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CHARACTERIZATIONS OF CENTRALIZERS AND
DERIVATIONS ON SOME ALGEBRAS

JuN HE, Jiankul L1, AND WENHUA QIAN

ABSTRACT. A linear mapping ¢ on an algebra A is called a centralizable
mapping at G € A if ¢(AB) = ¢(A)B = A¢p(B) for each A and B
in A with AB = G, and ¢ is called a derivable mapping at G € A if
¢(AB) = ¢(A)B + A¢(B) for each A and B in A with AB = G. A point
G in A is called a full-centralizable point (resp. full-derivable point) if
every centralizable (resp. derivable) mapping at G is a centralizer (resp.
derivation). We prove that every point in a von Neumann algebra or a
triangular algebra is a full-centralizable point. We also prove that a point
in a von Neumann algebra is a full-derivable point if and only if its central
carrier is the unit.

1. Introduction

Let A be an associative algebra over the complex field C, and ¢ be a linear
mapping from A into itself. ¢ is called a centralizer if $(AB) = ¢(A)B =
A¢(B) for each A and B in A. Obviously, if A is an algebra with unit I, then
¢ is a centralizer if and only if ¢p(A) = ¢(I)A = AP(I) for every A in A. ¢ is
called a derivation if $(AB) = ¢(A)B + A¢(B) for each A and B in A.

A linear mapping ¢ : A — A is called a centralizable mapping at G € A if
d(AB) = ¢(A)B = Ap(B) for each A and B in A with AB = G, and ¢ is called
a derivable mapping at G € Aif $(AB) = ¢(A)B+ A¢p(B) for each A and B in
A with AB = G. An element G in A is called a full-centralizable point (resp.
full-derivable point) if every centralizable (resp. derivable) mapping at G is a
centralizer (resp. derivation).

In [3], Bresar proves that if R is a prime ring with a nontrival idempotent,
then 0 is a full-centralizable point. In [18], X. Qi and J. Hou characterize
centralizable and derivable mappings at 0 in triangular algebras. In [17], X. Qi
proves that every nontrival idempotent in a prime ring is a full-centralizable
point. In [19], W. Xu, R. An and J. Hou prove that every element in B(#) is
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a full-centralizable point, where H is a Hilbert space. For more information on
centralizable and derivable mappings, we refer to [2, 7, 11, 12, 14, 20].

For a von Neumann algebra A, the central carrier C(A) of an element A in
A is the projection I — P, where P is the union of all central projections P, in
A such that P,A = 0.

This paper is organized as follows. In Section 2, by using the techniques
about central carriers, we show that every element in a von Neumann algebra
is a full-centralizable point.

Let A and B be two unital algebras over the complex field C, and M be a
unital (A, B)-bimodule which is faithful both as a left .A-module and a right
B-module. The algebra

Tri(A, M, B) = {[ ‘g ]B‘{ ] ‘AcAB eB,MeM}
under the usual matrix addition and matrix multiplication is called a triangular
algebra.

In Section 3, we show that if 4 and B are two unital Banach algebras, then
every element in Tri(A, M, B) is a full-centralizable point.

In Section 4, we show that for every point G in a von Neumann algebra A,
if A is a derivable mapping at G, then A = D + ¢, where D : A — A is a
derivation and ¢ : A — A is a centralizer. Moreover, we prove that G is a
full-derivable point if and only if C(G) = I.

2. Centralizers on von Neumann algebras

In this section, A denotes a unital algebra and ¢ : A — A is a centralizable
mapping at a given point G € A. The main result is the following theorem.

Theorem 2.1. Let A be a von Neumann algebra acting on a Hilbert space H.
Then every element G in A is a full-centralizable point.

Before proving Theorem 2.1, we need the following several lemmas.

Lemma 2.2. Let A be a unital Banach algebra with the form A=3",_\ @ A;.
Then ¢(A;) € A;. Moreover, suppose G =Y, \ Gi, where G; € A;. If Gy is
a full-centralizable point in A; for every i € A, then G is a full-centralizable
point in A.

Proof. Let I; be the unit in 4;. Suppose that A; is an invertible element in
A;, and t is an arbitrary nonzero element in C. It is easy to check that
(I—L+t'GA; (I - )G +tA;) = G.
So we have
(I - L+t 'GAT (I — )G + tA;) = ¢(G).
Considering the coefficient of ¢, since ¢ is arbitrarily chosen, we have (I —

I;)p(A;) = 0. Tt follows that ¢(A4;) = L;¢p(A;) € A; for all invertible elements.
Since A; is a Banach algebra, every element can be written into the sum of two
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invertible elements. So the above equation holds for all elements in A4;. That
is to say ¢(A;) C A;.
Let ¢; = ¢ |a,. For every Ain A, we write A =3, A;. Assume AB = G.

Since A;B; = G; and ¢(A4;) C A;, we have

D 6(G) =D d(A)Y Bi=> ¢(A)B.

icA icA icA icA
It implies that ¢;(G;) = ¢;(A;)B;. Similarly, we can obtain ¢;(G;) = A;¢;(B;).
By assumption, G; is a full-centralizable point, so ¢; is a centralizer. Hence

B(A) = 6i(Ai) =D ¢ill)Ai = ¢i(1;) Y Ai = p(I)A.
icA icA icA icA

Similarly, we can prove ¢(A) = A¢(I). Hence G is a full-centralizable point. [

Lemma 2.3. Let A be a C*-algebra. If G* is a full-centralizable point in A,
then G is a full-centralizable point in A.

Proof. Define a linear mapping ¢ : A — A by: q;(A) = (¢(A*))* for every
Ain A. For each A and B in A with AB = G*, we have B*A* = G. It
follows that ¢(G) = ¢(B*)A* = B*¢(A*). By the definition of ¢, we obtain
H(G*) = G(A)B = A(B). Since G* is a full-centralizable point in A, we

have that ¢ is a centralizer. Thus ¢ is also a centralizer. Hence G is a full-
centralizable point in A. O

For a unital algebra 4 and a unital A-bimodule M, an element A € A is
called a left separating point (resp. right separating point) of M it AM =0
implies M =0 (M A = 0 implies M = 0) for every M € M.

Lemma 2.4. Let A be a unital Banach algebra and G be a left and right
separating point in A. Then G is a full-centralizable point.

Proof. For every invertible element X in A, we have
$(1)G = ¢(G) = (XX 7'G) = ¢(X)X'G.

Since G is a right separating point, we obtain ¢(I) = ¢(X)X 1. It follows
that ¢(X) = ¢(I)X for each invertible element X and so for all elements in
A. Similarly, we have that ¢(X) = X¢(I). Hence G is a full-centralizable
point. [l

Lemma 2.5. Let A be a von Neumann algebra. Then G = 0 is a full-
centralizable point.

Proof. For any projection P in A, since P(I — P) = (I — P)P = 0, we have
¢(P)I - P)=P¢(I — P)=¢(I - P)P = (I - P)p(P) =0.

It follows that ¢(P) = ¢(I)P = P$(I). By [6, Proposition 2.4] and [4, Corollary
1.2], we know that ¢ is continuous. Since A = span{P € A: P = P* = P2},
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it follows that ¢(A) = ¢(I)A = AH(I) for every A € A. Hence G is a full-
centralizable point. O

Lemma 2.6. Let A be a von Neumann algebra acting on a Hilbert space H
and P be the range projection of G. If C(P) = C(I — P) = I, then G is a
full-centralizable point.

Proof. Set P, = P, P, = I — P, and denote P;AP; by A;j, i,j = 1,2. For
every A in A, denote P;AP; by A;j.

Firstly, we claim that the condition AA;; = 0 implies AP; = 0, and similarly,
A;;A =0 implies P;A = 0. Indeed, since C(P;) = I, by [9, Proposition 5.5.2],
the range of AP; is dense in H. So AP; AP; = 0 implies AP; = 0. On the other
hand, if A;;A =0, then A*Aj; = 0. Hence A*P; =0 and P;A =0.

Besides, since P, = P is the range projection of G, we have PG = G.
Moreover, if AG =0, then AP; = 0.

In the following, we assume that A;; is an arbitrary element in A;;, 4,5 = 1, 2,
and ¢ is an arbitrary nonzero element in C. Without loss of generality, we may
assume that Aq; is invertible in Aqpq.

Claim 1 ¢(Aj2) € Apa.

Since (P + tA12)G = G, we have ¢(G) = ¢(Py + tA12)G. Tt implies that
¢(A12)G = 0. Hence ¢(A12)P, = 0.

By (P +tA15)G = G, we also have ¢(G) = (P, +tA12)$(G). Tt follows that
Algd)(G) = A12¢)(P1)G =0. So A12¢(P1)P1 = 0. Hence P2¢(P1>P1 =0.

Since (All + tA11A12>(A1_11G — A19A9 + tilAQQ) = G, we have

(2.1) H(A11 + 1A A1) (A G — Ajg Aoy +t 71 Ags) = ¢(G).
Since t is arbitrarily chosen in (2.1), we obtain
(A1) (AT G — A2 Ass) + ¢(A11412) s = (G).
Since Az is also arbitrarily chosen, we can obtain
P(A11)A12A22 = Pp(A11A12)Asa.
Taking Ags = Ps, since ¢(A12) Py = 0, we have

(2.2) d(A11A12) = ¢(A11)A1s.
Taking Aj; = Py, since Po¢(Py) Py = 0, we have

(2.3) Pyp(Ai2) = Pop(Pr)A12 = 0.
So

d(A12) = ¢p(A12)P1 + Pigp(A12) Py + Pap(A12) Po
= Pi¢p(A12)P2 C Ao,
Claim 2 ¢(A11) € Aps.
Considering the coefficient of t=! in (2.1), we have ¢(A11)A2 = 0. Thus
¢(A11)P2 =0. By (22), we obtain P2¢(A11)A12 = P2¢(A11A12) = 0. It follows
that P2¢(A11)P1 =0. Therefore, ¢(A11) = P1¢(A11)P1 g .A11.
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Claim 3 ¢(Asz2) C Asa.
By (All + tAllAlg)(AfllG — A12A22 + t71A22) = G, we also have
(A1 + tA11 A1) p(AT G — A1z Aos + 171 Ago) = ¢(G).

Through a similar discussion to equation (2.1), we can prove P;¢(Az2) = 0 and
(2.4) P(A12A22) = A12p(Az2).
ThLIS A12¢(A22)P1 = ¢(A12A22)P1 = 0. It fOHOWS that P2¢(A22)P1 = 0.
Therefore, ¢(Aaz) = Padp(Az2)Po C Asgs.

Claim 4 ¢(A21) C Ao

Since (A11 + tAHAlQ)(Al_llG — A A5 + t_lAgl) = (G, we have

(A1 +tA11A12)p(A] G — A1z Aor + 171 As1) = ¢(G).

According to this equation, we can similarly obtain that Py¢(As1) = 0 and
(2.5) A129(A21) = ¢(A12421).
Hence A12¢(A21)P2 = ¢(A12A21)P2 = 0. It follows that P2¢(A21)P2 = 0.
Therefore, ¢(Ag1) = Pa(A21)P1 C Az

Claim 5 (;S(A”) = (b(R)AU = A”(ﬁ(Pj) for each Z,j S {1,2}

By taking A;; = P in (2.2), we have ¢(A412) = ¢(P1)A12. By taking
A22 = P2 in (24), we have ¢(A12) = A12¢(P2).

By (22), we have ¢(A11)A12 = ¢(A11A12) = ¢(P1)A11A12. It follows
that ¢(A11) = ¢(P1)A11. On the other hand, ¢(A11)A12 = ¢(A11A12) =
A1 A129(P2) = A11¢(Ar2) = A11¢(P1) Az, Tt follows that ¢(A11) = A11¢(P1).

By (2.4) and (2.5), through a similar discussion as above, we can obtain that
¢(Az2) = A2d(P2) = ¢(P2) Az and ¢(Az1) = A (1) = ¢(P2) A
Now we have proved that ¢(A;;) € A;j and ¢(Asj) = ¢(P;)Ai; = Aijo(FP;).
It follows that
O(A) = p(A11 + Ar2 + Aoy + Aoo)
= ¢(P1)(A11 + A1z + A21 + A22) + ¢(P2) (A1 + Arz + Aa1 + Ag2)
= ¢(P1 + P2) (A1 + A1z + A2 + Az2)
— $(I)A.
Similarly, we can prove that ¢(A4) = A¢(I). Hence G is a full-centralizable
point. O

Proof of Theorem 2.1. Suppose the range projection of G is P. Set Q1 =
I—-C(I—-P),Qy=1-C(P),and Q3 =1 — Q1 — Q2. Since @1 < P and
Q2 <I—P,{Q;}i=1,2,3 are mutually orthogonal central projections. Therefore
A = Z?Zl@fli = 2?21 @P(Q;A). Obviously, A; is also a von Neumann
algebra acting on Q;H. For each element A in A, we write A = Z?:l A =
Z?:l QiA.
We divide our proof into two cases.
Case 1 ker(G) = {0}.
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Since 1 < P, we have ranG; = ran@Q1G = @Q1H. Since G is injective on
H, G1 = Q1G is also injective on Q1H. Hence G; is a separating point (both
right and left) in A;. By Lemma 2.4, G; is a full-centralizable point in A;.

Since Q2 < I — P, we have G = @Q2G = 0. By Lemma 2.5, G5 is a
full-centralizable point in Aj.

Note that ranGs = ranQs3G = Q3P = Ps;. Denote the central carrier of
P3 in .A3 by CAJ(P3) We have Qg —CAS(P;J,) < Q3 — Pg = Qg([— P) <
I — P. Obviously, Q3 — C4,(Ps) is a central projection orthogonal to @2, so
Q3 — Cuy(P3) +1 —C(P) < I— P. That is Q3 — Ca,(P3) + P < C(P). Tt
implies that Q3 — C4,(Ps) = 0, i.e., Ca,(P3) = Q3. Similarly, we can prove
Ca;(Q3 — P3) = Q3. By Lemma 2.6, G3 is a full-centralizable point in As.

By Lemma 2.2, G is a full-centralizable point.

Case 2 ker(G) # {0}.

In this case, Go and Gg3 are still full-centralizable points. Since ranG; =
Q1H , we have ker(G7) = {0}. By Case 1, G7 is a full-centralizable point in
A;. By Lemma 2.3, (G; is also a full-centralizable point in A;.

By Lemma 2.2, G is a full-centralizable point. (I

3. Centralizers on triangular algebras

In this section, we characterize the full-centralizable points on triangular
algebras. The following theorem is our main result.

Theorem 3.1. Let J = [{ %] be a triangular algebra, where A and B are
two unital Banach algebras. Then every G in J is a full-centralizable point.

Proof. Let ¢ : 7 — J be a centralizable mapping at G.

Since ¢ is linear, for every [¥ V] in J, we write

é X Y| _ | fu@X)+9u)+hi(Z) fie(X)+ g12(Y) + hi2(2)

0 Z 0 f22(X) + g22(Y) + haa(Z)
wheref11 Z.A—>.A, fm:.A-)M, f222.A—)B, g11 ZM—)A, 9122./\/1—>M,
g2 : M — B, hyy : B = A, his : B =+ M, hay : B — B, are all linear
mappings.

In the following, we denote the units of A and B by I; and Is, respectively.
We write G = [ ] and
(3.1)
¢ A M| _ | fulA) +guM)+hi(B)  fi2(4) + g12(M) + h12(B)

0 B 0 f22(A) + g22(M) + haa(B)

We divide our proof into several steps.

Claim 1 f12 = f22 = 0.

Let S=[% M]and T = [XI)IA 2 }, where X is an invertible element in A.
Since ST = G, we have
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o(G) = o(5)T
_ { fui(X) + g11(M) 4+ hi1(B)  f12(X) + g12(M) + hi2(B) } [ XA 0 }
0 f22(X) + g22(M) + ha2(B) 0 I

32) = | f2(X)F 912(M) + ha(B)

' 0 fo2(X) + g22(M) + ha2(B)
By comparing (3.1) with (3.2), we obtain f12(X) = f12(A) and f22(X) = fa2(A)
for each invertible element X in 4. Noting that A is a fixed element, for any
nonzero element A in C, we have fi12(AX) = fi12(A) = Af12(X) = Af12(4). Tt
follows that fi2(X) = 0 for each invertible element X. Thus f12(X) = 0 for all
X in A. Similarly, we can obtain fa2(X) = 0.

Claim 2 h12 = h11 =0.

Let S = 101 B;’l} and T' = [§ %], where Z is an invertible element in B.
Since ST = G, we have
P(G) = S¢(T)
_| L 0 f11(A) + g (M) + hii(Z)  fr12(A) + g12(M) + hi2(2)
0 Bz ! 0 J22(A) 4 g2 (M) + hao(Z)
(3.3)

0 %

By comparing (3.1) with (3.3), we obtain h12(Z) = hi2(B) and hy1(Z) =
h11(B) for each invertible element Z in B. Similarly as the previous discussion,
we can obtain hi2(Z) = h11(Z) =0 for all Z in B.

Claim 3 g22 = g11 = 0.

For every Y in M, we set S = [101 M];Y}, T = [’6‘ };] Obviously, ST = G.
Thus we have

_ [ Ju(A) + gu(M) +hi1(Z)  fi2(A) + gi2(M) + hi2(2) ] .

$(G) = ¢(S)T
i [ ) f22(11)+922(]\;,y)+h22(3) } { 61 i }
(3.4) - [ 8 f22(11)+922(]\;,y)+h22(3) } _

By comparing (3.1) with (3.4), we obtain faa(I1) + g22(M —Y) + haa(B) =
fQQ(A) + 922(M) + hQQ(B) Hence QQQ(Y) = fQQ(Il — A) It means QQQ(Y) =0

immediately.
On the other hand,
P(G) = S¢(T)
[ n M-Y f11(A) + 911 (Y) + hia(l2) =
=1 B 0 *

(3.5) _ [ f11(4) +g11(()Y)+h11(12) . ]
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By comparing (3.1) with (3.5), we obtain g11(Y) = g11(M) + h11(B — I2).
Hence ¢g11(Y) = 0.
According to the above three claims, we obtain that

ofs D= 1]

for every [§¥ %] in J.

Claim 4 fll(X> = fll(Il)X for all X in A, and glg(Y) = fll(Il)Y for all
Y in M.

Let S = [ MY ] and T = [Xflf“ };], where X is an invertible element

0 B 0
in A, and Y is an arbitrary element in M. Since ST = G, we have
P(G) = o(9)T
_ [ X)) gie(M - XY) XA Y
B 0 hao(B) 0 Is
_ [ x f11(X)Y 4+ g12(M — XY)
=0 !
[ fu(A) gi12(M)
3.6 =
(3:6) 0 hoa(B)

So we have f11(X)Y = g12(XY). It follows that
(3.7) 912(Y) = fu(l)Y

by taking X = I;. Replacing Y in (3.7) with XY, we can obtain ¢12(XY) =
f11(I1) XY = f11(X)Y for each invertible element X in .4 and Y in M. Since
M is faithful, we have

(3.8) Ju(X) = full)X

for all invertible elements X and so for all elements in A.

Claim 5 ho2(Z) = Zhao(I2) for all Z in B, and g12(Y) = Yhao(I2) for all
Y in M.

Let S = [h y } and T = [6‘ M’YZ], where Z is an invertible element in

0 Bz™! z
B, and Y is an arbitrary element in M. Since ST = G, we have
P(G) = So(T)
[ h Y J11(A)  g12(M - Y Z)
- L 0 Bz ! 0 hQQ(Z)
_ [ * 912(M_YZ)+Yh22(Z)
=l .
[ fu(4)  gi2(M)
3.9 = .
(3.9) 0 hoa(B)
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So we have g12(YZ) = Yhgee(Z). Through a similar discussion as the proof of
Claim 4, we obtain hQQ(Z) = Zhgg([g) for all Z in B and glg(Y) = thg([g)
for all Y in M.

Thus we have that

o[§ J) =[G L] = [ et

for every [§ % ]in J. So it is sufficient to show that f11(I1)X = X f11(I1) for all
X in A, and hQQ(IQ)Z = ZhQQ(IQ) for all Z in B. Since fll(Il)Y = Yh,QQ(IQ) for
all Y in M, we have f11(I1)XY = XYha(l2) = X f11(11)Y. It implies that
fll(Il)X = Xfll(ll)- Simﬂaﬂy, hQQ(IQ)Z = Zhgg([g). Now we can obtain
that ¢(J) = ¢(I)J = Jo(I) for all J in J, where I = [101 102] is the unit of J.
Hence, G is a full-centralizable point. O

As applications of Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let A be a nest algebra on a Hilbert space H. Then every
element in A is a full-centralizable point.

Proof. If A = B(H), then the result follows from Theorem 2.1. Otherwise, A
is isomorphic to a triangular algebra. By Theorem 3.1, the result follows. [

Corollary 3.3. Let A be a CDCSL (completely distributive commutative sub-
space lattice) algebra on a Hilbert space H. Then every element in A is a
full-centralizable point.

Proof. Tt is known that A = 3.\ P A;, where each A; is either B(H;) for
some Hilbert space H; or a triangular algebra Tri(B, M,C) such that the con-
ditions of Theorem 3.1 hold (see in [8] and [15]). By Lemma 2.2, the result
follows. O

Remark. For the definition of a CDCSL algebra, we refer to [5].

4. Derivations on von Neumann algebras

In this section, we characterize the derivable mappings at a given point in a
von Neumann algebra.

Lemma 4.1. Let A be a von Neumann algebra. Suppose A : A — A is a
linear mapping such that A(A)B + AA(B) = 0 for each A and B in A with
AB =0. Then A = D + ¢, where D : A — A is a derivation, and ¢ : A — A

is a centralizer. In particular, A is bounded.

Proof. Case 1. A is an abelian von Neumann algebra. In this case, A = C(X)
for some compact Hausdorff space X. If AB = 0, then the supports of A and
B are disjoint. So the equation A(A)B + AA(B) = 0 implies that A(A)B =
AA(B) = 0. By Lemma 2.5, A is a centralizer.
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Case 2. A= M,(B)(n > 2), where B is also a von Neumann algebra. By
[1, Theorem 2.3], A is a generalized derivation with A(I) in the center. That
is to say, A is a sum of a derivation and a centralizer.

For general cases, we know A = 3" | € A;, where each A; coincides with
either Case 1 or Case 2. We write A = 2?21 A; with A; € A; and denote
the restriction of A in A; by A;. It is not difficult to check that A(4;) €
A;. Moreover, setting A;B; = 0, we have A(4;)B; + A;A(B;) = A;(A;)B; +
A;A;(B;) = 0. By Case 1 and Case 2, each A; is a sum of a derivation and a
centralizer. Hence, A =Y | A, is a sum of a derivation and a centralizer. 0O

Remark. In [10], the authors prove that for a prime semisimple Banach algebra
A with nontrival idempotents and a linear mapping A from A into itself, the
condition A(A)B 4+ AA(B) = 0 for each A and B in A with AB = 0 implies
that A is bounded. By Lemma 4.1, we have that for a von Neumann algebra
A, the result holds still even if A is not prime.

Now we prove our main result in this section.

Theorem 4.2. Let A be a von Neumann algebra acting on a Hilbert space H,
and G be a given point in A. If A: A — A is a linear mapping derivable at G,
then A = D + ¢, where D is a derivation, and ¢ is a centralizer. Moreover, G

is a full-derivable point if and only if C(G) = I.

Proof. Suppose the range projection of G is P. We note that C(G) = C(P).
Set Qu =I1-C(I—P),Q2=1-C(P),and Q3 = I —Q1— Q2. Then we have
A= 2?21 PA = Ele P(Q;.A). For every A in A, we write A = 2?21 A=
Z?:l QzA
For any central projection Q, setting Q+ = I — @, we have

Q"+t 'QGA™(Q G +tQA) =G,

where A is an arbitrary invertible element in A, and ¢ is an arbitrary nonzero
element in C. So we obtain

A(G) = (Q+171QGATHA(QTG+HQA) +A(Q™+1'QGA™)(Q G +1QA).

Considering the coefficient of ¢, we obtain Q-A(QA) +A(Q+)(QA) = 0. Since
the ranges of @ and Q' are disjoint, it follows that Q+A(QA) = 0 and so
A(QA) € QA. Since Q; are central projections, we have A(A;) C A;.

Denote the restriction of A to A; by A;. Setting A; B; = G, it is not difficult
to check that Ai (Gz) = A(Al)BZ + AZA(BZ)

Since Q1 < P, we have ranG, = ran@Q1G = Q1H. So G is a right separat-
ing point in A;. By [13, Corallary 2.5], Ay is a Jordan derivation and so is a
derivation on Aj;.

Since Q2 < I — P, we have G3 = Q2G = 0. By Lemma 4.1, Ay is a sum of
a derivation and a centralizer on As.

Note that ranGs = ranQsG = Q3P = P3. As we proved before, C4,(Ps) =
Ca,(Q3 — P3) = Q3. So by [16, Theorem 3.1], A3 is a derivation on As.
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Hence, A = 2?21 A; is a sum of a derivation and a centralizer.

If C(G) = I, then Q2 = 0, A = A1 P A3 and G = Gy + G3 is a full-
derivable point. If C(G) # I, then Q2 # 0. Define a linear mapping § : A — A
by §(A) = Ag for all A € A. One can check that ¢ is not a derivation but
derivable at G. Thus G is not a full-derivable point. (I

As an application, we obtain the following corollary.

Corollary 4.3. Let A be a von Neumann algebra. Then A is a factor if and
only if every nonzero element G in A is a full-derivable point.

Proof. If Ais a factor, for each nonzero element G in A, we know that C(G) = I.
By Theorem 4.2, G is a full-derivable point.

If A is not a factor, then there exists a nontrival central projection P. Define
a linear mapping ¢ : A — A by §(A4) = (I — P)A for all A € A. One can check
that d is not a derivation but derivable at P. Thus P is not a full-derivable
point. ]
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