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REPRESENTATIONS FOR
LIE SUPERALGEBRA spo(2m, 1)

CHANYOUNG LEE SHADER

ABSTRACT. Let G denote the orthosymplectic Lie superalgebra spo

(2m,1). For each irreducible G-module, we describe its character
in terms of tableaux. Using this result, we decompose @*V, the

k-fold tensor product of the natural representation V of G, into its

irreducible G-submodules, and prove that the Brauer algebra By(1 -

2m) is isomorphic to the centralizer algebra of spo(2m,1) on ®*V

form > k.

1. Introduction

One of the fundamental problems in representation theory is to de-
compose ®*U, the k-fold tensor product of an irreducible module U, into
its irreducible submodules. For the classical groups GL(n, C), Sp(n,C),
and O(n, C) (or the corresponding Lie algebras), the decomposition of
T = ®*V where V is the natural representation is obtained by the work
of Schur, Weyl, and Brauer. Their work also has shown that the central-
izer algebra, C = Endg(T) = {f € End(T) | f(z-t) =z -f(t) forallz €
G, t € T}, is intimately related with the decomposition.

Berele and Regev [2] extended Schur’s results for the general linear
Lie superalgebra gl(m,n). In particular, [2] introduced a graded-action
of the symmetric group Sj, on ®*V where V is the natural representa-
tion of gl(m,n) which commutes with the graded-derivation action of
gl(m,n), proved that these graded-actions provide the centralizer alge- -
bras to each other, and obtained an explicit decomposition of ®*V into
its irreducibles. '
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For the orthosymplectic Lie superalgebra spo(2m, N), [1] introduced
a graded-action of the Brauer algebra By(N — 2m) on ®*V where V
is the natural representation of spo(2m, N) which commutes with the
action of spo(2m, N). Using these commuting actions, [1] decomposed
®*V into certain submodules and described their characters. However,
in general, these submodules and their characters are not irreducible,
and the centralizer algebras are not determined.

In this paper, we consider spo(2m,1) and its tensor representation
®*V where V is the natural representation of spo(2m,1). We prove that
the decomposition in {1] is indeed a decomposition into irreducibles, the
characters are equivalent to the characters given by Kac [4] (hence they
are irreducible), and determine the centralizer algebra as the isomorphic
image of the graded-action of the Brauer algebra Bi(1 — 2m) for m >
k. These results provide a super-analogue of the Brauer’s results for
spo(2m, 1).

Rittenberg and Scheunert [7] showed that the non-spinor irreducible
representations of the orthogonal Lie algebra o(2m + 1) and the irre-
ducible representations of spo(2m, 1) of the same highest weights have
the equivalent characters by computing the weight multiplicities. Thus
the representations of spo(2m, 1) can be studied from those of o(2m +1)
in terms of their characters.

In this paper we adopt a more constructive approach. This provides
more concrete information about the representations such as an explicit
construction of each finite dimensional irreducible representation as a
submodule of a tensor representation, an explicit decomposition of the
tensor representation into its irreducibles, and an explicit description of
the centralizer algebra in terms of the graded-action of the Brauer alge-
bra Bi(1 — 2m). This approach is a specialization of general techniques
developed for the representations of spo(2m, N) rather than a transla-
tion of the results known for the representations of o(2m + 1) in terms
of the characters. This approach allows us to understand the represen-
tations of spo(2m, 1) in a general context of spo(2m, N) and shows how
some of the results and proofs presented here can be generalized for the
representations of spo(2m, N).

The rest of the paper is organized as follows: In section 2, we briefly
discuss basic notions and notations for G = spo(2m, 1). In section 3, we
describe the actions of G and Bi(1 — 2m) on ®*V, and prove that the
action of Bi(1 — 2m) is faithful for m > k. In section 4, we construct
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irreducible submodules of ®*V, and describe their characters in terms
of tableaux. In section 5, we obtain the decomposition of ®*V into irre-
ducible G-modules and prove that the centralizer algebra is isomorphic
to By(1 — 2m) for m > k.

2. Preliminaries

The general linear Lie superalgebra gl(r, s) = gl(r, s)o ® gl(r, s); over
C consists of all (r+s) X (r+s) complex matrices under the commutator
product [z,y] = zy — (—1)®yz for z € gl(r, s),, ¥ € gl(r,s), and a,b €
Z,, where

al(r, s)o = {( oy ) | Vi € M, (C),Y; Ms,s(C)} :
0

srnon={( 5, 7 ) ImemOvem0},

and M ¢(C) denotes the k x £ complex matrices.

Let V = C**! and {v; | i = 1,... ,2m+1} be the standard basis for
V. Let V = Vu@®V; where Vj = span{vy, ... ,von} and V; = span{vem.1}-
Let b( , ) denote the bilinear form on V defined by b(v, w) = v'Jw for
v,w € V where “¢” is the usual transpose, and

. J’O ,__' 0 Im
J“(Ol) and J*(—ImO)

where I, is the m x m identity matrix. The orthosymplectic Lie superal-
gebra spo(2m, 1) is defined to be spo(2m, 1) = spo(2m, 1)o@ spo(2m, 1),
where

spo(2m, 1), _
= {z € gl(2m, 1), | b(zv,w) + (—1)“bb(1_1, zw) =0 for v € Vj,w € V}.
We note that spo(2m, 1)¢ = sp(2m) & o(1) = sp(2m).

For i = 1,... ,m, we define v] to be the vector such that b(v;, Vi) =
0ij. Then vf = vy, v, = —v; fori =1,... ,m and V31 = Vam-
Thus B = By U By where By = {v,... ,0n,v},...,v5} and B; =
{vams1}. Set deg(b) =0 if b € By and deg(b) = 1if b € B;.
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Let H be the Cartan subalgebra of G = spo(2m, 1) consisting of di-
agonal matrices. Relative to the adjoint action of H, G admits a root
space decomposition G = H® Zae%. Ga- A root a is evenif G,NGy # 0,
and is odd if G, NG, # 0. We let A, Ay, and A; denote the set of roots,
even roots, and odd roots, respectively. For i = 1,...,2m + 1, let ¢;
denote the element in #* which takes a matrix in ‘H to its (Z,¢)-entry.
Then the roots of G are:

DNy = {E(et€), 22 |1<4,5<m, i<j},
Ay = {#e|1<i<m}).
The simple roots can be chosen as:
(1) o =€6—¢€4 for i=1,...,m—1, Qp, = €

All simple roots except a,, is even, and «,, is odd. For each 7, we choose
a root vector e; € G,, as:

€ = Ei,i+l - Em+i+1,m+i for i=1,...,m~- 1,

(2) €m = \/i(Em,Qm+l + E2m+1,2m)

A G-module M is said to have a weight space decomposition if M =
® ) en My where M, = {v € M | hv = p(h)v for all h € H}. A vector
v in M is a mazimal vector if G,v = 0 and hv = A(h)v for all h € H.
If M is irreducible, then M contains a unique (up to scalar) maximal
vector v which generates M, and the weight of v is called the highest
weight of M. An irreducible G-module is uniquely determined (up to
isomorphism) by its highest weight. Let V() denote the irreducible
G-module with the highest weight A.

Let {w; | ¢ = 1,...,m} denote the fundamental weights. By [4],
a1wy + aswy + -+ + AWy, 18 a highest weight for a finite dimensional
irreducible G-module if and only if ay, ..., an-1, and (1/2)a,, are non-
negative integers. Equivalently, A\je; + Ao€g + -+ + An€, is a high-
est weight of a finite dimensional irreducible G-module if and only if
{A\ > X2 >--- > X, >0} and )\; are nonnegative integers for all 7 (see
[6] Theorem 2.10).

3. Actions on T = @*V

Let V = C?*! and T = ®"*V, the k-fold tensor product of V. In
this section, we describe commuting actions of G and the Brauer algebra



Representations for Lie superalgebra spo(2m, 1) 597

Bi(1—2m) on T, and prove that the action of By(1 — 2m) is faithful for
m > k.

Let G act on V as the usual matrix multiplication. Then V = V({1}),
the irreducible G-module with the highest weight ¢;.  This V is the
natural representation of G. The G-action on V can be extended to
T = ®*V by the graded-derivation:

k
Tw = Z(—-l)“ degwly, @ ... @ Wimq @ TW; @ Wiy @ -+ - @ W,
i=1
where z € G,, w = w; ® -+ ® wy, is a simple tensor in T, deg;(w) =0
and deg;(w) = deg(w;) + - - - + deg(w;—1) for j > 1. This makes T into
a G-module.

We now describe the Brauer algebra Bi(1 —2m) and its action on
T. A k-diagram is a graph with two rows of k vertices each, one above
the other, and k edges such that each vertex is incident to precisely one
edge. Assume 7 € C. We define the product of two k-diagrams d; and d
to be the k-diagram obtained by placing d; above d; and identifying the
vertices in the bottom row of d; with the corresponding vertices in the
top row of dy. The resulting graph contains k paths and some number
of cycles. If d is the k-diagram with the edges that are paths in this
graph but with the cycles removed, then the product dydy is given by
dydy = n°d where c is the number of closed loops. The Brauer algebra
By(n) is the C-span of the k-diagrams. The C-linear extension of the
diagram multiplication makes Bi(n) into an associative algebra.

Let d be a k-diagram. Recall B = ByU B, where By = {v,,... ,unm, ],

, vk} and By = {Usm11}. Label the top vertices (left to right) with a

sequence a = (ay, 0y, ... ,0a;) of basis elements a; € B, and the bottom

vertices (left to right) w1th asequence ¢ = (¢, ¢y, . . . , ¢x) of basis element

¢; € B. Assign a weight to each edge and each crossmg of this labeled
k-diagram as follows:

(1) For a horizontal edge connecting a and a’ with a to the left of o/,
assign the weight b(a, a’) to it.

(2) For a horizontal edge connecting ¢ and ¢ with ¢ to the left of ¢/,
assign the weight —b(c, ).

(3) For each vertical edge connectmg a to ¢, assign the weight J,.
(Kronecker-delta),
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(4) For each crossing, assign the weight —(—1)%9()%s(&) where ¢; is
the label of vertex adjacent to the first edge, and ¢, is a vertex adjacent
to the second edge in the crossing, Of the four vertices adjacent to the
two edges that crosss, £, and {5 are chosen to be the last two vertices
(in order) when counting off the vertices in a counterclockwise fashion
beginning from the bottom left corner of the diagram.

The weight of the k-diagram d labeled with a and ¢, denoted by d(a, ¢),
is the product of the weights over all edges and crossings.

Let d be a k-diagram and define ¢y to be the endomorphism in
End(®*V) such that

g ®---®a)= Y dgda® B
c1,..- CLEB
where d(g, c) is the weight of the k-diagram d with top vertices labeled
by ai, ... ,a; and bottom vertices labeled by ¢y, ..., ck. Then

(3) ¢ : Br(1 — 2m) — Endg(®*V)

where ¢(d) = ¢y is a homomorphism of algebras ([1] Theorem 2.16).

We note that C[Sk], the group algebra of the symmetric group S, is
naturally imbedded in Bi(1 — 2m), and the action of Bx(1 —2m) on T
is an extension of the action of C[Si] on T in [2].

PROPOSITION 3.1. Assume that m > k. Then the map ¢ in (3) is
injective.

Proof. Let d be a k-diagram. Suppose that d has 2p horizontal edges
(p edges on the top row and p-edges on the bottom row of d) where
0 < p < [k/2]. Label the vertices of d as follows: For each of these 2p
horizontal edges, assign v; and v} for i = 1,... ,2pin any order. For each
of the remaining k — 2p vertical edges, assign wvy,; for the top vertex
and bottom vertex for j = 1,... ,k — 2p. Since m > k, we can label the
vertices this way without running out of the basis elements in B. Let
a=(ay,...,a)and ¢ = (cy,...,c) be labels for top and bottom row of
d (from left to right), respectively. By the way the weights are defined,
it is clear that d(a,c) # 0.

Now consider the two rows of k vertices labeled with a and ¢. From
the way a and c are chosen, for each of the 2k vertices, there is a unique
way to connect the given vertex with an edge so that the edge weight is
not 0, namely the edge present in d. Thus, it follows that d'(a,c) = 0
for all k-diagram d’ such that d’ # d.
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Now let d be an arbitrary element of Bx(1 — 2m). -Then d = ¢d; +
-+ + grd, where ¢; € C and d; are k-diagrams. Let g and ¢ be the
labels chosen so that di(g,c) # 0 and d;(g,¢) = 0 for all d; # d;. Then
d(g, &) = qidi(a, ¢) + quda(a, €) + - -+ + g-d-(a, ¢) = qudi(a, ¢) # ¢0. Then

d(d)(a1®---®a;) =d(g,c)a1 ®- - Qe+ Z d(g,e)e1®-- Qe #0
€1,... ,ex€B

where the sum is over all basis tensors ¢; ® - - - ® e, which are not equal

toc ® - - ® ¢y, since d(g, ¢) # 0. This shows that ¢(d) is not the 0-map.

Since d is an arbitrary element of Bx(1 — 2m), ker¢ = 0. Thus, ¢ is

injective. (]

4. Irreducible modules and characters

Using the commuting actions of G and Bi(1 — 2m) on T', a collection
of maximal vectors of T were constructed in [1]. In this section, we show
that each of these maximal vectors generates an irreducible submodule
of T, and describe the irreducible characters in terms of tableaux.

First, we need to describe the maximal vectors of T'. Let ¢,, denote
the transformation on ®V determined by the diagram in Bi(1 — 2m)
with a horizontal edge connecting the pth and gth vertices on both top
and bottom, and with every other top vertex connected to the one di-
rectly below it. with p # q. We refer to the transformation c, 4 as a con-
traction mapping. I p = {p),... ,p.} and ¢ = {q1,... ,4a} are disjoint
ordered subsets of {1,2,...,k}, we set (p,q) = {(p1,@1),---,(Par @)}
and denote by P(a) the set of all such (p,g). We set P = UP(a) where
the union is for all a = 0,... ,[k/2]. We also set cpq = Cp, g, * * * Cp, g, 20D
assume that cpg is the identity map. o

A sequence of nonnegative integers A = (A, ..., A) is a partition if
A1 = .-+ > Ap. The length £(\) of a partition A is the number £ of
nonzero parts. If |A] = A\ +---+ X = f, then ) is a partition of f,
denoted by At f. The Young frame or Ferrers diagram of a partition A,
F()), is an left-justified array of |\| boxes with A; boxes in the ith row.
The conjugate partition of X is the partition N whose frame is obtained
by reflecting that of A about the main diagonal. Throughout this paper
we identify a partition with its frame. Suppose that \ is a partition of
f and consider a tableau obtained by filling in the boxes of F(\) with
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elements in {1,2,:.., f}. A standard tableau of shape A is a filling of the
frame of A where each element in {1,2,..., f} is used exactly once and
the entries in each row is increasing from left to right and in each column
from top to bottom. For a standard tableau 7, let R, be the row group of
permutations in S; which permutes the entries within a given row of 7,
and let C, be the corresponding column group of permutations moving
only the elements in each column. Let y, = (3_.cc. s9n()V)(Xer, 0)-
Then vy, is an essential idempotent (i.e., there is some k € Z* such that
y2 = ky,). The y, is called a Young symmetrizer.

THEOREM 4.1. ([1) Theorem 3.9, Corollary 3.10, Theorem 3.11) Sup-
pose \ is a partition such that £(\) < m and |\| = f where k — f = 2a
and 0 < a < [k/2]. Assume (p,q) € P(a) and fix 7 € STy\(pU q)°. Then
0 = YrCpofrpq IS @ maximal vector in T of weight A1 + - -+ Ae€; where
Brpq = W1 ® - -+ ® wy is the simple tensor defined by

v, ifi€p
wi={ v} ifieg
v; ifi€ (pUq)° and i isin jth row of T.

Suppose that m > k. Then
{yrcz_’,gﬂf,g,g | (1_77 Q) €P,T€ ST((BU ﬂ)c)}

is a linearly independent set of maximal vectors.

The only family of the classical Lie superalgebras where the com-
plete reducibility for finite dimensional modules holds is spo(2m, 1) ([3]).
Since a highest weight module is indecomposable, the fact that each of
the maximal vectors in ®*V generates an irreducible module immedi-
ately follows from the complete reducibility. In the following, we prove
that the maximal vectors generate irreducible modules without using
the complete reducibility, which provides a general argument for other
families of Lie superalgebras.

THEOREM 4.2. Let 8, be a maximal vector of weight A in Theorem
4.1. ThenU(G)b, is an irreducible G-module where U(G) is the universal
enveloping algebra of G. Thus U(G)0) = V().

Proof. Let 0 = yrCpgBrpq and B = Brpq. Let ‘7()\) denote the Verma
module of G with the highest weight A. Then V()) V(A)/I()\) where
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I(A) is the maximal submodule of 17()\). Let v, be a maximal vector of
V(A). Then by [4] Theorem 1,

m—1
I(A) = <Z U@ fi+ + U(G)z"“) vy
i=1
where f; is a basis vector for G_,, where o; are simple Toots, z is a
basis vector for G_g. , a; = A\ — Aipq fori = 1,. -1, and b = A\,
Consider the canonical homomorphism ¢ : V()\) U (G)un — U(G)b).
We show that I(\) = ker¢. We may choose f; as the transpose of ¢;
where ¢;’s are as described in (2). It is easy to show that c¢;2(®%V)
generates a 1-dimensional trivial module. Then for each z € G, the
simple tensors in mcp o8 w1th z acting on the positions in (pU¢) sum up
to 0. Then, fori =1,... ,m—1, ficy B is the sum of the simple tensors
where one v; of Which appears in a position in (p U ¢)° is replaced
by v;.;. Thus f“‘“cpqﬁ is a sum of simple tensors where a; +1 =
Ai = Aip1 + 1 factors of B in (p U g)° which are equal to v; have been
replaced by v;,;. For each such simple tensor u in f"‘“cpq,@, we argue
that y,u = 0. Note that from the way £ is defined, 3 has precisely A;
factors in (p U ¢)° which are equal to v;. Thus for each o € R, there
is (a b) € C, such that (a b)ou = gu. Then > orec, sgn(Y)y(ow) =
Yea, s9n(r(a B))r(a b)(ou) = = . cc, sgn(v)y(ou). Thus 3 . sgn
(7)y(ou) = 0 for each o € R,. Then y,u = 0. Thus y,f#c,,0 = 0.
Then f{*'y,¢,,8 = 0 since f; and y, commute.

A basis vector for G5, can be chosen as z = Eypm. Then zcp, q,B
is the sum of the simple tensors where one v, in § which appears in a
position in (pU ¢)° is replaced by vs,. Since 3 has precisely )\, factors
in (pU ¢q)° which are equal to vm, z ’\"‘+1Cpqﬂ 0. Hence 21y, Cpgfl =
Yr z,\m+1 cg,_ﬂ 0.

Thus, I()\) € kerg. Then since ¢ # 0 and I(\) is maximal, I(A) =
ker(¢). Hence V(\) = V(A)/I(\) = U(G)b>. O

We now. describe irreducible characters in terms of tableaux. Let’s
order the basis B of V as
B={v <v} <vy <3 <+ < U < Uy, < Vg1 }-

A spo(2m, 1)-tableau T of shape A is a filling of boxes invthe Ferrers
diagram of A with entries from B such that
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(spo.1) the subtableau 7 of 7 obtained by taking all the boxes with en-
tries from {v),v},... ,vn, v}, } is a symplectic-tablean, i.e. it is a column-
strict tableau of partition shape (its entries are weakly increasing in each
row from left to right and strictly increasing in each column from top to
bottom), and the entries in each row i are > v; in 7, and

(spo.2) the skew tableau 7/7 is a vertical strip (no two boxes in a row)
filled with vo,,. 1.

EXAMPLE 4.3. Let

vy | V] | v2 | vr |
* *
'U2 U2 ’U7
T =
Us | V3 | U7
U7
Then T is a spo(2 - 3,1)-tableau where
* v7
v | v} | ve |
V7
n=|v | v and T/n=
U7
Us | Us
U7

We now give a combinatorial description of the irreducible characters
in terms of the spo(2m, 1)-tableaux. This combinatorial description can
be obtained from [4] Proposition 2.11, which describes the decomposi-
tion of the G-module V() into the irreducible Gy-modules in terms of
Kostant’s functions. The proof presented here is more self-contained and
elementary.

THEOREM 4.4. Let 7 be a spo(2m, 1)-tableau. For eachi € {1,... ,m}
let a;(1) denote the number of occurrences of v; in T, and b;(T) denote
the number of occurrences of v} in 7. Define '

77 = xllll(T)—bl(T)xgz(T)*bz(T) .. IL'?,:'(T)_I""(T).
Then

chV()) = Z z’

where the sum is over all spo(2m,1)-tableaux T of shape .
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Proof. The set of positive even roots of G, Af, and the set of positive
odd roots of G, AT, are described as follows:

Af = {ete, 2, |1<i<j<m1<k<m} and
Af = {g|1<i<m}.
By Proposition 2.8 in [4],
L,
4 chV(\) = = )  e(w)e?Cteo—r),
@ (=1, 2 <)
where W is the Weyl group of Go = sp(2m),

Lo = H (ea/2 -a/2 H (ea/2 + e-a/2)

acAd aeAf
SEPILIDWURIE ML S SEED 3L %
pO““2 a—‘ m-—1 2 P1—2 “‘ 21-
aedy =1 oeA} i=
Let e =z; forall i = 1,... ,m. Then (4) can be written as:
1 1/2 1/2 Ai(m—i+1)=(1/2)
chV(A\) = — z; ewyw |}z
O = g "+ 3 etw) H

Since ]—[I'_’_,l(a::/ 2 + ;%) is invariant under each w € W,

ChV()\) - - Z G(W)'LUH /\ i+H{n—i4+1)= (1/2)(:E1/2 + x 1/2))

wEW =1

- Ze(w)wH /\+(m—-z+1)+ /\. 1+(m—z+1))

weW

- LO Z Z e(w) wa/tz+(m—z+1)

n wew

where the the sum is over all u = {u;,... ,un} such that g, = )\; or

=N N—1fori=1,...,m. If yis a partition, then g C X in the
sense that p; < A; for ¢ = 1,... ,m and A\/p is a vertical strip. If p
is not a partition, then p; < p,;4; for some i where 1 < i < m, or
Hs = -+ = p, = —1 for some s where s > £()). We will show that when
i is not a partition, the summand in chV'(A) corresponding to p is 0.
Suppose that u; < p;., for some 4. Since y; = \; or y; = A; — 1 for each
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i, we have y; < pipq only if p; = Ay — 1, iy = Ajyy, and Ay = Ay In
this case, i1 = p;+1. Let b, = g, +(m—i+1) fori =1,... ;m. Then

Z e(w)w fol = Z 11 N a(z) Z e(0) Haa(i)’i = det(A)

weWw i=1 ogeS, 1= oESH

where A = (a;;) is the m x m matrix with a;; = z — ;. Since
Mivi =i+ 1, iy +m—(i+1)+1=p+m-—1i+1. Then det(A)=0
since the ith column and the (¢ 4+ 1)th column of the matrix A are the
same.

Now suppose that p; = --- = u,, = —1 for some s. In this case, we
also get det{A) = 0 since each of the entries in the last column of A is
0. Hence

chV (A E Z wH piHm=i+1) _ Z I Z e(w)e (k)
0

v wew weW

where g runs over all partitions such that 4 C A and A/ is a vertical
strip. It is well known that the character of the irreducible module for
the symplectic Lie algebra sp(2m) labeled by a partition p is

el Z W(u+po) — Z z"
n

wEW

where 7 runs over all symplectic tableaux of shape p, and z” is the
monomial defined in the same way as in the statement of the theorem
([5]). Let T be a spo(2m, 1)-tableau of shape A\. Then the subtableau
n of T consisting of boxes filled with elements in {vi,v],... ,Vp, v} is
a symplectic tableau of a partition shape g, and the skew tableau 7/n
is a vertical strip of shape A/p filled with vy, 1. By the way they are
defined, 2™ = z". Thus

ZIT = EZ.’E" = chV ()

where 7 runs over all spo(2m, 1)-tableaux of shape A, u runs over all
partitions such that 4 C A and A/u is a vertical strip, and 1 runs over
all symplectic tableaux of shape px. a
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5. Decomposition and centralizer algebra

In this section Wwe obtain a decomposition of T = ®*V into its ir-
reducible G-submodules, and prove that the centralizer algebra, C =
Endg(T), is isomorphic to the Brauer algebra Bi(1 — 2m) for m > k. -

We begin by recalling some definitions. An up-down tebleau of length
k and shape X is a sequence of partitions A = (\® = @, \!, . = })
such that )\’ is obtained from A*~! by either adding or removmg a box for
each i =1,... k. Note that |A\| = k — 2a for some a = 0,1,...,[k/2].
Let udy denovt;e the set of all up-down tableau of length k& and sha.pe A
An up-down m-tableau of length k and shape ) is an up-down tableau
of length k and shape A such that (') < m foreach i =1,... ,k. Let
udy(m) denote the set of all up-down m-tableaux of length k and shape
A. When m > k, note that udy = udy(m) since all the partitions in ud,
have length less than or equal to k and k < m.

THEOREM 5.1. Assume that m > k. Then
[k/2]

T=0¢V=0) ) 'l@dAlV(/\)-

a=0 \rk—2a

Proof. In Theorem 4.2, we constructed irreducible G-submodules of T'
using maximal vectors of T', which are linearly independent for m > k by
Theorem 4.1. Then the corresponding sum of the irreducible submodules
is direct, and

f&/2)

(5) evoed M ( )(2a)!!f*V()\)

a=0 \-k~2a

where () counts the number of ways to choose 2a positions out of k
positions to apply contractions, (2a)!! = (2a— 1)(2a — 3) - - - 1 counts the
number of ways to arrange contractions within 2a posrtxons, and f is
the number of standard tableaux of shape ).

For m > k, it is known that (})(2a)"f* = jud,] by [8] Lemma 2.2.
By Theorem 4.4, dimV'(A) is the number of spo(2m, 1)-tableaux of shape
A. Now let W be the set of words of length k in the alphabet B =
{v1, V1, ..., Um, Vs Vami1}, and Py be the set of pairs consisting of a
spo(2m, 1) tableau of shape A and an up-down m-tableau of length k
and shape A. Then there is a Schensted-type bijection between W, and
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P ([1] Theorem 5.5). Thus, the dimensions of the left hand side and
right hand side of (5) are the same. Hence the result follows. O

COROLLARY 5.2. Assume that m > k. Then
C = Endg(®*V) = B(1 — 2m).

Proof. By the work of [9] and [10], Bi(n) is semisimple whenever
In] > k. When |n| > k, the irreducible By(n)-modules are indexed by
the partitionsin B = {A\Fk—2a|a=0,...,[k/2]}, and the dimension
of the irreducible Bi(n)-module labeled by A is |ud,|. Since we assume
that m > k, |1 — 2m| > k. Thus, by the Wedderburn-Artin Theorem,

Bi(1 —2m) = ZMWd/\l
XeB
where M),40,(C) is the algebra of |udy| x |ud,| matrices with entries in
C.
On the other hand, from Theorem 5.1,

SV = @, gludi|V(N).
Then, it is well-known that

C 2> My (C

AeB
Hence Bi(1 —2m) = C. O

COROLLARY 5.3. Assume that m > k. Then the map ¢ in (3) is an
isomorphism.

Proof. It immediately follows from Proposition 3.1 and Corollary 5.2.
O

References

[1] G. Benkart, C. Lee Shader, and A. Ram, Tensor product representations for
orthosymplectic Lie superalgebras, J. of Pure and Applied Algebra 130 (1998),
1-48.

[2] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics

, and to representations of Lie superalgebras, Adv. in Math. 64 (1987), 118-175.

[3] D. Z. Djokovic and G. Hochschild, Semi-simplicity of Zy-graded Lie algebras I1,
Illinois J. of Math. 20 (1976), 134-143.



Representations for Lie superalgebra spo(2m, 1) 607

V. G. Kac, Representations of classical Lie superalgebras, Differential Geomet-
rical Methods in Mathematical Physics 11, Lect. Notes in Math. 676 Springer-
Verlag, Berlin, Heidelberg, New York, (1978), 599-626.

R. C. King and N. G. L El-Sharkaway, Standard Young tebleauz and weight
multiplicities of the classical Lie groups, J. of Phys. A 16 (1983}, 3153-3177.
C. Lee, Stability of dominant weights of the tensor product module for orthosym-
plectic Lie superalgebras, J. Linear and Multilinear Algebras 37 (1994), 283-296.
V. Rittenberg and M. Scheunert, A remarkable connection between the represen-
tations of the Lie superalgebra osp(1,2n) and.the Lie algebra o(2n + 1), Comm.
Math. Phys. 83 (1982), no. 1, 1-9.

S. Sundaram, The Cauchy identity for Sp(2n), J. of Combinatorial Theory A
53 (1990), 209-238.

H. Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. 128
(1988), 173-183.

[10] H. Weyl, Classical Groups, Their Invariants and Repmsentations, 2nd ed.,

Princeton Mathematical Series, Vol. 1, Princeton University Press, Princeton,
1946.

Department of Mathematics
University of Wyoming
Laramie, WY 82071

USA



