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C(S) EXTENSIONS OF S-I-BCK-ALGEBRAS

ZHAOMU CHEN, YISHENG HUANG AND EUN HWAN ROH

ABSTRACT. In this paper we consider more systematically the central-
izer C(S) of theset S = {f, | fa: X = X; 2 — z%a,a € X} with
respect to the semigroup End(X) of all endomorphisms of an implicative
BCK-algebra X with the condition (S). We obtain a series of interesting
results. The main results are stated as follows:
(1) C(S) with respect to a binary operation * defined in a certain
way forms a bounded implicative BC (-algebra with the con-
dition (S).
(2) X can be imbedded in C(S) such that X is an ideal of C(S).
(3) If X is not bounded, it can be imbedced in a bounded subal-
gebra T of C(5) such that X is a maximal ideal of 7.

(4) If X (# {0}) is semisimple, C(S) is BC ' K-isomorphic to ] A;
i€l
in which {A;};¢; is simple ideal family of X.

0. Introduction

Throughout the paper, the S-P-I-BC K -algebra denote the positive
implicative BCI{-algebra with the condition (S). Similarly, we have the
symbols: S-BCK-algebra, S-I-BC K-algebra, P-I-BC K -algebra, etc.

K. Iséki in [5] made “the Iséki extension” for a BC K -algebra X (see
[9]) and he showed that the algebra X* after this extension is a bounded
BCK-algebra with X a maximal ideal of X*. The present authors in
[3] made “the extension of order dual” for a 5-I-BC I-algebra X and
we obtained that the algebra X* after this extension is a bounded S-I-
BC K-algebra with X a maximal ideal of X*.
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For a P-I-BC K-algebra X, using the semigroup End(X) of all en-
domorphisms of X, the present authors in {1] extended X as a 5-P-I-
BCK-algebra X* such that X is a subalgebra of X* However the X*
might not be bounded. For the case that X* is non-bounded, using once
more the End(X), can we make further extension such that the alge-
bra after that extension not only satisfies the condition (S) but also is
bounded? For this question, when X is implicative, this paper will give
a definite answer. We call it the C(S) extension.

1. Preliminaries

We shall freely use the concepts and basic properties for S-BCK-
algebra, P-I-BC K -algebra and I-BC K -algebra mentioned in [6] and

[8].
PROPOSITION 1.1. Let X be a S-P-I-BCK -algebra and f a BCK-
endomorphism of X. Then
(1) ([7]), Theorem 2) (zoy)*z = (T *z)0 (y* z);
) ([6], Theorem 16) f(zoy) = f(x)o f(y).

PROPO@IHON 1.2.  Let X be a S-I-BCK -algebra. Then
(3) (z*y) =

(4) c*xy=a *(:1'/\y):

(5) zx(y*z)=((xxy)xz)o(xAz)

(6) 2 =(z*xy)o(x Ayl

(7Y (zAy)*z =2 A(yx*2z).

PROOF. (3) (v *xy)Ay=yx*x(y*x({z*xy)) = y = 0.

(4)axy=a=*(x (l*J))—l*(l/\y)

(B) (z+(y*z))*x(((zxy)xz)o(zAz))
=((zx(y*2))*((a*xy)*z))*(xAz)
=({a*(y*2))*x((wxz)*x(y*z)))*(xAz)
=((a*(x*xz))*x(y*xz))*(xAz) [ by X pos:tive implicative |
={(zAx)x(y*xz))*x{(zAz)=0.

Hence r * (y * z) < ((z *y) *z)o(z A z). On the other hand,
((z*y)xz)o(axAz))x(ax(yx*z))

=(((z*xy)*z)*(x*x(y*z)))o((xAz)*(z*(y*2))) [ by (1) ]
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=({((zx2)*(y*z))*(z*(y*z)))o((z%(z*xx))*(x*(y*2)))

=(((:c*z)*m)*(y*z))o((z*(z*a:))*(x*(y*z)))

=(0x(yx2))o((z*(z*(y*2))
*((z*(z*(y*2)))*(z*(z*(y*2)))))

=00 ((z*(z*(y*2))A(z*(z+(y*2))))

=(y*z)AzA(zx(x*(y*2)))

<(y*xz)Az=0. [ by (3)]

Hence ((z*y)* z)o (2 A 2) < 2+ (y * z). It follows that (5) holds.

(6) By (5),z=x*(y*y)=((z*y)*xy)o(aAy)=(z*y)o(zAy).

(M (zAy)yrz=(yAa)xz=(z*(T*y))*:

=(z*z)*((z*y)*2z) [ by X positive implicative |
:(f*(ﬂff\z)) ((m*y)* z)  [by(4)]
=z*((zAz)o{{zxy)*z2))

=z*(z (y*é)) [ by (5) ]
=(y*xz)hz=aA(y*xz) O

DEFINITION 1.3 ([7]). Let X be a S-BCK-algebra. A nonempty
subset A of X is called an additive ideal of X if (i)z € 4 and y < z
imply y € A and (ii) z, y € A imply z 0y € A.

PROPOSITION 1.4. ([10], Theorem 9.3) Let X be a S-BCL -algebra.
Then A is an ideal of X if and only if A is an additive ideal of X.

PROPOSITION 1.5. ([4]) Let X be a S-P-I-BCK -algebra and A;, 4,
ideals of X. Then the generated ideal (A; U Ay) = {a100ay | a; € 4,.7 =
1,2}.

REMARK. We call the above ideal A = (A1 U A2) as the sum of A,
and Az, and denote 4 = A; 0 Ay. If A; N Ay = {0}, we call 4 as the
direct sum of A; and A4,, and denote A = 4; B A, in which every A,
is called a summand of A. The sum or direct suin can be generalized to
the case of any many ideals (see [2]).

PropPoSITION 1.6. ([2]) Let X be a S-P-1-BCK -algebra. Then
(8) Every ideal of X is a semigroup with respect to the operation o;
(9) Ao(BoC)=(AoB)oC where A, B, (' are ideals of X .

It is obvious.
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PROPOSITION 1.7. Let X be a S-P-I-BC K -algebra and X = A® B.

Then for any r € X, there i1s an unique representation:

r—=aob a€ A, be B.

LEMMA 1.8. Let X be a S-BCK -algebra and A, B two ideals of X.
If B=By$ By then ANB=(ANB,)& (AN DB,).

PROOF. Letz € (ANB)BH(ANB,)and r = 21020, 2; € ANB;,1 =
1, 2. Since the ideal ANB is an additive ideal, by z; € ANB; C ANB, z =
rioxz € ANDB. On the other hand, put 2 € ANB.Bv x € B = B, @ By,
thereis x =xy10x2, 2, € B;. Byz € A4, 2; € A. Then z; € AN B; and
T = r1022 € (ANBy)o(ANBy). Also (ANB;)N(ANB,) C BiNB; = {0}.
Hence ANB=(ANB;)»(4ANBHB,). O

2. On centralizer C(S) of End(X)

Let X be a S-P-I-BC K -algebra and End(.X) the set of all endomor-
phisms of X. Then End(X) with respect to the composition “-” of maps
forms a semigroup with the identity map 1x. Put

S={fo: X = X|fale)=2+a,a€ X}
Note that for all z,y € X,
falary)={(a*ry)ra=(rxa)x(yxa)= foia)* fuly).
Hence f, is an endomorphism of X. Since

fn fb :fa(fb(il‘)):.f(1<3'*b):($*b)*a

=rx(boa)=ux+(aobd)= f,o(1)

forall € X, we obtain f, fo = faos € S. Also fo fo = faob = froa = fofa
and fofe = fooa = fo where 0 is the zero element of X. Thus S is a
commutative sub-semigroup of End(XX) with the ideutity map 1x = fo.
We denote the centralizer of S with respect to End(X') by C(5), that
15,
C(S) ={f €End(X) | ffa = fof forall f, € S}.
It 1s obvious that C(S) is also a sub-semigroup of End( X) and § € C(S5).



C(S) extensions of S-I-BCK-algebras 503

PROPOSITION 2.1. Let X be a S-P-I-BCK -algebra and f € End(X ).
Then f € C(S) if and only if f(z)* a = f(x * ) for any a € X.

Proor. If f € C(S5), then

fle)xa= fa(f(x) = (faf)(x) = (ffa)(z) = f(fal)) = f(x *a).
Conversely if f(z)*a = f(z +a) for any a € X, then
(faf)z) = f(z)*a= flxxa)=(ffa)lz)
Hence f,f = ff, and so f € C(S). O

LEMMA 2.2. Let X be a S-I-BCK -algebra and f € End(X ). Then
f € C(S) if and only if f(a) < a for any a € X.

Proor. If f € C(S), then f(a)*a = flaxa) =0 l)» Proposition 2.1
and hence f(a) < a. Comewely if fla) < a, then f(a)=a < fla)* f(a)
for any € X. On the other hand,

(f(z)* fla)) * (f( )% a)
=(((f(z)* fla)) * f(x)) ¥ a) o ((f(x)* fla)) Aa)  [by (5)]
~(f(2)* fla)) Aa = f(-r ca)ha
(x*a)Aha=0. [ by (3) ]

Hence f(z)+a = f(z)*f(a) = f(z*a). By Proposition 21, feC(S5). O

PROPOSITION 2.3, Let X be a S-I-BCK -algebra and f € End(X).
Then the following conditions are equivalent:

(a) f e C(S);

(b) Every initial section A(a) = {x € X |z < a} is invariant under
f (e f(AL0) € A@);
(¢) f(Im(f.)) = fo(Im(f)) for alla € X.

PROOF. (a) <= (b) This is a direct consequence of Lemma 2.2.
(a) <= (c) This is an immediate conclusion of Proposition 2.1. 0O
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PROPOSITION 2.4. Let X be a S-P-I-BCK -algebra and f € C(S).
Then Ker(f)= {z* f(z)|x € X}.

Proor. If @ € Ker(f), then 2 = 2+0 = 2 % f(z). On the other hand,

for any z € X, f(x x f(2)) = f(fro)(2)) = (ffre)x) = frn(f(2)) =
flz) * f(x) = 0, which means = * f(z) € Ker(f). This completes the
proof. [

PROPOSITION 2.5. Let X be a S-I-BC K -algebra and f € C(S).
Then f = f2.
PROOF. f(a) = f({x * f(x)) o (x A f(z))) [ by (6)]
= f((z* f(x)) o f(a)) [ by Lemma 2.2 |
= flax flx))o fA(z)  [by (2)]
= f%(2) [ by Proposition 2.4 |
and so f2=f O
COROLLARY 2.6. Let X be a S-I-BCK -algebra and f € C(S). Then
Im(f)={ce X | fla)=2}.
Proor. If € Im(f), then there exists y € X s: 1Ch that f(y) = .
By Proposition 2.5, v = f(y) = *(y) = f(f(y)) = f(x). Thus Im(f) C

{r € X | flz) = a}. It is clear that the inverse conta.nnng relation
holds. O

THEOREM 2.7.  Let X bea S-I-BCK -algebra and f € C(S). Then
(a) Im(f)is an ideal of X;
(b) X = Ker(f) & Im(f).

Proor. (a) Clearly 0 € Im(f). If x, y x 2 € Im(f), then

y=(y*xx)o(yAz) [by(6)]

= flyxa)o(y A f(x)) [ by Corollary 2.6 |

= fly*xx)o(fla)*(fla)*y))

= fly*xa)o(fla)* flaxy)) [ by Propuosition 2.1 ]

= fly*xa)o flax(vxy))
=flly*xa)o(yra))=fly).  [by(6)]
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So y € Im(f).It follows that Im(f) is an ideal of X.

(b) By Lemma 2.2, for any ¢ € X,z = (z))o(z A f(z)) =
(z * f(z))o f(z) in which z * f(z) € I\er(f) md f(z) € Im(f). Hence
X = Ker(f) o Im(f). Next suppose that z € Ker(f) N Im(f). Then
z = f(z) by ¢ € Im(f) and f(z) =0 by = € Ker(f) and so z = f(r) =
0. Hence (b) holds. 0O

PROPOSITION 2.8. Let X bea S-I-BCK -algebra and f € End(X ).
Then the following are equivalent:

(a) f € C(S);

(b) f* = f and Im(f) is an ideal of X.

PROOF. (a) == (b) This is got by Proposition 2.5 and Theorem 2.7.

(b) == (a) Since f? = f, with the same as the proof of Corollary 2.6,
we have Im(f) = { € X | f(z) = x}. Also note that (f(a)*2)* f(z) =
0, by Im(f) an ideal of X, we get f(z)*x € Im(f)for all + € X. Then

f(a) e = F(f(a)+a) = fi(x)* f(z) = f(z) % f(2) = 0
that is, f(z) < z. Hence Lemma 2.2 implies f = C(S). O
REMARK. In (b) of Proposition 2.8, the condition that Im(f)is an

ideal of X is very strong. Even it becomes that f2 = f and Ker(f)is a
summand of X, f € C(S) might not holds, in fact, we have the following.

EXAMPLE 2.9. It is easy to verify that the set X = {0,a,b,1} with
the operation * defined by

* 0 a b 1
0 0 0 0 O
a a 0 a O
b b 6 0 0
1 1 6 a 0

forms a S-I-BC K-algebra. Put
f: X->X;0-0,a—0,b—1,1+1.

Then evidently f? = f. By immediate verification, we obtain that f €
End(X)and Ker(f) = {0,a} is a summand of X but f ¢ C(S) since
fb)=1%b.
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THEOREM 2.10. Let X bea S-I-BC K-algebra. Then C(S)is a com-
mutative sub-semigroup of End(X ).

PROOF. We have already known that C(S) is a sub-semigroup of
End(X'). Suppose that f;, fo € C(S). For any 2 € X, by Theorem 2.7,
there exist a; € Ker(f;) and b; € Im( fi)such that 2 = a; 0b;, 7 = 1,2,
Then

fi(f2(x)) = fi(f2(az 0 b2))
= filfolaz) o f2(b2)) = fi(b2)

fil Fil(ay Aba)o(by Aba))

f]((lx Al bz) f ([1 A bo) = by A bs.

Simila,rly (‘fl_fg)(;lf) = b’_) A I)l. Sill(f(’ bl A [)2 = bg A l)], f]fQ = f2 f], as
required. [

PrRoOPOSITION 2.11. Let X be a S-I-BCK -algebra. Then X is bound
-ed if and only if C(S) = S.

Proor. We denote 1 as the greatest element of X. Suppose that f €
C(S). By X = Ker(f) ¢ Im(f), there exist a € Ker(f)and b € Im(f)
such that 1 = «ob. Then for any 2 € X.

zrxa= (Al xa=(rA(acd))*xa=((x ANa)o (2 Ab)) *a
=((rAayxa)o((zAb)yxa)=(aAb)*xa
=(cAD)x({eAD)Aa)= (e AD)*x0=2nb.

Hence
fle)=flaAl)= f((;z‘ Aa)o(x Ab))

= flaAa)o fla Ab)y=oAb=1uxa:=f(2),
namely, C(S5) C 5. in addition. § C C(S) hence C(5) = S.

Conversely it is easy to see that themap 8 : X — X; 2 — 0 belongs to
C(S). Since C(S) = S, there exists an element 1 in X such that § = f;.

Thus 1 is just the greatest element of X since v x 1 = fi(z) = 8(x) = 0
for all € X. Hence X is bounded. [

\

Note that there exist non-hbounded S-I-BC K-algebras, we have the
following.
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COROLLARY 2.12. Let X be a non-bounded 5-1-BC K -algebra. Then
Sc C(S).

LEMMA 2.13. Let X be a S-I-BCK -algebra and f, g € C(S). Then
f =g if and only if Ker(f) = Ker(g).

ProoF. It suffices to prove the part “only if 7. Let

A={ze X |zAy=0forall ye& Ker(f)}.
Then Im(f) C A since X = Ker(f) & Im(f) For any = € A, by
z * f(z) € Ker(f),
zxflz)y=cx(zx(zx f(z))=(z*x f(z))Ax =0,

in addition, f(z)*z = 0 by Lemma 2.2. Hence z = f(x) € Im(f).
This means Im(f) = A. With the same as the proof just now, by our
hypothesis, we have also A = Im(g). Hence Iin(f) = Im(g). Now for
any £ = aob € X with a € Ker(f) and b € Iin(f), f(z) = flaobd) =
fla)o f(b) = b = ¢g(b) = g(a)o g(b) = glaob) = g(z). This follows
f=g 0O

PROPOSITION 2.14. Let A be a summand of a S-I-BC I -algebra X.
Then there exists f in C(S)such that Ker(f) = A.

PROOF. By A a summand of X, there is an ideal B of X such that
X = Ao B. Put

f: X—=X,2=a0b— b, a€ A b€ B.

Since the representation * = aob, a € A, b € B is unique, f is a map.
For any z, 2' € X, there are x = aoband z' == '’ 0 ' where a, d’ € A

and b, b’ € B. Then
flz*xa'") = f((aob)*xa') = f((a*xz')o(bx2a")) [ by (1) ]

= f(lax(anz))o(bx(bAz'))) [ by (4) ]
= fl(ax(aA (@ ob))o(bx(bA(a o))
= f(lax((ana)o(anb)))o(bx((bAd)o(bAY))))
= f((a*(aAha))o(bx(bAb)))
= f((axd)o(bet)) [y (4)
=b*xb = flaob)x f(d' ob') = flr)* f(a).
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Hence f € End(X). Note that f(z) = f(aob) = b < aob = x, by Lemma
2.2, we have f € C(S). Moreover by Proposition 2.4,

Ker(f) = {(aob)* f(aob)|a€ A, be B}
= {(aob)xb|a€ A, be B}
={(axb)o(bxb)|a€ A, b€ B}

={a]lae A} =A. 0O

PROPOSITION 2.15. Let X be a S-I-BC K -algebra and
M = { all summands of X}.
Then C(S) and (9M, o) are isomorphic with respect to semigroups, where
dAoB={aob|a€ A, b€ B}
for all A, B € M.
PrROOF. The fact that the map
¢: C(S) — M fr— Ker(f)

is an one-one correspondence is got by Lemma 2.13 and Proposition
2.14. Also for all f, ¢ € C(S). since ¢g(«) < a and f is isotone (see [6],
Proposition 9),

(fg)aobd) = f(gla)og(b)) = flg(a)) < fla)=0

for all @ € Ker(f)and b € Ker(g), which means Ker(f) o Ker(g) C
Ker(fg). Next for any o € Ker(fg), by X = Ker(g) & Im(g). there is a
representation

x=aob, a€ Ker(g), b€ lm(g).

Then f(b) = f(g(b)) = (fg)(b) < (fg)aob) = (fg)(a) =0, which means
Ker(f) o Ker(g) 2 Ker(fg).

Hence ¢(fg) = Ker(fg) = Ker(f)o Ker(g) = ¢(f)od(g) and so C(S5)is
isomorphic to M. O
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COROLLARY 2.16. Let X be a S-I-BCK -algebra. If A and B are
summands of X then so is Ao B.

COROLLARY 2.17. Let X be a bounded S-1-BCK -algebra. Then S
and MM are isomorphic with respect to semigroups.

3. The C(S) extension of S-I-BCK-algebras

PROPOSITION 3.1. Let X be a S-I-BCK -algebra and f, g € C(S).
Then

X = (Ker(f ) N Im(g)) & (Ker(f )N Ker(g )) @ Im(f).
ProoF. We need only to prove
Ker(f) = (Kex(f) N Im(g)) & (Kex(f) 0 Kex( 9)
but this is an immediate consequence of Lemma 1.8 and Theorem 2.7.
Let X be a S-I-BCK -algebra and £, g € C(S). We denote
Ker(f * ) = Ker(f) 1 Im(g),
Im(f *g) = (Ker(f) N Kex(g) ) & Tm(f).

According to Proposition 3.1, we have X = Ker(f * ¢g) @ Im(f * ¢) and
so by Proposition 2.14 and Proposition 2.15, there exists unique h €
C(S)such that Ker(h) = Ker(f *g). We claim: Im(h) = Im(f * ¢), in
fact, by Theorem 2.7 and Lemma 1.8,

Im(f*g) = Im(f*xg) N X
= Im(f*xg) N (Ker(h) b Im(h))
= Im(f*g¢) N (Ker(f*g) @ Im(h))

_ ((Im(f + ) N Ker(f *g)) @ (Im(f *g) N Im(h))
= Im(f *xg) N Iin(h) C Im(h).
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Similarly we have Im(h) C Im(f * g), as claimed. We now define h =
f * g, then * is just a binary operation on C(S).

In particular, if the operation * is restricted on S, it is also closed, in
fact, we have f, * fo = fasb for all fo, f € S. To see this we need only
verify

(*) Kex(f, * fo) = Ker(faxs)

by Lemma 2.13. Now if @ € Ker(f, * fo) = Ker(f,) N Im(f;), then
fa(z) =0 and fp(x) = 2 and so

faxp(@) =2 *(axb)=((z*a)*b)o(xAd) [ by (5) ]

= (folx)*xb)o(xAb)=aAb= filz)Ab

=(x*xb)AD=0. [ by (3) ]
Hence & € Ker( faxp). On the other hand if 2 € Ker( faus), then zx(axb) =
0. Thus z € Ker(f,) is got by fu(z) = 2 *a < 2 x(a*b) = 0. Also
x € Im(f;)1s got by

r=a+x0=zx(z*(axb))=(axb)x((a+xb)*xx)
=(a*xb)*((axx)*b)=(ax(axa))*b

=(xANa)*xb= filz Aa)

Hence z € Ker( f, * f»). We have proved that (*) holds.

PROPOSITION 3.2. Let X be a S-I-BCK -algebra and f1, f2 € C(S).
Suppose that a = a; o b; where a; € Ker(fi)and b; € Im(f;),1 =
1,2. Then

(a) filaa) = farr 1 = 1.2

(b) (fr* f2) acy = Filaw * f21 ac0)-

Where f| a(a) denotes the restriction of f on the initial section A(a).

PROOF. (a) Suppose that + = r; 0y, € A(a) where 2; € Ker(f;)and
y; € Im(f;), 1 = 1,2. Then by 2, * a; € Ker(f;),

Tika; = (r;xa;)*0 = (a;xa;) % ((x; *a;) A by)
= (2, % ai) * (2 % a;) * ((@; % a;) * by))

(zi*xa;)*xbj=x;*(q;ob))=a;,a=0
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and so

fi|A(a)(I) = filz) = fi(zioyi) = yi = yi * (yi A a;)

=yi*a; =(T;0y;)*a; = *xa; = fq;(z),

namely, fi| a(a) = fa;, ¢ = 1,2.

(b) By Lemma 1.8 and Proposition 3.1, A(a) = (A(a) N Ker(f1) N
Im( f2) ) ( (a)NKer(f1)N I\er(fg)) (A(a) NIm(f1)). Then for any
z € A(a)

z=((xAa)*xa)o(xAajAagio(zAb)

where (z Aay)*a; € Ker(fi * f2)and (zAay Aay)o(zAby) € Im( fy * f2).
Moreover
zx(ay *xaz) =z *(a; * (a; A ay)) [ by (4) ]

=({(zxay)*(ag ANag))o(x Aaj Aay) [ by (5)]
=(z*(a10{a1 Naz)))o(xz Aay Aas)
=(zrx*xa1)o(zANai Aay)
={zAa)xa)o(zAay Aay)
=(((zAa1)o(xAb1))*xaj)olx Aa; Aaz)
=(((zAar)*ar)o((z Aby)xar))o(xAa A ay)
=(xAbi)o(xzAay Aag).

Then
(Ai*f)lae(z)=(fixfo)z)=(zAar Aaz)o(x Aby)

=z ¥ (a1 *a2) = faxar () = (fa, * far )2)
= (filaw * fa] a)(@).

Hence (b) holds. O

THEOREM 3.3. Let X be a S-I-BCK -algebra. Then ( C(S), *, f)
forms a bounded S-I-BCK -algebra where the cperation * is mentioned
above and fy is the identity map on X .
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PROOF. Suppose that f,g, fi, f2, f3 € C(S)and a = a; 0b; € X with
a; € I\er( f, and b; € Im(f;),2=1,2,3.
(1) *x fa)* (f1* f3)) * (fa* f2) = fo is got by

(((fr* f2)* (fr = f3)) * (f3 * f2))(@)

=(((f1* f2)* (f1 x f3)) * (f3 * f2)) | A (@)
=(((fila * f2la@) * (il a * f3law) * (f3]ace) * f2l a@) @)
=(((fa, * faz) * (fa, * faa)) * ( fas * faz))(a.)

“f( al*ﬂz)*(awﬂw))*(a'x*az) fU

(2) Since Im(fo) = X, Ker(f * fo) = Ker(f) N Im(fo) = Ker(f), it
follows f * fo = f by Proposition 2.13.

(3) Because Ker(fo) = {0}, Ker(fy* f) = Ker(fo) 0 Im(f) =

Ker( fo)and so fo *x f = fo.

(4) If f+g=g=f = fu, then Ker(f) N Im(g) = Ker(g f) =
{0}. Hence Rer(f) = Ker(f)N.YX = (I\(’I( ) N Ker(g ) ( ) N
Im(g ) Ker(f) N Ker(g). Similarly Ker(g) = Ker(g) N Ker(f). Hence

)
Ker(f) = Ker(g)and f =g¢.
)

(5) The zero map 8 is the greatest element of C(.S). Since

Ker(f) N Im(#) = Kex(f) N {0} = Ker(fy),
in other hand, f*6 = f;.
(6) fi*(fa*f1)= f11sgot by
(fi*(fox fi))a) = (fix(fax fi))] a(a)
= (f1]aca) * (f2laca) * il aw))a@)
= (fal * (faz * fa1))( ) - fal*(ag*al)(a)
= fa,(a) = fil a(a) = fila)
(7) First we claim that (fi f2)| a(a) = feoas, in fact, for any z € A(a),
by % a3 <z, v *az € A(a). Then
(Fif2) | am(@) = (fif)e) = fil f202)) = filf2] aqw(2))
- fl(.fa-_;(;l')) = .fl(l' * (12) = fl 'A(a)(:l" * (lg)

=(r*ay)*xa; = * (a1 0a2) = fa,oa,(T),
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as claimed. Now (fif2) * fi < f2 is got by

((frf2) = fr) * f2)(a) = (((Frf2) * f1) * fo M A@(a)
(((Af2) | a@) * il ) * f2] a(a))(@)

((fayoay * fay) * laz) (a)

fi(a10az)xar)sazr(@) = fo(a).

On the other hand if (f3 * f1) * fo = fo, then

(f3*(fif2))(a) = (fs * (f1f2))] a@(a)
= (fslaw * (f1f2)] a@a))(a)
= (faa * (fa: fa2 ))(@) = fazu(aroan(a)
= Flagwaryvar (@) = ((f3 = f1) * f2)] aqay(a)
= ((fs * f1) * f2)(a) = jo(a)
and hence f; < fi f5.

So far we have already proved that (C(S), *, fo) is a bounded S-I-
BCHK-algebra. O

REMARK. We see from Theorem 3.3 that the operation o on C(S)

1s just the composition “- 7 of maps.

PROPOSITION 3.4. Let X be a S-I-BC'K -algebra and f,¢g € C(S).
Then f < g if and only if Ker(f) C Ker(g).

PRrRoOOF. If f < g, namely, f * ¢ = fo, then
Ker(f) N Im(g) = Ker(f *g) = Ker(fo) = {0}.

So Ker(f) = (Ker( f)ﬂKer(g))@(Ker( f)ﬂIm(g)) = Ker( f)NKer(a) C

Ker(g).
Conversely by Ker(f) C Ker(g),

Ker(f *g) = Ker(f) N Im(g) C Ker(g) N In(g) = {0} = Ker( fo)

then fxg=fyso f<g. O
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THEOREM 3.5. Let X Dbe a S$-I-BCIK -algebra. Then

(a) S is an ideal of C(S);

(b) X is BC K -isomorphic to S;

(¢) If X is non-bounded then S is a proper ideal of C(S)but not a
summand of C(S).

PROOF. (a) Put f, € S and f € C(S). If f < f,, then Ker(f) C
Ker(f,) = A(a) by Proposition 3.4. Note that A(a) has the greatest
element «, by

A(a) = (A(a) N Kex(£)) & (A(a) 0 Imi ),

Ker(f) has also one, say a;. Then Ker(f) = A(a1) = Ker(f,, ). Hence
f = fea, € S. Next clearly fofs = faopr € S for all f,, fs € S, which
means that S is an additive ideal of X thus an ideal of X by Proposition
1.3.

(b) It is easy to verify that the map vv : X -+ S;a — f, 1s a
BC K -isomorphism from X to S thus X is BC K -isomorphic to S.

(¢) If X is non-bounded then so is S by (b) but ((S)is bounded by
Theorem 3.3. This means that S must not be a summand of C(S). O

COROLLARY 3.6. Let X beaS-I-BC I -algebra. It X is non-bounded
then X can be imbedded in C(S)such that X is a proper ideal of

C(S)but not a summand of C(S).

THEOREM 3.7. Let X be a non-bounded S-I-BC K -algebra. Suppose
that N(S) = {Nf, | Nf, =80xf,, fo€ S} andT = SU N(S). Then

(a) T is a subalgebra of C(S);

(b) T itself is also a S-I-BC' I\ -algebra;

(¢) S is a maximal ideal of T, but not a summand of T.
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PROOF. (a) Assume that f,, fy € S. Ther

fa*fo = faus € SCT,
fax Nfy = fax (6 fo) =((fa*x0)xfs)-(faAfo)  [by (5)]
=faNfo=Fox(fo* fa) = foutona) € ST T,
Nfe *fo=(0%fo)* fo =0 (fufs)
=0 faob = Nfaob € N(S) CT,
Nfa x Nfy = (0 fo) (6% fo) = (6 % (0 % f»)) * fa
=@Afo)xfo=fo¥fo=foea =SCT

and hence T is a subalgebra of C(S5).
(b) If fa, fo € S, then

Jofv = fueb € SCT,
fa-Nfy = Nfo - fa=(8%fi)- fo=(6xfo) (8%(8xf,))
=0+ (fo AN(B*fu))=0x((fo AO)* fu)) [ by (7) ]
=0%(fo* fo) = 0% fraa = Nfyua € N(5) C T,
Nfo Nfs =(8xfa) (8% fo) =0+ (fa A fa)
=8 (fo*(fo* fu)) =0% foutbra) = Nfouoma) € N(S) CT.

Hence T is a S-I-BC K -algebra.

(c) Since S is an ideal of C(S), it is also an ideal of T. Moreover
T has the greatest element § by § = 6« fy = Nfy. but S has not
one and so § ¢ S, which means that S is a proper ideal of T. Next
for any Nf, € N(S), fo - Nf, € (S, Nf,) which is the ideal generated
by the set SU{Nf, }. Since S is an ideal of 7', 8 € (S, Nf, ) is got by
6+(fa-Nfo) = (0*fo)xNf, = Nf, *Nf, = fo and hence (S, Nf, y=1T.
This proves that S is a maximal ideal of T. Note that T has the greatest
element § but S has not, we see that S is not ¢ summand of 7. [

COROLLARY 3.8. Let X be a non-bounded S5-I-BC K -algebra. Then
X can be imbedded in a bounded S-I-BC K -algebra X* such that X is
a maximal ideal of X* but not a summand of X*.
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REMARK. In [3] we proved Corollary 3.8 from the way of constructing
order dual.

A S-I-BC K -algebra X is called semisimple if every ideal of X is a
summand of X (see [2]). We proved that if X is a nonzero semisimple
S-I-BCK-algebra, it contains at least a simple ideal ([2], Proposition

3.3).

THEOREM 3.9. Let X be a nonzero semisimple S-I-BC K -algebra,

{A;}ier all simple ideal family of X and A = [] A; = { {zi}ier | z: €
i€l

Ai,1 € I}. Define a binary operation * on A as x*y = {xi*yi}ics where
r={z;}ic; and y = {y.:}ic1- Then

(a) (A4;%,0) is a S-I-BC K -algebra where 0 = {0;}er;

(b) C(S)is BC I\ -isomorphic to A.

PrROOF. We know that in a S-I-B(C K -algebra, any simple ideal 4;

contains exactly two elements 0 and e; and we call its nonzero element
e; as atom. Define

e C(S) — Ay f—{a}iersvi=ei* fle), 1 €1

(1) ¢ is a map since ¢; * f(e;) < e, € A,.

(2) If (f) = (g), then e; * f(e;) = e; * g(e;) so f(ei) = glei), 1 € L.
From this we easy to see f = g¢.

(3) Forany x = {2;}ies € 4, let B be the ideal of X generated by the
set {z;}ier then B is a summand of X by X semisimple. Clearly e; € B
if and only if 2; = ¢; for any atom ¢,;. Now we choose f € C(5)satisfying
Ker(f) = B then if ¢; € B, a; = ¢; = ¢; * f(ei), otherwise, 2; = 0 =
e; *x e; = e; * f(e;). Hence ¥(f) = {xi}ier = 2.

(4) Suppose that f, ¢ € C(S) and ¢ an atom of X. If

e € Ker(fxg) = Rex(f) N Imm(g)

then f(e) = 0 and g(e) = ¢ and so e x (f * g)(e) == € = (e * f(e)) *
(exg(e)). f e € Iin(fxg) = (Ker(f) N I{el'(g)) @ Im(f), then when
e € Ker( f) N Ker(g),

ex(frglle)=cxe=0=(c*0)*(c*0)=(ex fle))*(e*fle))
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and when e € Im(f),

ex(frg)e)=exe=0=0x(exgle)) = (e* fe)) * (e *g(c)).

Hence

Y(fxg) = {ei*x (f*g)ei)lier = {(ei * f(ei)) * (i % g(ei)) }ier
= {ei * f(ei) }ier * {ei * glei) Yier = ¥(f) * ¥(g)

In sum % is a BC K-isomorphism from C(S)to A and hence C(S)is

isomorphic to 4 = [ A;. We then obtain at once that (A,%,0) 1s a

€]

S-I-BC K -algebra. [

COROLLARY 3.10. Let X be a semisimple S-I-BC' L\ -algebra and A

the set of all atoms. Then | C(S) |= 2/4l where | A | denotes the cardinal
number of A.
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