projection of G. If $\mathcal{C}(P)=\mathcal{C}(I-P)=I$, then G is a full-centralizable point.

Proof. Set $P_{1}=P, P_{2}=I-P$, and denote $P_{i} \mathcal{A} P_{j}$ by $\mathcal{A}_{i j}, i, j=1,2$. For every A in \mathcal{A}, denote $P_{i} A P_{j}$ by $A_{i j}$.

Firstly, we claim that the condition $A \mathcal{A}_{i j}=0$ implies $A P_{i}=0$, and similarly, $\mathcal{A}_{i j} A=0$ implies $P_{j} A=0$. Indeed, since $\mathcal{C}\left(P_{j}\right)=I$, by [9, Proposition 5.5.2], the range of $\mathcal{A} P_{j}$ is dense in \mathcal{H}. So $A P_{i} \mathcal{A} P_{j}=0$ implies $A P_{i}=0$. On the other hand, if $\mathcal{A}_{i j} A=0$, then $A^{*} \mathcal{A}_{j i}=0$. Hence $A^{*} P_{j}=0$ and $P_{j} A=0$.

Besides, since $P_{1}=P$ is the range projection of G, we have $P_{1} G=G$. Moreover, if $A G=0$, then $A P_{1}=0$.

In the following, we assume that $A_{i j}$ is an arbitrary element in $\mathcal{A}_{i j}, i, j=1,2$, and t is an arbitrary nonzero element in \mathbb{C}. Without loss of generality, we may assume that A_{11} is invertible in \mathcal{A}_{11}.

Claim $1 \phi\left(\mathcal{A}_{12}\right) \subseteq \mathcal{A}_{12}$.
Since $\left(P_{1}+t A_{12}\right) G=G$, we have $\phi(G)=\phi\left(P_{1}+t A_{12}\right) G$. It implies that $\phi\left(A_{12}\right) G=0$. Hence $\phi\left(A_{12}\right) P_{1}=0$.

By $\left(P_{1}+t A_{12}\right) G=G$, we also have $\phi(G)=\left(P_{1}+t A_{12}\right) \phi(G)$. It follows that $A_{12} \phi(G)=A_{12} \phi\left(P_{1}\right) G=0$. So $A_{12} \phi\left(P_{1}\right) P_{1}=0$. Hence $P_{2} \phi\left(P_{1}\right) P_{1}=0$.

Since $\left(A_{11}+t A_{11} A_{12}\right)\left(A_{11}^{-1} G-A_{12} A_{22}+t^{-1} A_{22}\right)=G$, we have

$$
\begin{equation*}
\phi\left(A_{11}+t A_{11} A_{12}\right)\left(A_{11}^{-1} G-A_{12} A_{22}+t^{-1} A_{22}\right)=\phi(G) \tag{2.1}
\end{equation*}
$$

Since t is arbitrarily chosen in (2.1), we obtain

$$
\phi\left(A_{11}\right)\left(A_{11}^{-1} G-A_{12} A_{22}\right)+\phi\left(A_{11} A_{12}\right) A_{22}=\phi(G) .
$$

Since A_{12} is also arbitrarily chosen, we can obtain

$$
\phi\left(A_{11}\right) A_{12} A_{22}=\phi\left(A_{11} A_{12}\right) A_{22}
$$

Taking $A_{22}=P_{2}$, since $\phi\left(A_{12}\right) P_{1}=0$, we have

$$
\begin{equation*}
\phi\left(A_{11} A_{12}\right)=\phi\left(A_{11}\right) A_{12} . \tag{2.2}
\end{equation*}
$$

Taking $A_{11}=P_{1}$, since $P_{2} \phi\left(P_{1}\right) P_{1}=0$, we have

$$
\begin{equation*}
P_{2} \phi\left(A_{12}\right)=P_{2} \phi\left(P_{1}\right) A_{12}=0 \tag{2.3}
\end{equation*}
$$

So

$$
\begin{aligned}
\phi\left(A_{12}\right) & =\phi\left(A_{12}\right) P_{1}+P_{1} \phi\left(A_{12}\right) P_{2}+P_{2} \phi\left(A_{12}\right) P_{2} \\
& =P_{1} \phi\left(A_{12}\right) P_{2} \subseteq \mathcal{A}_{12} .
\end{aligned}
$$

Claim $2 \phi\left(\mathcal{A}_{11}\right) \subseteq \mathcal{A}_{11}$.
Considering the coefficient of t^{-1} in (2.1), we have $\phi\left(A_{11}\right) A_{22}=0$. Thus $\phi\left(A_{11}\right) P_{2}=0$. By (2.2), we obtain $P_{2} \phi\left(A_{11}\right) A_{12}=P_{2} \phi\left(A_{11} A_{12}\right)=0$. It follows that $P_{2} \phi\left(A_{11}\right) P_{1}=0$. Therefore, $\phi\left(A_{11}\right)=P_{1} \phi\left(A_{11}\right) P_{1} \subseteq \mathcal{A}_{11}$.

Claim $3 \phi\left(\mathcal{A}_{22}\right) \subseteq \mathcal{A}_{22}$.
By $\left(A_{11}+t A_{11} A_{12}\right)\left(A_{11}^{-1} G-A_{12} A_{22}+t^{-1} A_{22}\right)=G$, we also have

$$
\left(A_{11}+t A_{11} A_{12}\right) \phi\left(A_{11}^{-1} G-A_{12} A_{22}+t^{-1} A_{22}\right)=\phi(G) .
$$

Through a similar discussion to equation (2.1), we can prove $P_{1} \phi\left(A_{22}\right)=0$ and

$$
\begin{equation*}
\phi\left(A_{12} A_{22}\right)=A_{12} \phi\left(A_{22}\right) \tag{2.4}
\end{equation*}
$$

Thus $A_{12} \phi\left(A_{22}\right) P_{1}=\phi\left(A_{12} A_{22}\right) P_{1}=0$. It follows that $P_{2} \phi\left(A_{22}\right) P_{1}=0$. Therefore, $\phi\left(A_{22}\right)=P_{2} \phi\left(A_{22}\right) P_{2} \subseteq \mathcal{A}_{22}$.

Claim $4 \phi\left(\mathcal{A}_{21}\right) \subseteq \mathcal{A}_{21}$.
Since $\left(A_{11}+t A_{11} A_{12}\right)\left(A_{11}^{-1} G-A_{12} A_{21}+t^{-1} A_{21}\right)=G$, we have

$$
\left(A_{11}+t A_{11} A_{12}\right) \phi\left(A_{11}^{-1} G-A_{12} A_{21}+t^{-1} A_{21}\right)=\phi(G) .
$$

According to this equation, we can similarly obtain that $P_{1} \phi\left(A_{21}\right)=0$ and

$$
\begin{equation*}
A_{12} \phi\left(A_{21}\right)=\phi\left(A_{12} A_{21}\right) \tag{2.5}
\end{equation*}
$$

Hence $A_{12} \phi\left(A_{21}\right) P_{2}=\phi\left(A_{12} A_{21}\right) P_{2}=0$. It follows that $P_{2} \phi\left(A_{21}\right) P_{2}=0$. Therefore, $\phi\left(\mathcal{A}_{21}\right)=P_{2} \phi\left(A_{21}\right) P_{1} \subseteq \mathcal{A}_{21}$.

Claim $5 \phi\left(A_{i j}\right)=\phi\left(P_{i}\right) A_{i j}=A_{i j} \phi\left(P_{j}\right)$ for each $i, j \in\{1,2\}$.
By taking $A_{11}=P_{1}$ in (2.2), we have $\phi\left(A_{12}\right)=\phi\left(P_{1}\right) A_{12}$. By taking $A_{22}=P_{2}$ in (2.4), we have $\phi\left(A_{12}\right)=A_{12} \phi\left(P_{2}\right)$.

By (2.2), we have $\phi\left(A_{11}\right) A_{12}=\phi\left(A_{11} A_{12}\right)=\phi\left(P_{1}\right) A_{11} A_{12}$. It follows that $\phi\left(A_{11}\right)=\phi\left(P_{1}\right) A_{11}$. On the other hand, $\phi\left(A_{11}\right) A_{12}=\phi\left(A_{11} A_{12}\right)=$ $A_{11} A_{12} \phi\left(P_{2}\right)=A_{11} \phi\left(A_{12}\right)=A_{11} \phi\left(P_{1}\right) A_{12}$. It follows that $\phi\left(A_{11}\right)=A_{11} \phi\left(P_{1}\right)$.

By (2.4) and (2.5), through a similar discussion as above, we can obtain that $\phi\left(A_{22}\right)=A_{22} \phi\left(P_{2}\right)=\phi\left(P_{2}\right) A_{22}$ and $\phi\left(A_{21}\right)=A_{21} \phi\left(P_{1}\right)=\phi\left(P_{2}\right) A_{21}$.

Now we have proved that $\phi\left(\mathcal{A}_{i j}\right) \subseteq \mathcal{A}_{i j}$ and $\phi\left(A_{i j}\right)=\phi\left(P_{i}\right) A_{i j}=A_{i j} \phi\left(P_{j}\right)$. It follows that

$$
\begin{aligned}
\phi(A) & =\phi\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \\
& =\phi\left(P_{1}\right)\left(A_{11}+A_{12}+A_{21}+A_{22}\right)+\phi\left(P_{2}\right)\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \\
& =\phi\left(P_{1}+P_{2}\right)\left(A_{11}+A_{12}+A_{21}+A_{22}\right) \\
& =\phi(I) A .
\end{aligned}
$$

Similarly, we can prove that $\phi(A)=A \phi(I)$. Hence G is a full-centralizable point.

Proof of Theorem 2.1. Suppose the range projection of G is P. Set $Q_{1}=$ $I-\mathcal{C}(I-P), Q_{2}=I-\mathcal{C}(P)$, and $Q_{3}=I-Q_{1}-Q_{2}$. Since $Q_{1} \leq P$ and $Q_{2} \leq I-P,\left\{Q_{i}\right\}_{i=1,2,3}$ are mutually orthogonal central projections. Therefore $\mathcal{A}=\sum_{i=1}^{3} \bigoplus \mathcal{A}_{i}=\sum_{i=1}^{3} \bigoplus\left(Q_{i} \mathcal{A}\right)$. Obviously, \mathcal{A}_{i} is also a von Neumann algebra acting on $Q_{i} \mathcal{H}$. For each element A in \mathcal{A}, we write $A=\sum_{i=1}^{3} A_{i}=$ $\sum_{i=1}^{3} Q_{i} A$.

We divide our proof into two cases.
Case $1 \operatorname{ker}(G)=\{0\}$.

Since $Q_{1} \leq P$, we have $\overline{\operatorname{ranG}}=\overline{\operatorname{ran} Q_{1} G}=Q_{1} \mathcal{H}$. Since G is injective on $\mathcal{H}, G_{1}=Q_{1} G$ is also injective on $Q_{1} \mathcal{H}$. Hence G_{1} is a separating point (both right and left) in \mathcal{A}_{1}. By Lemma $2.4, G_{1}$ is a full-centralizable point in \mathcal{A}_{1}.

Since $Q_{2} \leq I-P$, we have $G_{2}=Q_{2} G=0$. By Lemma 2.5, G_{2} is a full-centralizable point in \mathcal{A}_{2}.

Note that $\overline{\operatorname{ranG}_{3}}=\overline{\operatorname{ranQ}_{3} G}=Q_{3} P=P_{3}$. Denote the central carrier of P_{3} in \mathcal{A}_{3} by $\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)$. We have $Q_{3}-\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right) \leq Q_{3}-P_{3}=Q_{3}(I-P) \leq$ $I-P$. Obviously, $Q_{3}-\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)$ is a central projection orthogonal to Q_{2}, so $Q_{3}-\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)+I-\mathcal{C}(P) \leq I-P$. That is $Q_{3}-\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)+P \leq \mathcal{C}(P)$. It implies that $Q_{3}-\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)=0$, i.e., $\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)=Q_{3}$. Similarly, we can prove $\mathcal{C}_{\mathcal{A}_{3}}\left(Q_{3}-P_{3}\right)=Q_{3}$. By Lemma 2.6, G_{3} is a full-centralizable point in \mathcal{A}_{3}.

By Lemma 2.2, G is a full-centralizable point.
Case $2 \operatorname{ker}(G) \neq\{0\}$.
In this case, G_{2} and G_{3} are still full-centralizable points. Since $\overline{\operatorname{ran} G_{1}}=$ $Q_{1} H$, we have $\operatorname{ker}\left(G_{1}^{*}\right)=\{0\}$. By Case $1, G_{1}^{*}$ is a full-centralizable point in \mathcal{A}_{1}. By Lemma 2.3, G_{1} is also a full-centralizable point in \mathcal{A}_{1}.

By Lemma 2.2, G is a full-centralizable point.

3. Centralizers on triangular algebras

In this section, we characterize the full-centralizable points on triangular algebras. The following theorem is our main result.

Theorem 3.1. Let $\mathcal{J}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]$ be a triangular algebra, where \mathcal{A} and \mathcal{B} are two unital Banach algebras. Then every G in \mathcal{J} is a full-centralizable point.

Proof. Let $\phi: \mathcal{J} \rightarrow \mathcal{J}$ be a centralizable mapping at G.
Since ϕ is linear, for every $\left[\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right]$ in \mathcal{J}, we write
$\phi\left[\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right]=\left[\begin{array}{cl}f_{11}(X)+g_{11}(Y)+h_{11}(Z) & f_{12}(X)+g_{12}(Y)+h_{12}(Z) \\ 0 & f_{22}(X)+g_{22}(Y)+h_{22}(Z)\end{array}\right]$,
where $f_{11}: \mathcal{A} \rightarrow \mathcal{A}, f_{12}: \mathcal{A} \rightarrow \mathcal{M}, f_{22}: \mathcal{A} \rightarrow \mathcal{B}, g_{11}: \mathcal{M} \rightarrow \mathcal{A}, g_{12}: \mathcal{M} \rightarrow \mathcal{M}$, $g_{22}: \mathcal{M} \rightarrow \mathcal{B}, h_{11}: \mathcal{B} \rightarrow \mathcal{A}, h_{12}: \mathcal{B} \rightarrow \mathcal{M}, h_{22}: \mathcal{B} \rightarrow \mathcal{B}$, are all linear mappings.

In the following, we denote the units of \mathcal{A} and \mathcal{B} by I_{1} and I_{2}, respectively. We write $G=\left[\begin{array}{cc}A & M \\ 0 & B\end{array}\right]$ and

$$
\phi\left[\begin{array}{cc}
A & M \tag{3.1}\\
0 & B
\end{array}\right]=\left[\begin{array}{cl}
f_{11}(A)+g_{11}(M)+h_{11}(B) & f_{12}(A)+g_{12}(M)+h_{12}(B) \\
0 & f_{22}(A)+g_{22}(M)+h_{22}(B)
\end{array}\right] .
$$

We divide our proof into several steps.
Claim $1 f_{12}=f_{22}=0$.
Let $S=\left[\begin{array}{cc}X & M \\ 0 & B\end{array}\right]$ and $T=\left[\begin{array}{cc}X^{-1} & A \\ 0 & 0 \\ 0 & I_{2}\end{array}\right]$, where X is an invertible element in \mathcal{A}.
Since $S T=G$, we have

$$
\begin{align*}
\phi(G) & =\phi(S) T \\
& =\left[\begin{array}{cc}
f_{11}(X)+g_{11}(M)+h_{11}(B) & f_{12}(X)+g_{12}(M)+h_{12}(B) \\
0 & f_{22}(X)+g_{22}(M)+h_{22}(B)
\end{array}\right]\left[\begin{array}{cc}
X^{-1} A & 0 \\
0 & I_{2}
\end{array}\right] \\
3.2) & =\left[\begin{array}{ll}
* & f_{12}(X)+g_{12}(M)+h_{12}(B) \\
0 & f_{22}(X)+g_{22}(M)+h_{22}(B)
\end{array}\right] . \tag{3.2}
\end{align*}
$$

By comparing (3.1) with (3.2), we obtain $f_{12}(X)=f_{12}(A)$ and $f_{22}(X)=f_{22}(A)$ for each invertible element X in \mathcal{A}. Noting that A is a fixed element, for any nonzero element λ in \mathbb{C}, we have $f_{12}(\lambda X)=f_{12}(A)=\lambda f_{12}(X)=\lambda f_{12}(A)$. It follows that $f_{12}(X)=0$ for each invertible element X. Thus $f_{12}(X)=0$ for all X in \mathcal{A}. Similarly, we can obtain $f_{22}(X)=0$.

Claim $2 h_{12}=h_{11}=0$.
Let $S=\left[\begin{array}{cc}I_{1} & 0 \\ 0 & B Z^{-1}\end{array}\right]$ and $T=\left[\begin{array}{cc}A & M \\ 0 & Z\end{array}\right]$, where Z is an invertible element in \mathcal{B}. Since $S T=G$, we have

$$
\begin{aligned}
\phi(G) & =S \phi(T) \\
& =\left[\begin{array}{cc}
I_{1} & 0 \\
0 & B Z^{-1}
\end{array}\right]\left[\begin{array}{cl}
f_{11}(A)+g_{11}(M)+h_{11}(Z) & f_{12}(A)+g_{12}(M)+h_{12}(Z) \\
0 & f_{22}(A)+g_{22}(M)+h_{22}(Z)
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
f_{11}(A)+g_{11}(M)+h_{11}(Z) & f_{12}(A)+g_{12}(M)+h_{12}(Z) \tag{3.3}\\
0 & *
\end{array}\right]
$$

By comparing (3.1) with (3.3), we obtain $h_{12}(Z)=h_{12}(B)$ and $h_{11}(Z)=$ $h_{11}(B)$ for each invertible element Z in \mathcal{B}. Similarly as the previous discussion, we can obtain $h_{12}(Z)=h_{11}(Z)=0$ for all Z in \mathcal{B}.

Claim $3 g_{22}=g_{11}=0$.
For every Y in \mathcal{M}, we set $S=\left[\begin{array}{cc}I_{1} & M-Y \\ 0 & B\end{array}\right], T=\left[\begin{array}{cc}A & Y \\ 0 & I_{2}\end{array}\right]$. Obviously, $S T=G$. Thus we have

$$
\begin{align*}
\phi(G) & =\phi(S) T \\
& =\left[\begin{array}{cc}
* & * \\
0 & f_{22}\left(I_{1}\right)+g_{22}(M-Y)+h_{22}(B)
\end{array}\right]\left[\begin{array}{cc}
A & Y \\
0 & I_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
* & * \\
0 & f_{22}\left(I_{1}\right)+g_{22}(M-Y)+h_{22}(B)
\end{array}\right] . \tag{3.4}
\end{align*}
$$

By comparing (3.1) with (3.4), we obtain $f_{22}\left(I_{1}\right)+g_{22}(M-Y)+h_{22}(B)=$ $f_{22}(A)+g_{22}(M)+h_{22}(B)$. Hence $g_{22}(Y)=f_{22}\left(I_{1}-A\right)$. It means $g_{22}(Y)=0$ immediately.

On the other hand,

$$
\begin{align*}
\phi(G) & =S \phi(T) \\
& =\left[\begin{array}{cc}
I_{1} & M-Y \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
f_{11}(A)+g_{11}(Y)+h_{11}\left(I_{2}\right) & * \\
0 & *
\end{array}\right] \\
& =\left[\begin{array}{cc}
f_{11}(A)+g_{11}(Y)+h_{11}\left(I_{2}\right) & * \\
0 & *
\end{array}\right] . \tag{3.5}
\end{align*}
$$

By comparing (3.1) with (3.5), we obtain $g_{11}(Y)=g_{11}(M)+h_{11}\left(B-I_{2}\right)$. Hence $g_{11}(Y)=0$.

According to the above three claims, we obtain that

$$
\phi\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]=\left[\begin{array}{cc}
f_{11}(X) & g_{12}(Y) \\
0 & h_{22}(Z)
\end{array}\right]
$$

for every $\left[\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right]$ in \mathcal{J}.
Claim $4 f_{11}(X)=f_{11}\left(I_{1}\right) X$ for all X in \mathcal{A}, and $g_{12}(Y)=f_{11}\left(I_{1}\right) Y$ for all Y in \mathcal{M}.

Let $S=\left[\begin{array}{cc}X & M-X Y \\ 0 & B\end{array}\right]$ and $T=\left[\begin{array}{cc}X^{-1} A & Y \\ 0 & I_{2}\end{array}\right]$, where X is an invertible element in \mathcal{A}, and Y is an arbitrary element in \mathcal{M}. Since $S T=G$, we have

$$
\begin{align*}
\phi(G) & =\phi(S) T \\
& =\left[\begin{array}{cc}
f_{11}(X) & g_{12}(M-X Y) \\
0 & h_{22}(B)
\end{array}\right]\left[\begin{array}{cc}
X^{-1} A & Y \\
0 & I_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
* & f_{11}(X) Y+g_{12}(M-X Y) \\
0 & *
\end{array}\right] \\
& =\left[\begin{array}{cc}
f_{11}(A) & g_{12}(M) \\
0 & h_{22}(B)
\end{array}\right] . \tag{3.6}
\end{align*}
$$

So we have $f_{11}(X) Y=g_{12}(X Y)$. It follows that

$$
\begin{equation*}
g_{12}(Y)=f_{11}\left(I_{1}\right) Y \tag{3.7}
\end{equation*}
$$

by taking $X=I_{1}$. Replacing Y in (3.7) with $X Y$, we can obtain $g_{12}(X Y)=$ $f_{11}\left(I_{1}\right) X Y=f_{11}(X) Y$ for each invertible element X in \mathcal{A} and Y in \mathcal{M}. Since \mathcal{M} is faithful, we have

$$
\begin{equation*}
f_{11}(X)=f_{11}\left(I_{1}\right) X \tag{3.8}
\end{equation*}
$$

for all invertible elements X and so for all elements in \mathcal{A}.
Claim $5 h_{22}(Z)=Z h_{22}\left(I_{2}\right)$ for all Z in \mathcal{B}, and $g_{12}(Y)=Y h_{22}\left(I_{2}\right)$ for all Y in \mathcal{M}.

Let $S=\left[\begin{array}{cc}I_{1} & Y \\ 0 & B Z^{-1}\end{array}\right]$ and $T=\left[\begin{array}{cc}A & M-Y Z \\ 0 & Z\end{array}\right]$, where Z is an invertible element in \mathcal{B}, and Y is an arbitrary element in \mathcal{M}. Since $S T=G$, we have

$$
\begin{align*}
\phi(G) & =S \phi(T) \\
& =\left[\begin{array}{cc}
I_{1} & Y \\
0 & B Z^{-1}
\end{array}\right]\left[\begin{array}{cc}
f_{11}(A) & g_{12}(M-Y Z) \\
0 & h_{22}(Z)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
* & g_{12}(M-Y Z)+Y h_{22}(Z) \\
0 & * \\
& =\left[\begin{array}{cc}
f_{11}(A) & g_{12}(M) \\
0 & h_{22}(B)
\end{array}\right] .
\end{array} . . \begin{array}{l}
\text { (} M
\end{array} .\right.
\end{align*}
$$

So we have $g_{12}(Y Z)=Y h_{22}(Z)$. Through a similar discussion as the proof of Claim 4, we obtain $h_{22}(Z)=Z h_{22}\left(I_{2}\right)$ for all Z in \mathcal{B} and $g_{12}(Y)=Y h_{22}\left(I_{2}\right)$ for all Y in \mathcal{M}.

Thus we have that

$$
\phi\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]=\left[\begin{array}{cc}
f_{11}\left(I_{1}\right) X & f_{11}\left(I_{1}\right) Y \\
0 & Z h_{22}\left(I_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
f_{11}\left(I_{1}\right) X & Y h_{22}\left(I_{2}\right) \\
0 & Z h_{22}\left(I_{2}\right)
\end{array}\right]
$$

for every $\left[\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right]$ in \mathcal{J}. So it is sufficient to show that $f_{11}\left(I_{1}\right) X=X f_{11}\left(I_{1}\right)$ for all X in \mathcal{A}, and $h_{22}\left(I_{2}\right) Z=Z h_{22}\left(I_{2}\right)$ for all Z in \mathcal{B}. Since $f_{11}\left(I_{1}\right) Y=Y h_{22}\left(I_{2}\right)$ for all Y in \mathcal{M}, we have $f_{11}\left(I_{1}\right) X Y=X Y h_{22}\left(I_{2}\right)=X f_{11}\left(I_{1}\right) Y$. It implies that $f_{11}\left(I_{1}\right) X=X f_{11}\left(I_{1}\right)$. Similarly, $h_{22}\left(I_{2}\right) Z=Z h_{22}\left(I_{2}\right)$. Now we can obtain that $\phi(J)=\phi(I) J=J \phi(I)$ for all J in \mathcal{J}, where $I=\left[\begin{array}{cc}I_{1} & 0 \\ 0 & I_{2}\end{array}\right]$ is the unit of \mathcal{J}. Hence, G is a full-centralizable point.

As applications of Theorem 3.1, we have the following corollaries.
Corollary 3.2. Let \mathcal{A} be a nest algebra on a Hilbert space \mathcal{H}. Then every element in \mathcal{A} is a full-centralizable point.
Proof. If $\mathcal{A}=B(\mathcal{H})$, then the result follows from Theorem 2.1. Otherwise, \mathcal{A} is isomorphic to a triangular algebra. By Theorem 3.1, the result follows.

Corollary 3.3. Let \mathcal{A} be a CDCSL (completely distributive commutative subspace lattice) algebra on a Hilbert space \mathcal{H}. Then every element in \mathcal{A} is a full-centralizable point.

Proof. It is known that $\mathcal{A} \cong \sum_{i \in \Lambda} \bigoplus \mathcal{A}_{i}$, where each \mathcal{A}_{i} is either $B\left(\mathcal{H}_{i}\right)$ for some Hilbert space \mathcal{H}_{i} or a triangular algebra $\operatorname{Tri}(\mathcal{B}, \mathcal{M}, \mathcal{C})$ such that the conditions of Theorem 3.1 hold (see in [8] and [15]). By Lemma 2.2, the result follows.

Remark. For the definition of a CDCSL algebra, we refer to [5].

4. Derivations on von Neumann algebras

In this section, we characterize the derivable mappings at a given point in a von Neumann algebra.

Lemma 4.1. Let \mathcal{A} be a von Neumann algebra. Suppose $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ is a linear mapping such that $\Delta(A) B+A \Delta(B)=0$ for each A and B in \mathcal{A} with $A B=0$. Then $\Delta=D+\phi$, where $D: \mathcal{A} \rightarrow \mathcal{A}$ is a derivation, and $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is a centralizer. In particular, Δ is bounded.

Proof. Case 1. \mathcal{A} is an abelian von Neumann algebra. In this case, $\mathcal{A} \cong C(\mathcal{X})$ for some compact Hausdorff space \mathcal{X}. If $A B=0$, then the supports of A and B are disjoint. So the equation $\Delta(A) B+A \Delta(B)=0$ implies that $\Delta(A) B=$ $A \Delta(B)=0$. By Lemma $2.5, \Delta$ is a centralizer.

Case 2. $\mathcal{A} \cong M_{n}(\mathcal{B})(n \geq 2)$, where \mathcal{B} is also a von Neumann algebra. By [1, Theorem 2.3], Δ is a generalized derivation with $\Delta(I)$ in the center. That is to say, Δ is a sum of a derivation and a centralizer.

For general cases, we know $\mathcal{A} \cong \sum_{i=1}^{n} \bigoplus \mathcal{A}_{i}$, where each \mathcal{A}_{i} coincides with either Case 1 or Case 2 . We write $A=\sum_{i=1}^{n} A_{i}$ with $A_{i} \in \mathcal{A}_{i}$ and denote the restriction of Δ in \mathcal{A}_{i} by Δ_{i}. It is not difficult to check that $\Delta\left(A_{i}\right) \in$ \mathcal{A}_{i}. Moreover, setting $A_{i} B_{i}=0$, we have $\Delta\left(A_{i}\right) B_{i}+A_{i} \Delta\left(B_{i}\right)=\Delta_{i}\left(A_{i}\right) B_{i}+$ $A_{i} \Delta_{i}\left(B_{i}\right)=0$. By Case 1 and Case 2, each Δ_{i} is a sum of a derivation and a centralizer. Hence, $\Delta=\sum_{i=1}^{n} \Delta_{i}$ is a sum of a derivation and a centralizer.
Remark. In [10], the authors prove that for a prime semisimple Banach algebra \mathcal{A} with nontrival idempotents and a linear mapping Δ from \mathcal{A} into itself, the condition $\Delta(A) B+A \Delta(B)=0$ for each A and B in \mathcal{A} with $A B=0$ implies that Δ is bounded. By Lemma 4.1, we have that for a von Neumann algebra \mathcal{A}, the result holds still even if \mathcal{A} is not prime.

Now we prove our main result in this section.
Theorem 4.2. Let \mathcal{A} be a von Neumann algebra acting on a Hilbert space \mathcal{H}, and G be a given point in \mathcal{A}. If $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ is a linear mapping derivable at G, then $\Delta=D+\phi$, where D is a derivation, and ϕ is a centralizer. Moreover, G is a full-derivable point if and only if $\mathcal{C}(G)=I$.
Proof. Suppose the range projection of G is P. We note that $\mathcal{C}(G)=\mathcal{C}(P)$.
Set $Q_{1}=I-\mathcal{C}(I-P), Q_{2}=I-\mathcal{C}(P)$, and $Q_{3}=I-Q_{1}-Q_{2}$. Then we have $\mathcal{A}=\sum_{i=1}^{3} \bigoplus \mathcal{A}_{i}=\sum_{i=1}^{3} \bigoplus\left(Q_{i} \mathcal{A}\right)$. For every A in \mathcal{A}, we write $A=\sum_{i=1}^{3} A_{i}=$ $\sum_{i=1}^{3} Q_{i} A$.

For any central projection Q, setting $Q^{\perp}=I-Q$, we have

$$
\left(Q^{\perp}+t^{-1} Q G A^{-1}\right)\left(Q^{\perp} G+t Q A\right)=G
$$

where A is an arbitrary invertible element in \mathcal{A}, and t is an arbitrary nonzero element in \mathbb{C}. So we obtain
$\Delta(G)=\left(Q^{\perp}+t^{-1} Q G A^{-1}\right) \Delta\left(Q^{\perp} G+t Q A\right)+\Delta\left(Q^{\perp}+t^{-1} Q G A^{-1}\right)\left(Q^{\perp} G+t Q A\right)$. Considering the coefficient of t, we obtain $Q^{\perp} \Delta(Q A)+\Delta\left(Q^{\perp}\right)(Q A)=0$. Since the ranges of Q and Q^{\perp} are disjoint, it follows that $Q^{\perp} \Delta(Q A)=0$ and so $\Delta(Q A) \in Q \mathcal{A}$. Since Q_{i} are central projections, we have $\Delta\left(\mathcal{A}_{i}\right) \subseteq \mathcal{A}_{i}$.

Denote the restriction of Δ to \mathcal{A}_{i} by Δ_{i}. Setting $A_{i} B_{i}=G_{i}$, it is not difficult to check that $\Delta_{i}\left(G_{i}\right)=\Delta\left(A_{i}\right) B_{i}+A_{i} \Delta\left(B_{i}\right)$.

Since $Q_{1} \leq P$, we have $\overline{\operatorname{ran} G_{1}}=\overline{\operatorname{ran} Q_{1} G}=Q_{1} H$. So G_{1} is a right separating point in \mathcal{A}_{1}. By [13, Corallary 2.5], Δ_{1} is a Jordan derivation and so is a derivation on \mathcal{A}_{1}.

Since $Q_{2} \leq I-P$, we have $G_{2}=Q_{2} G=0$. By Lemma 4.1, Δ_{2} is a sum of a derivation and a centralizer on \mathcal{A}_{2}.

Note that $\overline{\operatorname{ran} G_{3}}=\overline{\operatorname{ran} Q_{3} G}=Q_{3} P=P_{3}$. As we proved before, $\mathcal{C}_{\mathcal{A}_{3}}\left(P_{3}\right)=$ $\mathcal{C}_{\mathcal{A}_{3}}\left(Q_{3}-P_{3}\right)=Q_{3}$. So by [16, Theorem 3.1], Δ_{3} is a derivation on \mathcal{A}_{3}.

Hence, $\Delta=\sum_{i=1}^{3} \Delta_{i}$ is a sum of a derivation and a centralizer.
If $\mathcal{C}(G)=I$, then $Q_{2}=0, \mathcal{A}=\mathcal{A}_{1} \bigoplus \mathcal{A}_{3}$ and $G=G_{1}+G_{3}$ is a fullderivable point. If $\mathcal{C}(G) \neq I$, then $Q_{2} \neq 0$. Define a linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ by $\delta(A)=A_{2}$ for all $A \in \mathcal{A}$. One can check that δ is not a derivation but derivable at G. Thus G is not a full-derivable point.

As an application, we obtain the following corollary.
Corollary 4.3. Let \mathcal{A} be a von Neumann algebra. Then \mathcal{A} is a factor if and only if every nonzero element G in \mathcal{A} is a full-derivable point.
Proof. If \mathcal{A} is a factor, for each nonzero element G in \mathcal{A}, we know that $\mathcal{C}(G)=I$. By Theorem 4.2, G is a full-derivable point.

If \mathcal{A} is not a factor, then there exists a nontrival central projection P. Define a linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ by $\delta(A)=(I-P) A$ for all $A \in \mathcal{A}$. One can check that δ is not a derivation but derivable at P. Thus P is not a full-derivable point.

Acknowledgements. This paper was partially supported by National Natural Science Foundation of China(Grant No. 11371136).

References

[1] G. An and J. Li, Characterizations of linear mappings through zero products or zero Jordan products, Electron. J. Linear Algebra 31 (2016), 408-424.
[2] R. An, J. Hou, Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Algebra Appl. 431 (2009), no. 5-7, 1070-1080.
[3] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 1, 9-21.
[4] J. Cuntz, On the continuity of semi-norms on operator algebras, Math. Ann. 220 (1976), no. 2, 171-183.
[5] K. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series 191, 1988.
[6] A. Essaleh, M. Peralta, and M. Ramirez, Weak-local derivations and homomorphisms on C^{*}-algebras, arxiv:1411.4795
[7] J. Hou and X. Qi, Additive maps derivable at some points on J-subspace lattice algebras, Linear Algebra Appl. 429 (2008), no. 8-9, 1851-1863.
[8] F. Gilfeather and R. Moore, Isomorphisms of certain CSL algebras, J. Func. Anal. 67 (1986), no. 2, 264-291.
[9] R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press Inc., 1983.
[10] T. Lee and C. Liu, Partially defined σ-derivations on semisimple Banach algebras, Studia Math. 190 (2009), no. 2, 193-202.
[11] J. Li and Z. Pan, Annihilator-preserving maps, multipliers, and local derivations, Linear Algebra Appl. 432 (2010), no. 1, 5-13.
[12] J. Li, Z. Pan, and H. Xu, Characterizations of isomorphisms and derivations of some algebras, J. Math. Anal. Appl. 332 (2007), no. 2, 1314-1322.
[13] J. Li and J. Zhou, Characterizations of Jordan derivations and Jordan homomorphisms, Linear Multilinear Algebra 59 (2011), no. 2, 193-204.
[14] F. Lu, Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl. 430 (2009), no. 8-9, 2233-2239.
[15] _, Lie derivations of certain CSL algebras, Israel J. Math. 155 (2006), 149-156.
[16] Z. Pan, Derivable maps and derivational points, Linear Algebra Appl. 436 (2012), no. 11, 4251-4260.
[17] X. Qi, Characterization of centralizers on rings and operator algebras, Acta Math. Sin. (Chin. Ser.) 56 (2013), no. 4, 459-468.
[18] X. Qi and J. Hou, Characterizing centralizers and generalized derivations on triangular algebras by acting on zero product, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 7, 12451256.
[19] W. Xu, R. An, and J. Hou, Equivalent characterization of centralizers on B(H), Acta Math. Sinica (Engl. Ser.) 32 (2016), 1113-1120.
[20] J. Zhu, All-derivable points of operator algebras, Linear Algebra Appl. 427 (2007), no. 1, 1-5.

Jun He
Department of Mathematics
East China University of Science and Technology
Shanghai 200237, P. R. China
E-mail address: hejun_12@163.com
Jiankui Li
Department of Mathematics
East China University of Science and Technology
Shanghai 200237, P. R. China
E-mail address: jiankuili@yahoo.com
Wenhua Qian
Research Center for Operator Algebras
Department of Mathematics
East China Normal University
3663 North Zhongshan Road, Shanghai 200062, P. R. China
E-mail address: whqian86@163.com

[^0]: Received April 19, 2016.
 2010 Mathematics Subject Classification. 47B47, 47L35.
 Key words and phrases. centralizer, derivation, full-centralizable point, full-derivable point, von Neumann algebra, triangular algebra.

