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CHARACTERIZATIONS OF CENTRALIZERS AND

DERIVATIONS ON SOME ALGEBRAS

Jun He, Jiankui Li, and Wenhua Qian

Abstract. A linear mapping φ on an algebra A is called a centralizable
mapping at G ∈ A if φ(AB) = φ(A)B = Aφ(B) for each A and B

in A with AB = G, and φ is called a derivable mapping at G ∈ A if
φ(AB) = φ(A)B +Aφ(B) for each A and B in A with AB = G. A point
G in A is called a full-centralizable point (resp. full-derivable point) if
every centralizable (resp. derivable) mapping at G is a centralizer (resp.
derivation). We prove that every point in a von Neumann algebra or a
triangular algebra is a full-centralizable point. We also prove that a point

in a von Neumann algebra is a full-derivable point if and only if its central
carrier is the unit.

1. Introduction

Let A be an associative algebra over the complex field C, and φ be a linear
mapping from A into itself. φ is called a centralizer if φ(AB) = φ(A)B =
Aφ(B) for each A and B in A. Obviously, if A is an algebra with unit I, then
φ is a centralizer if and only if φ(A) = φ(I)A = Aφ(I) for every A in A. φ is
called a derivation if φ(AB) = φ(A)B +Aφ(B) for each A and B in A.

A linear mapping φ : A → A is called a centralizable mapping at G ∈ A if
φ(AB) = φ(A)B = Aφ(B) for each A and B in A with AB = G, and φ is called
a derivable mapping at G ∈ A if φ(AB) = φ(A)B+Aφ(B) for each A and B in
A with AB = G. An element G in A is called a full-centralizable point (resp.
full-derivable point) if every centralizable (resp. derivable) mapping at G is a
centralizer (resp. derivation).

In [3], Brešar proves that if R is a prime ring with a nontrival idempotent,
then 0 is a full-centralizable point. In [18], X. Qi and J. Hou characterize
centralizable and derivable mappings at 0 in triangular algebras. In [17], X. Qi
proves that every nontrival idempotent in a prime ring is a full-centralizable
point. In [19], W. Xu, R. An and J. Hou prove that every element in B(H) is
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a full-centralizable point, where H is a Hilbert space. For more information on
centralizable and derivable mappings, we refer to [2, 7, 11, 12, 14, 20].

For a von Neumann algebra A, the central carrier C(A) of an element A in
A is the projection I −P , where P is the union of all central projections Pα in
A such that PαA = 0.

This paper is organized as follows. In Section 2, by using the techniques
about central carriers, we show that every element in a von Neumann algebra
is a full-centralizable point.

Let A and B be two unital algebras over the complex field C, and M be a
unital (A,B)-bimodule which is faithful both as a left A-module and a right
B-module. The algebra

Tri(A,M,B) =
{[

A M

0 B

]

: A ∈ A, B ∈ B,M ∈ M
}

under the usual matrix addition and matrix multiplication is called a triangular

algebra.
In Section 3, we show that if A and B are two unital Banach algebras, then

every element in Tri(A,M,B) is a full-centralizable point.
In Section 4, we show that for every point G in a von Neumann algebra A,

if ∆ is a derivable mapping at G, then ∆ = D + φ, where D : A → A is a
derivation and φ : A → A is a centralizer. Moreover, we prove that G is a
full-derivable point if and only if C(G) = I.

2. Centralizers on von Neumann algebras

In this section, A denotes a unital algebra and φ : A → A is a centralizable
mapping at a given point G ∈ A. The main result is the following theorem.

Theorem 2.1. Let A be a von Neumann algebra acting on a Hilbert space H.

Then every element G in A is a full-centralizable point.

Before proving Theorem 2.1, we need the following several lemmas.

Lemma 2.2. Let A be a unital Banach algebra with the form A =
∑

i∈Λ

⊕Ai.

Then φ(Ai) ⊆ Ai. Moreover, suppose G =
∑

i∈Λ Gi, where Gi ∈ Ai. If Gi is

a full-centralizable point in Ai for every i ∈ Λ, then G is a full-centralizable

point in A.

Proof. Let Ii be the unit in Ai. Suppose that Ai is an invertible element in
Ai, and t is an arbitrary nonzero element in C. It is easy to check that

(I − Ii + t−1GA−1
i )((I − Ii)G+ tAi) = G.

So we have
(I − Ii + t−1GA−1

i )φ((I − Ii)G+ tAi) = φ(G).

Considering the coefficient of t, since t is arbitrarily chosen, we have (I −
Ii)φ(Ai) = 0. It follows that φ(Ai) = Iiφ(Ai) ∈ Ai for all invertible elements.
Since Ai is a Banach algebra, every element can be written into the sum of two
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invertible elements. So the above equation holds for all elements in Ai. That
is to say φ(Ai) ⊆ Ai.

Let φi = φ |Ai
. For every A in A, we write A =

∑

i∈ΛAi. Assume AB = G.
Since AiBi = Gi and φ(Ai) ⊆ Ai, we have

∑

i∈Λ

φ(Gi) =
∑

i∈Λ

φ(Ai)
∑

i∈Λ

Bi =
∑

i∈Λ

φ(Ai)Bi.

It implies that φi(Gi) = φi(Ai)Bi. Similarly, we can obtain φi(Gi) = Aiφi(Bi).
By assumption, Gi is a full-centralizable point, so φi is a centralizer. Hence

φ(A) =
∑

i∈Λ

φi(Ai) =
∑

i∈Λ

φi(Ii)Ai =
∑

i∈Λ

φi(Ii)
∑

i∈Λ

Ai = φ(I)A.

Similarly, we can prove φ(A) = Aφ(I). HenceG is a full-centralizable point. �

Lemma 2.3. Let A be a C∗-algebra. If G∗ is a full-centralizable point in A,

then G is a full-centralizable point in A.

Proof. Define a linear mapping ˜φ : A → A by: ˜φ(A) = (φ(A∗))∗ for every
A in A. For each A and B in A with AB = G∗, we have B∗A∗ = G. It

follows that φ(G) = φ(B∗)A∗ = B∗φ(A∗). By the definition of ˜φ, we obtain
˜φ(G∗) = ˜φ(A)B = A˜φ(B). Since G∗ is a full-centralizable point in A, we

have that ˜φ is a centralizer. Thus φ is also a centralizer. Hence G is a full-
centralizable point in A. �

For a unital algebra A and a unital A-bimodule M, an element A ∈ A is
called a left separating point (resp. right separating point) of M if AM = 0
implies M = 0 (MA = 0 implies M = 0) for every M ∈ M.

Lemma 2.4. Let A be a unital Banach algebra and G be a left and right

separating point in A. Then G is a full-centralizable point.

Proof. For every invertible element X in A, we have

φ(I)G = φ(G) = φ(XX−1G) = φ(X)X−1G.

Since G is a right separating point, we obtain φ(I) = φ(X)X−1. It follows
that φ(X) = φ(I)X for each invertible element X and so for all elements in
A. Similarly, we have that φ(X) = Xφ(I). Hence G is a full-centralizable
point. �

Lemma 2.5. Let A be a von Neumann algebra. Then G = 0 is a full-

centralizable point.

Proof. For any projection P in A, since P (I − P ) = (I − P )P = 0, we have

φ(P )(I − P ) = Pφ(I − P ) = φ(I − P )P = (I − P )φ(P ) = 0.

It follows that φ(P ) = φ(I)P = Pφ(I). By [6, Proposition 2.4] and [4, Corollary

1.2], we know that φ is continuous. Since A = span{P ∈ A : P = P ∗ = P 2},
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it follows that φ(A) = φ(I)A = Aφ(I) for every A ∈ A. Hence G is a full-
centralizable point. �

Lemma 2.6. Let A be a von Neumann algebra acting on a Hilbert space H
and P be the range projection of G. If C(P ) = C(I − P ) = I, then G is a

full-centralizable point.

Proof. Set P1 = P, P2 = I − P , and denote PiAPj by Aij , i, j = 1, 2. For
every A in A, denote PiAPj by Aij .

Firstly, we claim that the condition AAij = 0 implies APi = 0, and similarly,
AijA = 0 implies PjA = 0. Indeed, since C(Pj) = I, by [9, Proposition 5.5.2],
the range of APj is dense in H. So APiAPj = 0 implies APi = 0. On the other
hand, if AijA = 0, then A∗Aji = 0. Hence A∗Pj = 0 and PjA = 0.

Besides, since P1 = P is the range projection of G, we have P1G = G.
Moreover, if AG = 0, then AP1 = 0.

In the following, we assume that Aij is an arbitrary element inAij , i, j = 1, 2,
and t is an arbitrary nonzero element in C. Without loss of generality, we may
assume that A11 is invertible in A11.

Claim 1 φ(A12) ⊆ A12.
Since (P1 + tA12)G = G, we have φ(G) = φ(P1 + tA12)G. It implies that

φ(A12)G = 0. Hence φ(A12)P1 = 0.
By (P1+ tA12)G = G, we also have φ(G) = (P1+ tA12)φ(G). It follows that

A12φ(G) = A12φ(P1)G = 0. So A12φ(P1)P1 = 0. Hence P2φ(P1)P1 = 0.
Since (A11 + tA11A12)(A

−1
11 G−A12A22 + t−1A22) = G, we have

φ(A11 + tA11A12)(A
−1
11 G−A12A22 + t−1A22) = φ(G).(2.1)

Since t is arbitrarily chosen in (2.1), we obtain

φ(A11)(A
−1
11 G−A12A22) + φ(A11A12)A22 = φ(G).

Since A12 is also arbitrarily chosen, we can obtain

φ(A11)A12A22 = φ(A11A12)A22.

Taking A22 = P2, since φ(A12)P1 = 0, we have

φ(A11A12) = φ(A11)A12.(2.2)

Taking A11 = P1, since P2φ(P1)P1 = 0, we have

P2φ(A12) = P2φ(P1)A12 = 0.(2.3)

So

φ(A12) = φ(A12)P1 + P1φ(A12)P2 + P2φ(A12)P2

= P1φ(A12)P2 ⊆ A12.

Claim 2 φ(A11) ⊆ A11.
Considering the coefficient of t−1 in (2.1), we have φ(A11)A22 = 0. Thus

φ(A11)P2 = 0. By (2.2), we obtain P2φ(A11)A12 = P2φ(A11A12) = 0. It follows
that P2φ(A11)P1 = 0. Therefore, φ(A11) = P1φ(A11)P1 ⊆ A11.
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Claim 3 φ(A22) ⊆ A22.
By (A11 + tA11A12)(A

−1
11 G−A12A22 + t−1A22) = G, we also have

(A11 + tA11A12)φ(A
−1
11 G−A12A22 + t−1A22) = φ(G).

Through a similar discussion to equation (2.1), we can prove P1φ(A22) = 0 and

φ(A12A22) = A12φ(A22).(2.4)

Thus A12φ(A22)P1 = φ(A12A22)P1 = 0. It follows that P2φ(A22)P1 = 0.
Therefore, φ(A22) = P2φ(A22)P2 ⊆ A22.

Claim 4 φ(A21) ⊆ A21.
Since (A11 + tA11A12)(A

−1
11 G−A12A21 + t−1A21) = G, we have

(A11 + tA11A12)φ(A
−1
11 G−A12A21 + t−1A21) = φ(G).

According to this equation, we can similarly obtain that P1φ(A21) = 0 and

A12φ(A21) = φ(A12A21).(2.5)

Hence A12φ(A21)P2 = φ(A12A21)P2 = 0. It follows that P2φ(A21)P2 = 0.
Therefore, φ(A21) = P2φ(A21)P1 ⊆ A21.

Claim 5 φ(Aij) = φ(Pi)Aij = Aijφ(Pj) for each i, j ∈ {1, 2}.
By taking A11 = P1 in (2.2), we have φ(A12) = φ(P1)A12. By taking

A22 = P2 in (2.4), we have φ(A12) = A12φ(P2).
By (2.2), we have φ(A11)A12 = φ(A11A12) = φ(P1)A11A12. It follows

that φ(A11) = φ(P1)A11. On the other hand, φ(A11)A12 = φ(A11A12) =
A11A12φ(P2) = A11φ(A12) = A11φ(P1)A12. It follows that φ(A11) = A11φ(P1).

By (2.4) and (2.5), through a similar discussion as above, we can obtain that
φ(A22) = A22φ(P2) = φ(P2)A22 and φ(A21) = A21φ(P1) = φ(P2)A21.

Now we have proved that φ(Aij) ⊆ Aij and φ(Aij) = φ(Pi)Aij = Aijφ(Pj).
It follows that

φ(A) = φ(A11 +A12 +A21 +A22)

= φ(P1)(A11 +A12 +A21 +A22) + φ(P2)(A11 +A12 + A21 +A22)

= φ(P1 + P2)(A11 +A12 +A21 +A22)

= φ(I)A.

Similarly, we can prove that φ(A) = Aφ(I). Hence G is a full-centralizable
point. �

Proof of Theorem 2.1. Suppose the range projection of G is P . Set Q1 =
I − C(I − P ), Q2 = I − C(P ), and Q3 = I − Q1 − Q2. Since Q1 ≤ P and
Q2 ≤ I−P , {Qi}i=1,2,3 are mutually orthogonal central projections. Therefore

A =
∑3

i=1

⊕Ai =
∑3

i=1

⊕

(QiA). Obviously, Ai is also a von Neumann

algebra acting on QiH. For each element A in A, we write A =
∑3

i=1 Ai =
∑3

i=1 QiA.
We divide our proof into two cases.

Case 1 ker(G) = {0}.
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Since Q1 ≤ P , we have ranG1 = ranQ1G = Q1H. Since G is injective on
H, G1 = Q1G is also injective on Q1H. Hence G1 is a separating point (both
right and left) in A1. By Lemma 2.4, G1 is a full-centralizable point in A1.

Since Q2 ≤ I − P , we have G2 = Q2G = 0. By Lemma 2.5, G2 is a
full-centralizable point in A2.

Note that ranG3 = ranQ3G = Q3P = P3. Denote the central carrier of
P3 in A3 by CA3(P3). We have Q3 − CA3(P3) ≤ Q3 − P3 = Q3(I − P ) ≤
I − P . Obviously, Q3 − CA3(P3) is a central projection orthogonal to Q2, so
Q3 − CA3(P3) + I − C(P ) ≤ I − P . That is Q3 − CA3(P3) + P ≤ C(P ). It
implies that Q3 − CA3(P3) = 0, i.e., CA3(P3) = Q3. Similarly, we can prove
CA3(Q3 − P3) = Q3. By Lemma 2.6, G3 is a full-centralizable point in A3.

By Lemma 2.2, G is a full-centralizable point.
Case 2 ker(G) 6= {0}.

In this case, G2 and G3 are still full-centralizable points. Since ranG1 =
Q1H , we have ker(G∗

1) = {0}. By Case 1, G∗
1 is a full-centralizable point in

A1. By Lemma 2.3, G1 is also a full-centralizable point in A1.
By Lemma 2.2, G is a full-centralizable point. �

3. Centralizers on triangular algebras

In this section, we characterize the full-centralizable points on triangular
algebras. The following theorem is our main result.

Theorem 3.1. Let J = [A M
0 B ] be a triangular algebra, where A and B are

two unital Banach algebras. Then every G in J is a full-centralizable point.

Proof. Let φ : J → J be a centralizable mapping at G.
Since φ is linear, for every [X Y

0 Z ] in J , we write

φ

[

X Y

0 Z

]

=

[

f11(X) + g11(Y ) + h11(Z) f12(X) + g12(Y ) + h12(Z)
0 f22(X) + g22(Y ) + h22(Z)

]

,

where f11 : A → A, f12 : A → M, f22 : A → B, g11 : M → A, g12 : M → M,

g22 : M → B, h11 : B → A, h12 : B → M, h22 : B → B, are all linear
mappings.

In the following, we denote the units of A and B by I1 and I2, respectively.
We write G = [A M

0 B ] and

φ

[

A M

0 B

]

=

[

f11(A) + g11(M) + h11(B) f12(A) + g12(M) + h12(B)
0 f22(A) + g22(M) + h22(B)

]

.

(3.1)

We divide our proof into several steps.
Claim 1 f12 = f22 = 0.

Let S = [X M
0 B ] and T =

[

X−1A 0
0 I2

]

, where X is an invertible element in A.

Since ST = G, we have
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φ(G) = φ(S)T

=
[

f11(X) + g11(M) + h11(B) f12(X) + g12(M) + h12(B)
0 f22(X) + g22(M) + h22(B)

] [

X−1A 0
0 I2

]

=

[

∗ f12(X) + g12(M) + h12(B)
0 f22(X) + g22(M) + h22(B)

]

.(3.2)

By comparing (3.1) with (3.2), we obtain f12(X) = f12(A) and f22(X) = f22(A)
for each invertible element X in A. Noting that A is a fixed element, for any
nonzero element λ in C, we have f12(λX) = f12(A) = λf12(X) = λf12(A). It
follows that f12(X) = 0 for each invertible element X . Thus f12(X) = 0 for all
X in A. Similarly, we can obtain f22(X) = 0.

Claim 2 h12 = h11 = 0.

Let S =
[

I1 0

0 BZ−1

]

and T = [A M
0 Z ], where Z is an invertible element in B.

Since ST = G, we have

φ(G) = Sφ(T )

=

[

I1 0
0 BZ−1

] [

f11(A) + g11(M) + h11(Z) f12(A) + g12(M) + h12(Z)
0 f22(A) + g22(M) + h22(Z)

]

=

[

f11(A) + g11(M) + h11(Z) f12(A) + g12(M) + h12(Z)
0 ∗

]

.

(3.3)

By comparing (3.1) with (3.3), we obtain h12(Z) = h12(B) and h11(Z) =
h11(B) for each invertible element Z in B. Similarly as the previous discussion,
we can obtain h12(Z) = h11(Z) = 0 for all Z in B.

Claim 3 g22 = g11 = 0.
For every Y in M, we set S =

[

I1 M−Y
0 B

]

, T =
[

A Y
0 I2

]

. Obviously, ST = G.
Thus we have

φ(G) = φ(S)T

=

[

∗ ∗
0 f22(I1) + g22(M − Y ) + h22(B)

] [

A Y

0 I2

]

=

[

∗ ∗
0 f22(I1) + g22(M − Y ) + h22(B)

]

.(3.4)

By comparing (3.1) with (3.4), we obtain f22(I1) + g22(M − Y ) + h22(B) =
f22(A) + g22(M) + h22(B). Hence g22(Y ) = f22(I1 −A). It means g22(Y ) = 0
immediately.

On the other hand,

φ(G) = Sφ(T )

=

[

I1 M − Y

0 B

] [

f11(A) + g11(Y ) + h11(I2) ∗
0 ∗

]

=

[

f11(A) + g11(Y ) + h11(I2) ∗
0 ∗

]

.(3.5)
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By comparing (3.1) with (3.5), we obtain g11(Y ) = g11(M) + h11(B − I2).
Hence g11(Y ) = 0.

According to the above three claims, we obtain that

φ

[

X Y

0 Z

]

=

[

f11(X) g12(Y )
0 h22(Z)

]

for every [X Y
0 Z ] in J .

Claim 4 f11(X) = f11(I1)X for all X in A, and g12(Y ) = f11(I1)Y for all
Y in M.

Let S =
[

X M−XY
0 B

]

and T =
[

X−1A Y
0 I2

]

, where X is an invertible element

in A, and Y is an arbitrary element in M. Since ST = G, we have

φ(G) = φ(S)T

=

[

f11(X) g12(M −XY )
0 h22(B)

] [

X−1A Y

0 I2

]

=

[

∗ f11(X)Y + g12(M −XY )
0 ∗

]

=

[

f11(A) g12(M)
0 h22(B)

]

.(3.6)

So we have f11(X)Y = g12(XY ). It follows that

g12(Y ) = f11(I1)Y(3.7)

by taking X = I1. Replacing Y in (3.7) with XY , we can obtain g12(XY ) =
f11(I1)XY = f11(X)Y for each invertible element X in A and Y in M. Since
M is faithful, we have

f11(X) = f11(I1)X(3.8)

for all invertible elements X and so for all elements in A.
Claim 5 h22(Z) = Zh22(I2) for all Z in B, and g12(Y ) = Y h22(I2) for all

Y in M.
Let S =

[

I1 Y

0 BZ−1

]

and T =
[

A M−Y Z
0 Z

]

, where Z is an invertible element in

B, and Y is an arbitrary element in M. Since ST = G, we have

φ(G) = Sφ(T )

=

[

I1 Y

0 BZ−1

] [

f11(A) g12(M − Y Z)
0 h22(Z)

]

=

[

∗ g12(M − Y Z) + Y h22(Z)
0 ∗

]

=

[

f11(A) g12(M)
0 h22(B)

]

.(3.9)
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So we have g12(Y Z) = Y h22(Z). Through a similar discussion as the proof of
Claim 4, we obtain h22(Z) = Zh22(I2) for all Z in B and g12(Y ) = Y h22(I2)
for all Y in M.

Thus we have that

φ

[

X Y

0 Z

]

=

[

f11(I1)X f11(I1)Y
0 Zh22(I2)

]

=

[

f11(I1)X Y h22(I2)
0 Zh22(I2)

]

for every [X Y
0 Z ] in J . So it is sufficient to show that f11(I1)X = Xf11(I1) for all

X in A, and h22(I2)Z = Zh22(I2) for all Z in B. Since f11(I1)Y = Y h22(I2) for
all Y in M, we have f11(I1)XY = XY h22(I2) = Xf11(I1)Y . It implies that
f11(I1)X = Xf11(I1). Similarly, h22(I2)Z = Zh22(I2). Now we can obtain

that φ(J) = φ(I)J = Jφ(I) for all J in J , where I =
[

I1 0
0 I2

]

is the unit of J .
Hence, G is a full-centralizable point. �

As applications of Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let A be a nest algebra on a Hilbert space H. Then every

element in A is a full-centralizable point.

Proof. If A = B(H), then the result follows from Theorem 2.1. Otherwise, A
is isomorphic to a triangular algebra. By Theorem 3.1, the result follows. �

Corollary 3.3. Let A be a CDCSL (completely distributive commutative sub-

space lattice) algebra on a Hilbert space H. Then every element in A is a

full-centralizable point.

Proof. It is known that A ∼=
∑

i∈Λ

⊕Ai, where each Ai is either B(Hi) for
some Hilbert space Hi or a triangular algebra Tri(B,M, C) such that the con-
ditions of Theorem 3.1 hold (see in [8] and [15]). By Lemma 2.2, the result
follows. �

Remark. For the definition of a CDCSL algebra, we refer to [5].

4. Derivations on von Neumann algebras

In this section, we characterize the derivable mappings at a given point in a
von Neumann algebra.

Lemma 4.1. Let A be a von Neumann algebra. Suppose ∆ : A → A is a

linear mapping such that ∆(A)B + A∆(B) = 0 for each A and B in A with

AB = 0. Then ∆ = D + φ, where D : A → A is a derivation, and φ : A → A
is a centralizer. In particular, ∆ is bounded.

Proof. Case 1. A is an abelian von Neumann algebra. In this case, A ∼= C(X )
for some compact Hausdorff space X . If AB = 0, then the supports of A and
B are disjoint. So the equation ∆(A)B + A∆(B) = 0 implies that ∆(A)B =
A∆(B) = 0. By Lemma 2.5, ∆ is a centralizer.
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Case 2. A ∼= Mn(B)(n ≥ 2), where B is also a von Neumann algebra. By
[1, Theorem 2.3], ∆ is a generalized derivation with ∆(I) in the center. That
is to say, ∆ is a sum of a derivation and a centralizer.

For general cases, we know A ∼=
∑n

i=1

⊕Ai, where each Ai coincides with
either Case 1 or Case 2. We write A =

∑n

i=1 Ai with Ai ∈ Ai and denote
the restriction of ∆ in Ai by ∆i. It is not difficult to check that ∆(Ai) ∈
Ai. Moreover, setting AiBi = 0, we have ∆(Ai)Bi + Ai∆(Bi) = ∆i(Ai)Bi +
Ai∆i(Bi) = 0. By Case 1 and Case 2, each ∆i is a sum of a derivation and a
centralizer. Hence, ∆ =

∑n

i=1 ∆i is a sum of a derivation and a centralizer. �

Remark. In [10], the authors prove that for a prime semisimple Banach algebra
A with nontrival idempotents and a linear mapping ∆ from A into itself, the
condition ∆(A)B + A∆(B) = 0 for each A and B in A with AB = 0 implies
that ∆ is bounded. By Lemma 4.1, we have that for a von Neumann algebra
A, the result holds still even if A is not prime.

Now we prove our main result in this section.

Theorem 4.2. Let A be a von Neumann algebra acting on a Hilbert space H,

and G be a given point in A. If ∆ : A → A is a linear mapping derivable at G,

then ∆ = D+ φ, where D is a derivation, and φ is a centralizer. Moreover, G

is a full-derivable point if and only if C(G) = I.

Proof. Suppose the range projection of G is P . We note that C(G) = C(P ).
Set Q1 = I−C(I−P ), Q2 = I−C(P ), and Q3 = I−Q1−Q2. Then we have

A =
∑3

i=1

⊕Ai =
∑3

i=1

⊕

(QiA). For every A in A, we write A =
∑3

i=1 Ai =
∑3

i=1 QiA.
For any central projection Q, setting Q⊥ = I −Q, we have

(Q⊥ + t−1QGA−1)(Q⊥G+ tQA) = G,

where A is an arbitrary invertible element in A, and t is an arbitrary nonzero
element in C. So we obtain

∆(G) = (Q⊥+t−1QGA−1)∆(Q⊥G+tQA)+∆(Q⊥+t−1QGA−1)(Q⊥G+tQA).

Considering the coefficient of t, we obtain Q⊥∆(QA)+∆(Q⊥)(QA) = 0. Since
the ranges of Q and Q⊥ are disjoint, it follows that Q⊥∆(QA) = 0 and so
∆(QA) ∈ QA. Since Qi are central projections, we have ∆(Ai) ⊆ Ai.

Denote the restriction of ∆ to Ai by ∆i. Setting AiBi = Gi, it is not difficult
to check that ∆i(Gi) = ∆(Ai)Bi +Ai∆(Bi).

Since Q1 ≤ P , we have ranG1 = ranQ1G = Q1H . So G1 is a right separat-
ing point in A1. By [13, Corallary 2.5], ∆1 is a Jordan derivation and so is a
derivation on A1.

Since Q2 ≤ I − P , we have G2 = Q2G = 0. By Lemma 4.1, ∆2 is a sum of
a derivation and a centralizer on A2.

Note that ranG3 = ranQ3G = Q3P = P3. As we proved before, CA3(P3) =
CA3(Q3 − P3) = Q3. So by [16, Theorem 3.1], ∆3 is a derivation on A3.



CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS 695

Hence, ∆ =
∑3

i=1 ∆i is a sum of a derivation and a centralizer.
If C(G) = I, then Q2 = 0, A = A1

⊕A3 and G = G1 + G3 is a full-
derivable point. If C(G) 6= I, then Q2 6= 0. Define a linear mapping δ : A → A
by δ(A) = A2 for all A ∈ A. One can check that δ is not a derivation but
derivable at G. Thus G is not a full-derivable point. �

As an application, we obtain the following corollary.

Corollary 4.3. Let A be a von Neumann algebra. Then A is a factor if and

only if every nonzero element G in A is a full-derivable point.

Proof. IfA is a factor, for each nonzero elementG inA, we know that C(G) = I.
By Theorem 4.2, G is a full-derivable point.

If A is not a factor, then there exists a nontrival central projection P . Define
a linear mapping δ : A → A by δ(A) = (I −P )A for all A ∈ A. One can check
that δ is not a derivation but derivable at P . Thus P is not a full-derivable
point. �
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