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ABSTRACT. We study the tensor product algebra Py (z1) ® Pr(22) ® - - - ® Pi(zm), where
Py (x) is the partition algebra defined by Jones and Martin. We discuss the centralizer
of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent
irreducible representations of the algebra Py(z1) ® Pr(x2) ® - - - @ Py(zm) and compute
their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams
and branching rules. Along with that, we have also constructed the RS correspondence
for the tensor product of m-partition algebras which gives the bijection between the set
of tensor product of m-partition diagram of Px(n1) ® Px(n2) ® - - - ® Px(nm) and the
pairs of m-vacillating tableaux of shape [A] € T'', T'7 = {[A] = (A1, A2, ..., Am)|Ni €
Tk,i € {1,2,...,m}} where I'y = {\; F ¢t|J0 < ¢t < k}. Also, we provide proof of the
identity (ning - - - nm)* = ZWGA% f[A]mB] where mLA] is the multiplicity of the

SN, m,

irreducible representation of Sy, X Sp, X o X Sn,, module indexed by [A] € Aﬁl,w,..
where fIN is the degree of the corresponding representation indexed by [A] € A’l]f:Ll,’l’Lg,.“,nm,
and [\l € AE oo = {A] = O, A2, Am) [N € AELJi€ {1,2,...,m}} where AF =

{w = (pa, p2y ey ) = ifng — pn < k.

»Mm?

1. Introduction

The partition algebras P (z) have been defined by Martin [7] and by Jones [5]
independently. The algebra was studied as Potts model in statistical mechanics
and generalization of the Temperley—Lieb algebras. In [7, 8] the algebra appears
implicity and in [9] it appears explicitly. Jones considered the algebra Py (n), as the
symmetric group’s centralizer algebra on V¥ (see [5]).

The G-vertex colored partition algebras Py (x, G) has been recently introduced in
[11]. The algebra Py(n,G) realized as the centralizer algebras of the direct product
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group G x S, which is a subgroup of G S,, on W& where W = C*¢l. In [12],
they also studied the inequivalent irreducible representations and their dimensions.

The class partition algebra Py (z,y) have been studied recently by Kennedy [6]
and further studied by Martin and Elgamal [10] . The algebra Py(n,m) realized
as the centralizer algebra of S,, ¢S, act on W®* where W = C™ and W is
permutation module for S,,,,.

The RS correspondence for the partition algebra by Halverson and Lewandowski
[4] provides the bijection between the set partitions and the pairs of vacillating
tableaux.

In this paper, we demonstrate that the algebra Px(n1) ® Pi(ng) ® - - - @ Pr(ny,)
is the centralizer algebra of the direct product S, x Sp, x ... x S, on Wk,
where W = C™"2"m_ We use centralizer theory to study the semisimplicity of
Pi(z1) ® Pp(z2) ® - - - @ Py(z,,) and by using the representation theory of Py (z)
(from, [1, 3, 5]) the index of the inequivalent irreducible representations of Py (z1)®
Pr(22) ® - - - ® Py(zy,) is studied and their dimensions in the semisimple case is
computed. In addition, the Bratteli diagrams and branching rules for the towers
Py 1(21)®Pp—1(22)® @ Pr—1(xm) C Pr(x1)®Px(22)®- - ® Py (x,,) are described.

The RS correspondence for the partition algebra by Halverson and Lewandowski
[4] influenced us to construct the RS correspondence for the tensor product of
m-partition algebras which provides the bijection between the set of tensor prod-
uct of m-partition diagrams and the pairs of m-vacillating tableaux. The proof
of the identity (ning - - - n,)F = Z[/\}EAﬁ o fp‘]mgj‘] where mgj‘] is the
multiplicity of the irreducible representatioﬁ of S,Z X Spy X .. X Sy, module
indexed by [A\] € Ak - where fN is the degree of the corresponding
representation indexed by [A] € AF - and [\ € Aﬁl,nz,...,nm = {[\] =
(A, A, o AN € Alfmi € {1,2,...,m}} where Af“ = {u = (p1,p2,- pe) F
niln; — p1 < k} is discussed by constructing a bijection between the sequence
((a1,b1,...,11), (a2, ba, ..., 12), ..., (G, bk, ..., l) of m-tuples of numbers where 1 < a; <
ny, 1 <b; < ng,...,1 <Il; < n,y and the pair (T[A],Pm) where 17y is standard m-
tableau of shape [A] and P}y is m-vacillating tableau of shape [A].

2. Preliminaries

In this section, some basic definitions and results are discussed herewith.

Definition 2.1.([13, §2.1]) A partition of non-negative integers n is a sequence of
non-negative integers 8 = (81,02, ..., ;) such that 8y > B2 > ... > 8; > 0 and
|IB] = 1+ B2 + ... + Bi = n. It is denoted by 8 F n.

A Young diagram is a diagrammatic representation of a partition 3 as an array
of n boxes with 1 boxes in the first row, 8 boxes in the second row and so on.

Definition 2.2. A m-partition of size n is an ordered m-tuple of partitions [A] =
(A1, A2y ooy Ap) where Ay Fnq, Ao B g, oo, Ay B 0y, with ng +no 4+ ...+ 0y, = n. We
denote it [\] I-,,, n where m is number of partition of n and )\; is the i*" component
of [A].
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Remark 2.3. A\ n denotes a single partition of n and [A] F,, n denotes a m-
partition of n.

A young diagram of a 3-partition of size 9 is as follows:

L]

Figure 1: (A1, A2, A3) = ([3,2], ]2, 1], [1])

Definition 2.4.([13, 2.1.3]) Suppose A F n. A tableau of shape A is an array ¢
obtained by filling the boxes of the Young diagram of A with the numbers 1, 2, . .
., n bijectively.

A tableau t is standard if the entries in the tableau increase along the rows from
left to right and along the columns from top to bottom. Let ¢; ; stand for the entry
of t in the position (7, 5).

Definition 2.5. Suppose [A] = (A1, A2, ..., Am) Fm . A m-tableau of shape [)]
is an m-tuple of array [t] = (t1,t2, ..., ;) obtained by filling the boxes of the each
Young diagram of A; with the numbers 1, 2, . . . , n; bijectively.

Definition 2.6. A m-tableau [t] of shape [A] is standard if each ¢; is standard
tableau of shape A;.

Notation 2.7. Let ST™([\]) = {[t] | [t] is standard tableau of shape [A]}.

2.1. The partition algebra Pj(z)

A k-partition diagram is a simple graph of one above the other of two lines of
k-vertices. The 2k vertices partitioned into [ subsets, 1 <[ < 2k by the connected
components of a k-partition diagram. We state that two diagrams are equivalent
when they determine the same partitions of 2k vertices.

Figure 2: Two equivalent diagrams

When we are discussing about diagrams, we are really concerned about the asso-
ciated equivalence classes. Define an equivalence classes of k-partition diagrams
by stating that two classes are equivalent if they have same elements in any order.
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Number the vertices 1, 2, ..., k in the upper line from left to right and k41, k+2, ..., 2k
in the lower line from left to right in a k-partition diagram.

The field F' will always represent a field of characteristic which is arbitrary
throughout the paper and x represents a field element of the field F. The following
is known as the product of two diagrams d and d’ (see Figure 3):

1. Set d at the top and d’ below it so that the lower line of d coincides with the
upper line of d’.

2. Now, we have a diagram with upper line, middle line and lower line of ver-
tices. This diagram is named as attachment of d and d’. Let the number of
components that lie completely in the middle line is A.

3. Make a new diagram d” by deleting the vertices in the middle line but keeping
the lower line and upper line and maintaining the connections between them.
Replacing every “component” contained in the middle line with the variable
x. That is, d'd = 2*d".

— /
= [\ N
. ~
- l>><
e —-

Figure 3: Product of two k-partition diagrams d and d’

This product is associative and well defined up to equivalence. Linearly extending
this product makes the algebra Pj(x) an associative algebra with identity.

The partition algebra Py(x) is the F-span of all k-partition diagrams for every
z in the field F and a natural number k. The identity element is given by the
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partition diagram with every vertex in the upper line connected only to the vertex
below it in the lower line. The dimension of the partition algebra Py (x) is the Bell
number B(2k), where

=2k

(2.1) B(2k) = > S(2k,1)
=1

and where the number of equivalence relations with exactly [ parts for a set of 2k
elements is Stirling number S(2k,[)(see [14]). By convention, Py(z) = F. Replacing
the variable & by complex number &, we obtain a F-algebra Py (€).

Schur-Weyl Duality

We follow the notations, as given in [3]. Let V' = C", where V is the permutation
module for S, with standard basis v1, v, ..., vn. Then w(v;) = vy, for m € S, and
1 < i < n. For every positive integer k, the tensor product space V®* is a module
for S, with a standard basis given by v;;, ® v, ® - - - ® v;,, where 1 < ¢; <n. The
action of w € S, on a basis vector is given by

(22) ﬂ(vil RV @& Uik) = Un(iy) (24 Ur(ia) KRR Ur(ig) -
For every diagram d and every integer sequence i1, iz, ..., to, With 1 < 45 < n, define

(2.3)

w(d)ik+1,...,i2k -

i1simsein 1 if i, = is whenever vertices s and r are connected in d,
0 otherwise.

Define the action of a diagram d € Py(n) on V®* by stating it on the standard
basis as

(2.4) d(vi, @i ®@---Qvy,) = D (@R Vi, ® Vi, @ B,

Tht1se-ms82k
1<ipq1,.. 02k <0

Theorem 2.8.([5]). C[S,] and Py(n) generate full centralizers of each other in
End(VEF). In particular, for n > 2k,

(a) Py(n) = Ends, (V®F)
(b) S, generates Endp, (n)(V®").

2.2. The Irreducible Representations of Py (z)

Double centralizer Theory

We follow the notations as in [1]. Let A be a finite-dimensional associative
algebra over C, the field of complex numbers. The algebra A is said to be semi-
simple if
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A= M4, (C)

AeA

where My, (C) denotes full matrix algebras, A a finite index set and dy be any
positive integer. Corresponding to every A EA.ZL\ there is a single irreducible A-
module, call it V*, which has dimension dy. If A is a singleton set then A is said to
be simple. Maschke’s Theorem (see [2]) says that if G is finite, C[G] is semisimple.

A finite dimensional A-module M is completely reducible if it is the direct sum
of irreducible A-modules, i.e.,

M= @ m,\V)‘
reA
where the non-negative integer m is the multiplicity (dimension) of the irreducible
A-module V* in M (some of the my may be zero). Wedderburn’s Theorem (see
[2]) discuss that for A being semi-simple every A is completely reducible.

The algebra End(M) comprises of all C-linear transformations on M, where
the composition of transformations is the algebra multiplication. If the represen-
tation p : A — End(M) is injective we say that M is faithful A-module. The
centralizer algebra of A on M denoted End4 (M), is the subalgebra of End(M)
comprising of all operators that commute with the A-action:

Enda(M)={T € End(M) | Tp(a)-m = p(a)T - m,Ya € A,m € M}.

If M is irreducible, then Schur’s Lemma says that End4 (M) = C. If G is a finite
group and M is a G-module, then we often write Endg (M) in place of Endciq(M).

Theorem 2.9. Double centralizer Theorem(sce [2]).
Suppose that A and M decomposes as above. Then

(a)
End (M) = P M, (C).
eA

(b) As an Enda(M)-module,

M= U,
AEA

where dim U* = my and U> is an irreducible module for Endy (M) when
my > 0.

(c) As A ® Endg(M)-bimodule,

M = EB V* o UM,

AeA such that mx#0
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(d) A generates EndEndA(M)(M)-

This theorem tells us that if A is semisimple then so is End 4 (M). It also says
that the set Ay = {my € .;l\|m)\ > 0} indexes all the irreducible representations
of End4(M). Finally, we see from this theorem that the roles of multiplicity and
dimension are interchanged when M is viewed as an End 4 (M)- module as against
the A-module. When the hypothesis of the above theorem are satisfied, we say that
A and End 4 (M) generate full centralizers of each other in M. This is often called
Schur-Weyl Duality between A and End 4 (M).

Branching Rules

Let A and B be semisimple algebras and where B be a subalgebra of A. Let M
be a A-module and M can be viewed as B-module by restricting the action of A
on M to B. This B-module is called the restriction of M from A to B and is
denoted M 4. On other side, let N be a B-module. A A-module produced from a
B-module is called induction of N from B to A and is denoted N 173. Let {V/\}/\efl
denote the irreducible A-modules and {V“}u <3 denote the irreducible B-modules.
The decomposition

VA =P gr V",
ue@

where the g, are non-negative integers are called the (restriction) branching rule
for B C A. Frobenius reciprocity (see [2]) tells us that

V=P oV
AeA

Proposition 2.10. (Branching rule for Endg(M®*=1) C Endg(M®*)).

Let G be a finite group and p : C[G] — End(M) be a representation of G. Let
M®F denote the k-fold tensor product of M and {V’\}Aegk denote the irreducible
G-modules that appear in M®* where §k indexes the irreducible G-modules that
appear in M®k, {U,;\})\Egk denote the irreducible Endg(M®*)-modules that appear
in M®*. View the algebra Endg(M®*=1) as a subalgebra of Endg(M®F) by
identifying it with the subalgebra Endg(M®*=Y) @ id, with id € Endg(M), the
identity transformation. For V* a summand of M®*=1Y consider that as a G-
module

Vi M = P gV
PV
Suppose further that
\ | Endg(M®F
Ui, \LEngEk[®(lc)—1)): @ IruUf—1-

pn€GL—1

Then gux = gy, for all p and A.
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Theorem 2.11. (see [5]). Let S* be an irreducible S,,-module and let V denote the
permutation representation of S,. Then

~ sn
SP@V e (SM g )

s.= Do

p=(A)+

where (A\™)T denotes a partition of n obtained by removing a box from \ and then
adding a bozx.

Definition 2.12. The Bratteli diagram is a graph which contains a rows of vertices
with the rows labeled by 0, . 1 1 ..., k where vertices in a row ¢ and ¢+ % are from

PRI
the index sets AY, and A?_, respectlvely. There is a edge between two vertices when

they are in consecutive rows and they differing by one box.

Proposition 2.13. (see [1]). (Branching rule for Py_1(n) C Pg(n)).

The lines in the (S,, Pix(n))-Bratteli diagram when read upward from row k to
k—1, provides the restriction branching rule, the lines downward gives the induction
branching rule P;_1(n) C Px(n). In particular, for n > 2k,

A Pe(n)
P ‘LP: 1(n) @ P,
p=A")tn—-x<k-1

and )
n) A
PR @ P
A=(p=)*

3. The Tensor Product of m-Partition Algebras

3.1. The tensor product partition algebra Py(z1) ® Px(z2) ® - - - ® Pr(am,)

In this subsection, the structure of the tensor product partition algebra Py (z1)®
Py(22) ® - - - @ Py(xy,), where x1,xa, ...,z € F are discussed.
Consider the tensor product partition algebra Py (z1) ® Pi(22)® - ® Pi(xy,). Note
that the standard basis for this algebra is

T ={(d1®dy® - ®dy)| d1,ds, ..., d,, are k-partition diagrams }

and the dimension is [B(2k)|™
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Let (df @ dy @ ® d,),(d] @ df ® @ di) €Ty, then (df ® df @
© AN © dy @@ d) :zi\lxé\z_..x;\rzn(d1®d2®...®dm), where
djd) = a3*dy in Py(z1),dydy = 23°dy in Pp(3), .., djd), = 2y dy, in Pi(zp).

Thus the product of any two element in Tj is a scalar product of some element in
Ti. Hence, the extension of partition algebras are defined to be the F-span of the
tensor product of m-partition diagrams with identity.

3.2. Two bases for Ends, xs,,x..xs (Wek)

. nm

In this subsection, two bases for Ends, x..xs,., (W®k), where W = Cninznm
are discussed.

(3.1) Let W = Spanc{v(j,.. o 1 <i<ni, 1 <j<ng,.., 1 <s<np
The action of S, X Sy, X .... x Sy, on W is defined as

(3.2) (M1, 72, e, 71Wn)('”(i,j,...,S)) = Uy (4),m2(4)5e oy () *

Note that when n; = 1, for all ¢ € {2,3,...,m}, Sp; X Spy X oo X Sy, = Sy, in this
case W specializes to Vi, the permutation representation of S,,, .

(3.3) Let S:={1,2,...,n1} x{1,2,...;n2} X ... x {1,2,...;np }

be an index set for the basis of W and I = ((i1,j1,..-,51), (12,72,,S2); vy

(ik7jk7“'7sk¢))a J = ((ik+17jk+17“'78k+1)7 (ik+27jk+27“'7sk+2)7 ceey (i2k7j2k7'-~752k))
in S¥. The action of S,,, X S, X .... x S, on S by (71, T2, .ce; T ) (i, J, .., 8) =

(m1(3), m2(5), ..., Tm(s)) can be extended to an action on S?* by (w1, 72, ..., T ) (I, J)
= ((ﬁlaﬂ—Qa '-'77Tm)(1)7 (ﬂla T2, aﬂ—m)(']))
Diagonally extend the action of S,,, x Sy, X .... x S, on W to an action of

Spy X Spy X weoe X Sy, on W as follows:

(34) (7T177T27 ~-~77Tm)(v(i17j1,...,s1) - ® U(ik7jk,~u7sk))
= V(i (in)yeemm (51)) @ 7 © V(s (i) v (5))
We will write the above as (71, T, ..., T ) (V1) = V(ry 0, ) (1) -

Let A € End(W®k). Define A(vy) = >, Af(vr), Where'VI,J € S¥ and Af € C is
the (I,.J)*" entry of A and vy is a basis element of W®F,

The following is our analog of Jones’s result.

Lemma 3.1. A € Ends,, xs,,x....xs,, (W) & Af = AT 7700 by () .
s Tm) € Spy X Spy X oo X S
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Proof. We have A € Ends,, xs,,x...xS (W)

nm

S (T, T2y ey T ) A = A(T1, T2y ooy Tm), V¥ (1, T2, ooy T ) € Spy X Spy X eoe X Sy,
(71,72, ey T ) A(vy) = A(7r1,7r2, ey ) (0g), Y vy

<:>(7T1,7T2,..., Z U(?T],TFQ,...,TK'”L)(J))
I
&Y AT (1w, ) (o) = D AT ()
I I

J o (1,2, s7m ) (J)
<:>ZAI (U(W117r27"'17rm)(1)) - ZA(m,m ..... ﬂ"m)(l)( (7r177721-<~7777n)(1))
I I

since the action of S, X Sy, X .... x S, is by the permutation representation. The
result follows from equating the scalars and linearly independence. O

Lemma 3.2.

I=N1,j=N2,...,5=Nm

dim Ends, xS, x...xs,, (W) = Z S(2k,1)S(2k, j) - - - S(2k, s).

when ni,M2, ..., Ny > 2k, dim Ends, xs,. x..xS,, (W®k) = [B(2k)|™

Proof. By lemma 3.1. A commutes with the S,, xSy, X .... x S, -action on W®k if
and only if the matrix entries of A are equal on Sy, X Sy, X .... xS, -orbits. Thus,
dim Ends, xs,,x...x5,,, (W®¥) is the number of S,,, X Sy, X ... X S,,, -orbits on S2¥.
Fix a tuple of indices (I,J) = ((i1,1, - 51), (G2, 2, -5 82); -5 (i2k; J2ks -+ S2k)) €
S?* which determine the partitions d; := d(zl,ZQ, vy Bon )y do i= (1, Gy ey Jok )y oons
dp = d(s1, 82, ..., 52;) of {1,..., 2k} (into at most n1, ny, ..., n,y, subsets respectively)
according to those that have an equal value. Let [(I,.J)] be the orbit of (I, J) € S?*.
Then (I',J') € [(I,J)]

& (I',J) = (m1, 72, ey ) (I, J), for some (71,72, .o, Tn) € Spy X Spy X oo X Sy

& (0, 1y ey sh) = (7r177r2, cos T ) iy Gy ooy Sp), ¥V 7 such that 1 <r < 2k, where
(i, 4l ...y st) and (ip, jr, ..., 5,) are the 7" component of (I',.J') and (I, .J)
respectively.

& (ips Jpy oo 8p) = ( 1(ir), m2(fr), o Tm (sr))

s il =m1(ir), 4 = m2(Jr)s ey Sb = T (S1)

(3.5)

& [ip = iq iff i, = i7], [p = Jq it 3, = Jgls s [5p = 54 1ff 53, = s3], (1 < p,q < 2K)

& d(iy, i, ey iog) = d(iy, by ey i), A1, G2y -os Jo2k) = A(1, oy oons Goke)s oes
d(Sl, 82y uuy Sgk) = d(sll, 8/27 <rey 5/2k)
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Thus, every Sy, X Sp, X .... X Sy, -orbits determine the partitions di,ds, ..., dp,
of the set of 2k elements and vice-versa. Hence, the result. O

For a fixed tuple of indices (I,J) € S?*, define the matrix EX € End(W®*) to
be the (ning - - 1, )% X (N1ng - -+ Ny )* matrix with a 1 in the (7, J)-position and
zero elsewhere. For every S, X Sp, X .... X S, -orbit [(,J)], we define a matrix
T € End(W®*) by

Ti= > El,

17, J"eld,J)]

In fact, T1 € End(W®F), since such a matrix satisfies the Lemma 3.1. condition:
The entries of the matrix are equal on S, x Sy, X .... x Sy, -orbits. By using the
equation (3.5), we obtained

L ) ; o Y ’ Y] ’
815515381 )seeey(ChksJhkse-sSk 17571 50+957 ) see s (L s JpeseesS
(3.6) it 1)5e-5(ik Jke s, 5k) ZE( - D RRRCIAN I

(Tt 1:Tk415e18k41)seees (12, J2k 51 82k) (U1 Thg 1Sk ) (B sd0g s 085,)

where the sum is over i, = iy < i}, = ig,jp = Jg © J, = JgrsSp = Sq & 5, =
sy, (1 < p,q < 2k).

Since every matrix 77 is the sum of different matrix units, the set {TF | [(I, J)]is
an Sp, X Sp, X ... X Sy, -orbit} is linearly independent set.

For A € Ends, xs,,x...xs (W®k), we obtain A = Z[(LJ)] ALT! by using the
(W®*) and so they

nm

lemma 3.1. Thus, the matrices T} span Endgnlxgnzxwxg

nm

are a basis for Ends, xs,,x...x5,, (Wek),

Definition 3.3. Let d and d’ be partitions of [2k]. We say that d’ is coarser than
d if any class in d is contained in some class in d’. In this case we write d’ < d.

Now, we state another basis for Endsn1 X Sy Xor X S (W®k) as follows: Define
for every Sy, X Sp, X wooo X Sy, -orbit [(I, )] = [(61,J1, ey S1)s -eey (12ks T2k -5 S2k)]
the matrix

Ly=) T},

where the sum is over Sy, X Sp, X ... X Sy, -orbit [(I',J)] = [(¢},71, -, $1), s

(ilyys Gops s Shp.)] such that d(iv,dg, ..., o) > (i), ih, coyiby )y oy d(81, S2, ey S2p) >

d(sy, 8h, ..., sh;). The matrix T can be expressed in terms of the matrix L} by
using Mébius inversion (see [14]). So they also span Endsg, xs,, x....xs,,, (W®F).
By using the equation (3.6), we obtain

nm

(3 7) L(lil1j1a~.~~751),~~7(ik:jka“w‘sk)l _ E E(?’la.jiviuasll)v-“)(i;ca.j]/cw"f'sgc)‘

’ (Tt 13Tk+1518k41) 505 (82 s J2k 5,52k ) (U110 >8ha1 ) (B sT0 g 085,)

where the sum is over i, = i, = i}, = ig,jp = jqg = Jp = Jgr-Sp = S¢ =

s, = 84,(1 < p,q < 2k). The matrices T!1 and LY form two different basis for
®k

Endsnlxsnzx....xsnm(w )
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Note: For a given tuple (iy,is,...,92x) € {1,2,...,n}*?* collect the numbers
i1,12,...,%2% into (at most n) subsets then 4, and i, are in the same subset if and
only if 4, = i,. This determines the relation ~ on {1,2,...,2k}, i.e.,, p ~ ¢ if and
only if ¢, and 7, are in the same subset. Naturally this relation in turn determines
a partition d = d(iy, 42, ...,92x) of {1,2,...,2k} into subsets.

3.3. Schur-Weyl Duality

An action of P(n1) ® Pe(n2) ® - - - @ Pr(nym) on W& is defined as follows: Define
amap ¢ : Py(n1) ® Py(ng) ®@ -+ @ Py(ny,) — End(W®¥) by defining it on a basis
element (d1 ® dy ® - - - @ d,,) as follows:

(E(dl Rdy @ Rdy) = ((E(dl Rdy @ ® dm)(il7]‘1,‘-.,51)7"'7(1‘k’jk,“.,Sk) )

(k41T k+15e-58k+1) 0005 (828 52k 5,52k )
_ 11,050k J1sesdk . S1yeeeySk
- (w(dl)ikJrl7~~-7i2k¢(d2)jk+17~--7j2k w(dm)5k+1 ,,,,, S2k> ’

where 9 is defined as in equation (2.3). Alternatively, in terms of matrix units we
have

(38) (1 ®@do® @dp) = > Elat s (g, o)

(Tht15dk415eeerSkp1)yeees (12K T2k 5o+ +5 52k )
pr~q in di=ip=iq
p~q in d2=j,=jq

prq in d;n:>sp:sq

where 1 S il,ig,...,iQk S n1,1 S j17j27~~~7j2k S TLQ,...,]. S 51,82, ...y S2k S N -
Then, we have an action of Py, (n1) ® Py(ng) ® - - - @ P(n,,) on W defined by

(dy @dy @ - ®@dp)(vy) = d(d) @da @ - - - @ dp)(vs), for all J € S*.

when ny = n and n; = 1, for all i« € {2,3,...,m}, this action restricted to the
partition algebra coincides with the action defined by Jones [5] on tensors.

Thus, we have an action of a basis element (d; ® do ®@ - - - ®@ d,,) € T on W&k
by defining it on the standard basis element by

(dl Rd2®---® dm) ' (U(il,jh-..,sl) - ® U(ik,jkquk))

= Z w(dl)zi;f, 715,9¢(dm)§ifi’,;§k(7)(u+1 ----- 8k+1)®"'®v(i2k »»»»» s2k)"

1<ip g1 5i26 <N
1<jk41,--sd2 SN2

1<8k 41,0582k <N

Lemma 3.4. The map ¢ : Py(n1)®@Py(n2)@-@ Py, (1) — Ends, x..xs (Wek)

is an algebra homomorphism.

nm
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Proof. From (3.8) we have,

(39) Qg(dl R ® dm) _ Z E(il»jl,-~~751)7-"7(ikvjka-“vsk)

B (Tt 15Tk41518k+1) 505 (12K T2k 528)
d(i1,i2,...,i2k) <d1

d(j1,J25-d2r) Sd2
d(s1,82,...,825) <dm
where 1 < iy,49,...,92, < 11,1 < J1, Jo, o Jok < N2y ey 1 <81, 82,00, 82k < Ny

Z (11,515,581 )50+, (B Sl - +58k)

- (k15T k415e-28k41)5ee0s (B2 52k 5,52k )7
d(i1,iz,...,92k)<dy

d(J1,525--J2k) <d2

5(51752,~~.7S2k)Sdm

where the sum over one representative (i1, j1,...,81), (i2,J2, - 82), - (12K, J2k,

<.y Sox) for one S,, X Sn, X ... x S, -orbit. Thus, ¢(d; ® d2 ® - - - @ d,,) €
Endsm X Sy Xoe:X Sy (W®k)

Claim: The map ¢ is an algebra homomorphism.

Let (dll & d/2 Q- ® d;n),(dlll & dIQ/ R dlrln) c Pk(n1)®Pk(n2)®®Pk(nm)
and (df ® dy ®---® dp)(d; © dy @---@ d},) =n)"ny? -y (di @da @ @ ),
where d/d;, = n}'dy, in Py(ny),didy, = ny2dy in Py(ng),....,d"d, = n)d,, in
Py.(ny,). From (3.9), we have

od] @ df @@ d)Pp(d] ® dy @---® d.)

"

_ } : E(i’lﬂj{’,---75’1’)7~-,(i§9',jk7~~-78§9') } : E(iavj;7"'75/1)1-'~7(i;€»j};7~~~75;9)

oS ) (00 085)) (UgrresShgn)sees (g e855)

ael ... il )<dy (i} it ) <dy
d(s,....s5),)<d, d(sf,-.,55;,) <dy,

where 1 <7, <ny,1 <37, 5. <mng,..,1 <) s, <npyand 1 <z <2k,

_ 2 : (17351 581 )5 s (K oo 85) (0130100081 (E s 057)
B a (Z;c+1»--~>5;c+1)7"-7(2/2k7'~'7S/2k) ’L;c/+17"'75Z+1)7---7(1/2/k7'--73/2/k)
(i) soigg) Sy oo d(sY .85, ) Sdy,
d(i ity ) <dY e, d(8Y .85, ) <db

since EJE} = 04 Ep, where dy,- is the Kronecker delta.

AN ’ " " -/ -/ ! -/ -/ ’
511 bty 551 185 seesSgy (8150150581 ) ey (U505 ,5,)
o/ ;! ’ ’ s " s 17
: : LATERTIN Shy1sm 2oy (2k+1""’Sk+1)""’(l2k""’52k)
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A1, A2

=n}ny? .o g Elndvsi)n i) | aein the partition case.

(G415 eesSkt1) 505 (128 50,528 )

(J1seeesgor) <d2

d(s1,0r82) <dm

g oy d(d @ da ® - @ diy)

(] @ df @@ di)(dy @ dy @---® d.,)).

O

Theorem 3.5. C[S,,, X Sp, X....X Sy, | and Pr(n1)® Py(n2)®---® Py(nm) generate
full centralizers of each other in End(W®F). In particular, for ni,no,...,nm, > 2k,

(a) Pp(n1) @ Pp(ng) @ -« - @ Pi(nm) = Ends, xS, x...x5,. (W),

ny ng Xoeeee

(b) Sny X Spy X e X Sy, generates Endp, (n,)o Py (n2)@-@ Py (nn) (W EF).

Proof. Since ni,ng,...,ny > 2k, dimPg(ny) @ Pr(ng) ® - - - @ Pi(n,,) = dim
Ends, xS,,x....xSn,, (W®k). Therefore, (a) follows from Lemma 3.1 and (b) fol-
lows from (a) and Double Centralizer Theorem. O

As the centralizer of the semisimple group algebra C[S,,, X Sp, X .... XS, ], the
C-algebra Pg(n1) ® Py(n2) ® - - - ® Pg(ny,) is semisimple for ny,ng, ..., ny, > 2k.

4. The Irreducible Representations of P;(n1) ® Pr(n2) @ - - - @ Py(nm)

In this section, the inequivalent irreducible representations of the tensor product
partition algebra Py (n1) ® Py(n2) ®- - ® Py(n,,) by using the representation theory
of the partition algebra Py(x) (from [1, 3, 5]) and the centralizer theory is being
indexed. Also, their dimensions are computed. When nq,no,...,n,, > 2k, the
Bratteli diagrams and the branching rules for the tower Py_1(n1) ® Pyr_1(n2) ® - -
*® Py—1(nm) C Pr(n1) ® Pr(na) ® - - - ® Pr(ny,) are described.

The C-vector space V2* @ VP* @ @ V& is a S, X Sp, X .... X S,,, -module
under the action is given by

(71, T2y ey T ) (V3 @ Vs, @+ @04, ) B (Vg BV, @+ RV, )R-+ @ (Vs Vs, ®
©®s)) = (Vg (1) ® Uy (i) @ @ V(1)) ® (U (1) @ Ura () @+ @ Uy () ®
0 ® (Vmy(51) @ Vrmap(s2) B @ Unrp (s5))-

Lemma 4.1. The index set of the irreducible S,,, X .Sy, X....x.Sy, -modules appearing
as summands in VE* @ VEF @ - @ V.E* is Pp(ny) x Pp(ng) X .... X Py(n,,), where
Pi.(n;) is the index set of the irreducible Sy, -modules.

Proof. The representation V2¥ @ V2¥ @ .- @ V&% of S,,, X Sy, X ... X Sy, is the
product representation of S,, X S, X ... x Sy, afforded by V¥ of S, , V% of
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Spyy ey ViR of S, . where the representation V%% of S,,,, i € {1,2,...,m} is the
tensor product permutation representation which is decomposed as (see § 2.2)

V'i®k o~ @ ma, Sz\i
Aiem)

(where my, is the multiplicity of the irreducible S,,-module appearing as summands
in V,2F).
Hence, as Sy, X Sp, X .... X Sy, -module

VeV e oV @ mamay-oma, SN @SR e 05,

i €Py(n;)
i€{1,2,....,m}

where SM ® 5?2 ®---®8* is the irreducible S, X Sp,, X .... X S,,, -module induced
by the irreducible S,,,-module S*t, S,,,-module S*2, ...., S,, -module S*~. O
Theorem 4.2.

(a) As a Sp, X Spy, X .c..Xyp,, -module

Wk By mama,ccoma, SN @SN @@ S

)\iGPT(n\z‘)
i€{1,2,...,m}

(b) For ni,na, ..., nm > 2k,

Pe(n1) ® Po(n2) @ ® Pi(nm) 2 P Mpnyaerrn) (©),

Xi € Py (n;)
ie{1,2,....m}

where (A1, A2y ooy Am] = M, My, -+ - My

m*

(c¢) For ni,na,....nm > 2k, as Py(n1) @ Pr(ng) @ - - - @ Pr(ny,)-module

W®k o~ @ dMd 2 .. A pAUA2Am

—

Xi€Pg(n;)
ie{1,2,...,m}
where d*i is the dimension of S and P22 m js the irreducible Py(ny)®
Pr(n2) ® -+ @ Pr(ny)-module indexed by Ay € Pr(n1), A2 € Pr(na), ..., A €
Pr.(ny,) with dimension [A1, Az, ..., Am].
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(d) For ni,ng,....nm > 2k,as a C[Sp, X Spy X oo X Sy ] @ (Pe(n1) @ Pr(ng) @ - -
- ® Py(ny,))-bimodule,

W®k o~ @ (S)‘lg)\27~~~5)\m ®P)\17/\2g~-7)\m)7

Aielpf(n\i)
ic{1,2,....m)}

where Az Am = M @ §r2 @) .. @ §hm,

Proof. Since Sy, X Sp, X ... x Sy, =~ acts on the suffix of v . ), we have the
permutation representation V; of S,,, with respect to Sy, for i € {1,2,...,m}.
Hence,

W=2Vieh®: - @V,
Moreover,
Wk (VL @Ve® - ®Vy)PF 2 VR QVUPF g ... g VO,
(a) follows from lemma 4.1. (b), (¢) and (d) follows from theorems 2.9. and 3.5. O

Corollary 4.3. Let S*222m be an drreducible Sy, X Sp, X .... X Sy, -module and
let W be the permutation representation of Sp, X Sp, X ... X Sy, . Then

AL 2, m ~ ALA2se o Am | O X X Snpy, Sny XX Snp,
S QW = (S isnl,lx...xsnm,l)Tsnl,lx...xsnmA

) @ GHAH2 s fhm

ma=(A;)*
i€{1,2,....,m}

where (X\; )T denotes a partition of n; obtained by removing a box from \; and then
adding a new box.

Proof. This follows from theorems 4.2. and 2.11. O

From Corollary 4.3. the Bratteli diagram for (Sp, X Sp, X ... X Sy, Pe(n1) @
Py(n2) @ - - - @ Pi(n,,)) as they act on W®F is the tensor product of the Brat-
teli diagram for (S,,, Px(n1)) as they act on V%, (S,,, Py(ns)) as they act on
VEE ... (Sn,., Pe(nm)) as they act on V.2, Note that if n; = 1 for i € {1,2,...,m}
except one n; then the Bratteli diagram for (S, X Sp, X .... X Sp, , Pr(n1) ® Pp(n2)®
-+ ® Pr(n,,)) as they act on W®* is the Bratteli diagram for (S,,,, Px(n;)) as they
act on V;‘X’k.

Now, we may write the Bratteli diagram for Sy, X Sp, X .... xS, and Py(n1)®
Py(n2) @ -+ ® Pi(ny,) as they act on W®* when m = 2,ny = 4,ny = 4 (see Figure
4).

For £k = 2 and m = 2,n1 = 4,np = 4, from Figure 4: the dimen-
sions of the irreducible Py(ny) ® Py(n2) ® - - - ® Py(n,,)-modules PA1:A2:Am are
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e

k=1: (DID’DE) (DID7 EFD) (Bjj? DID) (EFD’ EFD)

=

b (o oo, =)

m) (mp (@ \\\
\‘\\S§\\

k=2 (e, cm) (e ) (cem, ) (cmmy gﬂ) (o m) (5o, 50) (60 ) (s gﬂ) (=) @) @) @ gﬂ) (g% cxm) (g% ) (gﬂa ) (gﬂy gﬂ)

Figure 4: Bratteli diagram for C{Py(4) ® Py(4)}
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4,6,2,2,6,9,3,3,2,3,1,1,2,3,1,1 (which are multiplicity of the irreducible S,, x
Spy X e X Sy, -module SM ® 52 ®-.-® 5 reading from left to right) and 42+ 62 +
22422462497 +3% 432422432412 +12 422432412412 = 225 = dim(P2(4)® P (4)).
The multiplicity of PAtA2-Am are 1,3,2,3,3,9,6,9,2,6,4,6,3,9,6,9 (which are
the dimensions of SM ® §*? ® - - - ® S respectively). Hence, the dimension of
W2 =162 =256 = (1 x4)+(3x6)+(2x2)+(3x2)+(3x6)+(9%x9)+(6x3)+
(Ox3)+(2x2)+(6x3)+(4x1)+(6x1)+(3x2)+(9x3)+(6x1)+(9x1).

Proposition 4.4. (Branching rule for Py_1(n1) ® Pr_1(n2) ® -+ ® Pr_1(nm) C
Py(n1) ® Pr(n2) ® - - - @ Pp(nm)).

The lines in the (Sp, X Sp, X ... XSy, Pt (n1)@ Py (n2) @@ P (nyy,)) -bratteli diagram
when read upward from row k to k — 1 leads to the restriction branching rule, the
lines downward leads to the induction branching rule for Pr_1(n1)®Pir_1(n2)®---®
Pi_1(nm) C Pp(n1) ® Pi(ne) ® -+ - ® Pr(ny,). In particular, for nq,na, ..., ny, > 2k,

PAAZs o Am \I(Pk n1)®Pg(n2)®-- ®Pk(nm) @ LK
Pr_1(n1)® - ®@Pr_1(nm) ’

=) T s —pi <k—1
ie{1,2,....m}

and

PHLH2 TPk(”l)@’Pk(nz)@ ‘®@Pr(nm) _ @ PrAzAm
Pi_1(n1)® - Q@Pr_1(nm) :
Ai=(u)t

i€{1,2,...,m}
Proof. The proposition follows from proposition 2.10. and corollary 4.3. O

5. Vacillating Tableaux
Let

A']le,ng,.“,nm = {[A] = (>‘1’)‘27"'7 )|)‘ € Ak S {1727 ---7m}}7
Afm 1ne—1,...,npm—1 — {P‘] = (>‘1a)‘27"~7 )|>‘ € An —1aZ S {1,2, -'~7m}}7
k = {[)\] = ()\1,)\2, ,)\m)l)\z € Fk,l S {1,2, ,m}}

where AF = {u = (u1, p2, ..., pie) F ni|ng — py <k} and Ty, = {A; Ht[0 < ¢ < k).
Let T ! denote the irreducible C{P;(n1)®Pr(n2)®--® Py (ny,)} representation
indexed by AF
in V&,
Here, we discuss the vacillating tableau in the case of m-partitions following
the procedure in [4] for partitions of n. The dimension of the irreducible S,, X
Spy X oo X Sy, module VI equals the number of standard m-tableaux of shape
[A]. We can identify a standard m-tableau T}y of shape [A] with a sequence () =

AJO A, L. [A]®™) = [A]) of m-tableaux such that [\]@] = i, (i.e).]A” | = i for all

.- Since, the dimension of 7, l£ | equals the multiplicity of VI

1,712,
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1€{1,2,...,m}, [N® C [\]*+D and such that [A]®)/[A]¢=1) is the box containing i
in Tj). For example,

(R BER) = (09 00.G=). ). B3 @)

Let [\] € AF . A m-vacillating tableauz of shape [A] and length 2k is a

N1,M2,.m

sequence of m-partitions,
((02), 12y () = @, B, D,y NED, B =[]
satisfying for each 4,
LN €A, s
2. [N 2 [(AJ0+2) and [\JD /N CF2)]| = 1,
3. N0 C N0 and [[AJ0HD /[N0HD)] = 1.

The m-vacillating tableaux of shape [A] corresponds exactly with the paths from

the top of the Bratteli diagram to [A]. By the double centralizer theorem, we have

mgj‘] = dim(TE‘]) . Thus, if we let VI ([\]) denote the set of m-vacillating tableaux

of shape [\] and length k then

and [A](+2) € A

ni—1l,nz—1,....nym—1°

mi = dim(TM) = (VI ()

where mg‘] is the multiplicity of VI in the decomposition of V&* as a Sy X Spy X
... X Sy, module.
Let ni,no,...,nm,m > 2k. The sets Aﬁhn%___’nm and I'}" are in bijection with one
another using the maps,

Ak — T e — AF

MN1,MN25..,Mm N1,M2,..,m

via these bijections can be used either to I'}' or Afh,n?"“_,nm so as to index the
irreducible representations of C{Px(n1) ® Py(n2) ® - - - ® Pr(nm)}.
The following sequences represent the same m-vacillating tableau Py, the first

k m
mima....ny, and the second from T,

Py = ((l [T TTT 1)(1 [T, D(H—UH—U)(BIE@(EH?))

= (0.0,0.0.CD.CD, (P

k
Mn1,MN2,.,Nm

one is obtained using the diagrams from A

For our bijection, in section 6 we use A and in section 7 we use I'}* .

6. A Bijective Proof of (ning---n,)" = > f[’\]mgj‘}
[A]JeAE

M1,M .,

We follow the notations as given below:
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1. Til = {1,2, ,nl}
2. k=1{1,2,...,k}

To give a combinatorial proof of identity

(6.1) (ning - - -nm)k = Z fp‘]mg‘], for ny,no, ..., Ny, > 2k.
[AleAk

n1,n2,...,nm

We need to find a bijection of the form
{((a1,b1, ey 11), (a2, b2y vy 12) oy (ks by ooy L)) g € 11, by € T2y vyl € Ty q € K}

— | ] SYT™([N]) x VIT([\).
[A]JeAE

N1 nm
To do so, construct an invertible function that turns a sequence ((aq,b1,...,11),
(ag, b2, ..., 12), ..., (ak, bi, ..., g )) of m-tuples of numbers in the range 1 < a; < nq,1 <
bi < ng,...,1 <l < ny, into a pair (T, Py)) consisting of a standard m-tableaux
Tis) of shape [\] and m-vacillating tableaux Py of shape [A] and length 2k for some
A € AT s
Note: Here the RS insertion and reverse RS algorithm as in [4] is used. Also, we
used the jeu de taquin in each component of the m-partition. If T' = (11, Ts, ..., Trn)
is a standard m-tableau of shape [A] k-, n and for r € {1,2,...,m}, T, is a standard
tableau of shape A, F n, then jeu de taquin provides an algorithm for removing
the box containing z,. from 7,. and producing a standard tableau S, of shape p, F
(n,—1) and entries from {1, 2, ...,n,. }\{z,}. Let S = (S1, S2, ..., Sm) be the standard
m-tableau and S%7 denotes the entry of S, in row i and column j. We say that a box
whose removal leaves the young diagram of a partition is corner of S,.. Thus, the
corner of S, are the boxes that are end of both the row and column. The following
algorithm will delete z,. from T, leaving a standard tableau S, with x, removed.

We denote this process by z, s T,.
1. Let ¢ = S%J be the box containing ..
2. While c¢ is not a corner, do
a. Let ¢ be the box containing min{Si*J §i.i+11
b. Exchange the positions of ¢ and ¢'.
3. Delete c.

If only one of Sit17, LI+ exits at step 2.a then the minimum is taken to be the
single value.

Let S = (51, 52, ..., Sm) be the standard m-tableau and S, be a tableau of shape
tr with || < n, and distinct entries from {1,2, ..., n,}. Let z, be a positive integer
that is not in S,. The following algorithm insets z, into S, producing a standard
tableau T, of shape \. with u,. C A, |\./p:| = 1 whose entries are the union of

those from S and {x,}. We denote this process by z, £, S,
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1. Let R be the first row of S,..

2. While z, is less than some element in R, do

a. Let y, be the smallest element of R greater than x,;
b. Replace y, € R with x,;

c. Let x, := gy, and let R be the next row.

3. Place z, at the end of R (which is possibly empty).

It is possible to invert the process of insertion using the R-S reverse algorithm.

Theorem 6.1. The function ((a1,b1,...,01), (a2,b2,...;12), ..., (ak, bgy oy Ig)) Fd,

(T1x), Pay) provides a bijection between sequence of m-tuples in {((a1,b1,...,11),
(ag,bg,...,lg),..., (ak,bk,....,lk))ﬂ S a; S n1,1 S bi S TLQ,...,l S li S nm} and

LJ SYT™([N]) x VIT*([A]) and thus gives a combinatorial proof of (6.1).
[A]eAE

MM, nm

Proof. The proof is based on [4]. Given (a1, b1, ...,11), (a2, ba, ..., 12), ..., (ag, bk, ..., lk)
with 1 < a; < n1,1 < b; < noyeeyl < Iy < Ny, we will produce a pair
(T, Pg)s [\ € Ak .., consisting of a standard m-tableau T}y and a m-

vacillating tableau Py

Let TU) = (Tl(j),TQ(j), ...,Trng)). First, we initialize the 0*" tableau to be the
standard m-tableau of shape (n1), (n2), ..., (n,,), namely,

7O = (7, 7, T

- (O T Gl Tr) Ol )

Then recursively define standard m-tableau TV +2) and TUHD for 0 < 1 <k—1by
TUD = (TS = oy S 10T =1 &2 1))
U+ = (Tff“) =y B8 TVt G+ — g RS, Téf*é))

Let [\]V) € AJ be the shape of () and [A]U+2) € A/ be

T1,M2,.. 3, m ni—1lmng—1,....ny,—1

the shape of TU+2). Then let
1
Py = (N, N@, N L N®) and Ty =T®

so that Py is a m-vacillating tableau of shape [A] = [A]¥) € A¥ and T}y

M1,M2,..,lm
is a standard m-tableau of the same shape [A]. We denote this iterative process of
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deletion and insertion that associates the pair (7]}, Pjx)) to the sequence of m-tuples
(al, bl, cony ll), ((7,27 bz, ceey ZQ), ceoy (ak, bk, cony lk) by

(@1, b1s ooy 1), (a2, b2, 12), ooy (g Dy ooy Ig)) (Tixys Pray)-

Let [\UT2) C [NU+D with [N e AJFL NG+ e A
and TUtY be a standard m-tableau of shape [)\](J+1). We can uniquely de-
termine a;41,bj11,.-- 141 and a m-tableau TUt3) of shape [/\](7”’%) such that
TOH = (a5 RS, plte) g RS, pl+a) g RS, plts 7). To do this,
let 21, Zg, ..., zm be the boxes in A§j+”/A§j+2>,/\g””/xj*z)...,AS;*l)/AS,J;*%). We
use reverse RS insertion to delete the numbers in the boxes zi, 29, ..., 2, which
gives a;;11 and Tl(j+%),bj+1 and TQ(j+ 2) . ljy1 and T(]+ ), Thus, TU+3) =

[Tf”%),TQ(H%),...,T,Sf+%)] .

A irl ipl i+l
Now, let TU+2) = [T(J+2) T(]+2) T(J+2)] be a m-tableau of shape
NGtz e An “Ams—1,..m,—1 With increasing rows and columns and entries

{1,2, .. nl}\{ajﬂ} {1’ 2, .o\ {bj41}, - {1, 2, oo nn P\ {{j 41} respectively and
let [)\](3) C [NU*2) with [)\](3) €A . We can uniquely produce a stan-

M1,M25.,Mm
dard m-tableau T such that TG+3) = (a PRI LA LA N B

Tézj)). To do this, let z; be the box in /\gj)/)\gﬁr?), put aj4+; in position of z;
o ,

of Tl(j+2) and perform the inverse of jeu de taquin to produce Tl(J ), i.e., move

a;j+1 into a standard position by iteratively swapping it with larger of the num-

bers just above it or just left of it. Similarly, we can produce Tz(j ), ...,Tr(nj ). Thus,
TG) = [Tfj) T .. T,(nj)]

Given [A] € Ak .. and (T, Pyy) € SYT™([A]) x VI7([\]) we ap-
ply the process above to [)\](k_%) c W, Tk = Tix producing (ag, b, ..., l)

and T*~1 respectively. Continuing this way, we can produce ((ax,bg,...,Ix),
(p—1,bk—1, ooy l_1)y.ey (a1,b1, .. 01)) and TH, TE=D 7O gsuch that

((al, bl, ceny ll), (ag, bg, ceey lg), veey (ak,bk, veey lk)) F—d> (T[)\], P[)\]) O

Example 6.2. For ((6,2),(3,5),(1,4)) the pair (T}, Py)) is as follows.
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J (aj,bj) 7
0 (1|2|3|4|5|6 l1|2|3|4|5|6l)
1 6,2) 4% (1I2I3I4I5l 1|s|4|s|61)
RS 1[2[3]4[5]6] [1]2]4]5]6
162 (AEEEER) [EEE)
1L @35 (aEnBG 1246)
2 (3,5) £5, 1[2][3]5]6 1245>
[4]
1 jdt
2l (1,4) 4% IIIE )
Ba
RS
3 (1,4) - 1]3[s5]6] ,[1 24]>
(2] 3|5
14] L6]
Ty = ( ; 3[5]6], ; i 4[)
[4] 6]
Pp\] = ((m,m),(m,m),(m,a]]]ﬂ),(m,ajﬂ) (EF'EEBE (g:mgaj)

7. The RS Correspondence for the Tensor Product of Partition Algebras

To give a combinatorial proof of the identity
A
(7.1) BEK)™ = 3 (m)?
[Aler
we need to find a bijection of the form
Te+— || VI () x VI(A)
[Alery

by constructing a function that takes a tensor product partition diagram (d; ® do ®
- ®dp,) € T and produce a pair (Py), Q[y)) of m-vacillating tableaux.

Represent (d; ® do ®@ - - - ® dy,) € Ty, as a m-tuple of k-partition diagrams and
draw diagrams for every component (k-partition diagram) di,t € {1,2,...,m} of
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m-tuple using a standard representation as single row with the vertices in order
1,2, ..., 2k where the vertex j' is relabeled as 2k — j + 1. We draw the edges of the
standard representation of each component of a m-tuple of k-partition diagrams of
(d1®dy®---®d,,) € Ty in a specific way: connect vertices 4 and j with 4 < j if and
only if ¢ and j are related in d,t € {1,2,...,m} and there does not exits k related
to ¢ and j with ¢ < k < j. In this way, each vertex is connected only to its nearest
neighbors in its block.

Example 7.1. Consider the diagram (d; ® d2) € Ty
1 2 3 4 1 2 3 4
J X e 3=
1 2/ 3 4’ 1 2! 3 4
Figure 5:

The above diagram has a standard one line representation as follows:

./7@,/7%%
(l 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8)

Figure 6:

We label each edge e; of the diagram d;, ¢ € {1,2,...,m} with 2k+1—v where v
is the right vertex of e;. Define the insertion sequence of m-tuple of diagrams to be
the sequence E = (Ej;) = (E}, E3, ..., Ef*) indexed by the sequence 11,1, .2k —
1,2k — %, 2k.

B; = (E}E2,...EM),

h component,

e;, if vertex j is left end point of edge e; in it
where E; = 1€{1,2,...,m}

(), if vertex j is not left end point.
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e;, if vertex j is right end point of edge e; in it

where E;_% = ie{l,2,...,m}

(0, if vertex j is not right end point.

component,

The edge labeling for Example 7.1 is as follows:

<®6@164®34®32 1@05@2@3544(})31 >

The insertion sequence of the above edge labeling diagram is

i | s 1 13 2 25 3 37 4 45 5 5y

1
(B}, E3) | (0,0) (6,5) (0,0) (1,2) (6,0) (4,3) (0,5) (3,4) (4,4) (1,0) (3,3)

j 6 65 7 73 8
(E},E2)| (2,1) (2,2) (0,0) (1,1) (0,0)

The insertion sequence of a m-tuple of standard diagram completely determines
the edges and thus the connected components of the diagram and therefore the
following proposition follows immediately.

Proposition 7.2. (d1®d®--®d,,) € Ty is completely determined by its insertion
sequence.

For (dy ® dy ® - - - ® dp,) € Ty, with insertion sequence E; = (E}, E}, ..., EJ")
we generate a pair (P, Q) of m-vacillating tableaux. Begin with the empty
tableaux,

7O = (1, 7V, ... T = (0,0, ...,0)

Then recursively define standard m-tableaux TU+2) and TU+Y for 0 < j < 2k — 1
as follows: The m-tuple of numbers F FE is removed from the m- tableau T¢) by
the process of applying jeu de taquin on the components in which it appears

jdt . .
TG+ — Ej 1 A O Ej 1 # 0 (as given below)
7)), if B 1=0.

The process of insertion is as follows:

G+ _ ) B B9 G+, i Ej+1 # 0 (as given below)
TU+3), if Bjpq =0.
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Let Ej+q B8, 7G+3) denotes the insertion of all El,, # 0 of Ejiy into the i

i1 ,
component T, i(J+2) of TU+2) and other components remain unchanged.

If Ej+1 7é @, then

2 m
E? . BT

TG+ [Tfﬂ'“),Tg(jH),...,Téf“) and  Bj1 = [Ejy,,

i RS p(+3) e i .
Where TZ(]+1) _ Ej+11—> Ti] 2 , lf Ej:+1 7é @ fOI‘ 1€ {17 2, ,m}
Ti(]+§)v if B,y =0.

if Ej,1 #0, then

+3 (G+3) pi+3) (G+3) 1 2 m
T(]+2) = |:T1 2 7T2 2 ,...,Tm 2 jl and EJ+% = |:EJ+%7EJ+%77EJ+51|

i Jat () e i :
G+1) ET+%<—Ti , 1fE4+%7é(Z)f0rZ€{1,2,...,m}
sthere 7% = 4 7 R
T, if B |, =10.
(2 j+§

Let [A]® be the shape of T, [\](i+2) be the shape of T(+2) and [\] = [\]®).
Define

Quy = (0, D,y NEH, B € VT (),

Py = OAN%OJAN%F%)w~JAVk+%%[AN“) e VI (N).

In this way, we associate a pair of m-vacillating tableaux (P}, @[x) to a tensor
product of m-partition diagrams (d; ® d2 ® - - - ® d,,) € Ty which we denote by

(1 ®@do® - @ dm) — (P, Qpy)-

For the insertion sequence in Example 7.1:

j 2 1 13 2 2% 3 3 4 45 5 5
(Ej,E2)| (0,0) (6,5) (0,0) (1,2) (6,0) (4,3) (0,5) (3,4) (4,4) (0,0) (3,3)

j 6 6% 7 7 3
(B}, EZ) | (2,1) (2,2) (0,0) (1,1) (0,0)

the pair of 2-vacillating tableaux is given by
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i (B}, E3) TG i (E} E3) T@

0 (0.0) 8 (0.0 =&s (0.0)
oo & @0 LWy g (0,0)
165 % (@E) T @0 rs, (IO

1L 0,0 <& (@ ) 63 (2,2) g ( )

2 (1,2) 5 ( 7 6 (2,1) &S, ( ,
2l (6,0) 4% ( 7 5L (3,3) gt ( )

3 (3 25 (0 2R) 500 &5 (03 EE)
31 (0,5 &% (013,EE) 4 @y g (013 EGE)
VRRNC WA RELR ,) 4 ,)

Quw = (0.0, 0,0, ©0), ©O, @GP, CP. (O, O.m), o)
Py = ((0,0),(0,0), @.0), 0.0, (D), GO, (1,00, (D), (201

We have numbered the edges of each standard diagram of m-tuple of diagrams in
increasing order from right to left so if E]’.+l #£0,i€{1,2,...,m} then E]i,+l is the
2 2
, i1 . : ,
largest element of 7.7, Thus, in TZ.(J+2) = (Ei s Ti(J)) we know that E7 , is
2 2
in a corner box and jeu de taquin simply deletes that box.

Theorem 7.3. The function (di @ d2 ® - - - ® dy,) — (Pjy), Q) provides a

bijection between the set of tensor product of partition diagrams in Ty and pair of

m-vacillating tableauz in || VI ([A])x VT ([A]) and thus gives a combinatorial
(e
proof of identity (7.1).

Proof. We prove the theorem by constructing the inverse of (dy @ do ® -+ - ®d,,) —
(P}, Qpvy)- First, we use Q[y followed by Pjy) in the reverse order to construct the
sequence [N](2), [N, ... [A]ZF—2) [A](2R),
We initialize T (20) — (@, 0,...,0).
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We now present the process to construct T(+32) and Ei41 so that 70D =
i1 i+1 i i+1 i i+1 i
(Bipr 25 76+ 1p A2 o \0+D \0F2) 04D () \G)
S 1 . 21 .
then let T(H?) = Tl(ZH) T(ZJr ) = Tg(lH),...,TfnyrQ) = T7(7§+1) and E;y; =
; i1
(Bl 1, E? ., .. Ely) = (0,0,...,0). Otherwise, )\§Z+1)/)\§-1+2) is box z; for all
jeX #0,X C{1,2,..,m} and we use RS reverse insertion on the value in
i+ 4 i+i .
z; to produce Tj(Hz) and B}, such that T(ZH) (EL,, s Tj( +2)) Since, we

uninserted the value in position of z;, we know that Tj( )

1 . i+i 1
)\gz+2) =AY for s € {1,2,...,m}\X then let Ts( 2o 78+ and B, =0.
1 i+i i+1 i+3
Thus, T(+3) — [T1(+2)7T2(+2),_..,T7(n+2)} and Ei+1 = (El+17E12+17“ Eﬁ-l)
El, # 0 where j € X # 0,X C {1,2,..,m} and E}, = 0 where s €

{1,2,....,m}X.
Next we discuss the method to construct 7) and Ei+% so that T0+2) =

has shape )\(H%). Since,

(Brpy €2 70). 1220 = AT A0 = A0 A0 = AL then let T =
i+1) (i+% i m
T ) = Y LT = ThT and B, = (Bl 4 B2y, B, =

©,0,...,0). Otherwise, Aj’>//\§”%) is box z; for all j € X # 0, X C {1,2,..., 1.

Let Tj(z) be the tableau of shape )\;i) with the same entries as Tj(H'l) and having

the entry 2k — 4 in box z;. Let Eg+l = 2k —i. At any given step ¢, 2k — ¢ is the
2

largest value added to the tableau thus far, so that Tj(i) is standard. Further more,
jdt

](H 2) (E] I T(Z)) since ELL = 2k — i is already in a corner and thus jeu
2 2

de taquin simply delete it. Since, AW = )\gi+5) for s € {1,2,...,m}\X then let
Ts(z) — TS(Z+2) and E;_l = @
2
This iterative process will produce EQk,EQk_h...,E% which completely de-

termines the diagram (di ® d2 ® - - - ® d,,). By this way we have constructed
(di®dy @+ ®dyp) and (d1 @ da ® -+ - @ di) — (P, Q)- 0

Notice that in the m-tuple of standard representation of (d; @do®---®d,,,) a flip
corresponds to a reflection over the vertical line between vertices k and k+1 in each
component of a m-tuple. Our aim is to show that if (dy ® do ® - - @ dp,) — (P, Q)
then flip(di ® d2 ® - - - @ dy,) — (Q, P).

Given a tensor product partition diagram (dy ® da ® - - - ® d,,) € T, construct a
triangular grid (as in the case of partition diagrams) in the integer lattice Z x Z that
contains the points in the triangular whose vertices are (0,0), (2k,0) and (0, 2k).
Number the columns 1,2,...,2k from left to right and the rows 1,2,...,2k from
bottom to top. Place an X; in the box in column 7 and row j if and only if in the
first one row diagram of m-tuple the vertex i is the left end point of edge j. Place
an X in the box in column ¢ and row j if and only if in the second one row diagram
of m-tuple the vertex i is the left end point of edge j. Similarly, proceed in this
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one row diagram of m-tuple. We then label the vertices of the

diagram on the bottom row and left column with the m-tuple of empty partition

@,0,...,0).
Example 7.4.

1 - 9
6 4 3 92 7<{ 54 > 1
9
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(0,0)

(0, 0)

(0, 0)

X4
©.0)

Xs
©.0)

(0, 0)

X1

Xo

@, 9)

X

Xy

(©,0)

Xy

X4

(©,0)

X,
(0,9)

@, 9)

@, 9

X3
@0 |eo |oo |0 @0

Note that the triangular array completely determines the tensor product partition

diagram and vice-versa.

Now we inductively label the remaining vertices using the local rules of Fomin
(as in the case of partition diagrams). If a box is labeled with [u], [v], [A] as given
below then we add the label [p] according to the following rule:
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[RL1] If pij # vj,5 € {1,2,...,m} let p; = p; Uy, ie., pf = max(uh, v}).

[RL2) If pi; = vj, A\j C pj and A\j # pj, 7 € {1,2,...,m} then this will automatically
imply that p; can be obtained from A; by adding a box to Ai. Let p; can be
obtained from u; by adding a box to ué“.

[RL3) If p; =v; = Aj,j € {1,2,...,m} then if the square does not contain a X;, let
pj = A; and if the square does contain a X; then p; be obtained from A; by adding
1 to )\%

Using these rules we can uniquely label every corner one step at a time. The
resulting diagram is called the growth diagram Ggq for (di ® d2 ® - - - @ d,y,). The
growth diagram for Example 7.4. is

(0, 0)

©,9) @o

©o |G H#H

Xy
0,0 |0 | oo

X
0o |00 oo |(@m oo
Xy | X3
(0,0) (0,0) (O, D) (O,m) (o, o) (1, )
Xo | X4
@9 oo |00 |00 |[6D (@D @hH
X2 X1

@9 (@0 |69 |60 (G0 |G |G GO

Xy X3
0,0) ©,0) |(@,0) [©,0) [0,0 0,0 @0 [@0 (0,0)

Let P; denote the chain of m-partitions that follows the staircase path on the
diagonal of Gy from (0, 2k) to (k, k) and Qq denote the chain of m-partitions that
follows the staircase path on the diagonal of G4 from (2k,0) to (k,k). The pair
(P4, Qq) represents a pair of m-vacillating tableaux whose shape is the partition at
(k, k). From the above example

Q[A] = (((2)7 (Z)), (@7 0)7 (DvD)v (DﬂD)v (BvB)v (ELB)’ (ED,B]), (I:D,ED), (Bj7[|:|j))
PP\] = ((w7 (2))7 (®> @)7 (DﬂD)v (D7D)7 (ED75>7 (DﬂD)v (EDvED)7 (EI],I:I]), (Bj,l:l:lj))

Theorem 7.5. Let (d1 @ da ®@ -+ - @ dyy,) € Ty, with (dy @ da ® -+ - @ dp) = (P,Q).
Then Py =P and Q4 = Q.
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Proof. The proof is based on [4]. Turn each diagram dg, s € {1,2,...,m} of (d1 ®d2®
-+ ®dy) € Tk into a diagram d’, on 4k vertices by splitting each vertex ¢ into two
vertices labeled by i—% and i. If there is an edge from vertex j to vertex i in dg with
j <, let j be adjacent to i — % in d/. If there is an edge from vertex j to vertex i in
ds with 7 > ¢, let ¢ be adjacent to j — % in d,. A key advantage of the use of growth
diagrams is that the symmetry of the algorithm is nearly obvious. We have that 4
is the left end point of the edge labeled j in diagram ds of (d1 ® d2 ®---®d,,) if and
only if j is the left point of the edge labeled ¢ in diagram d; of flip(di ®da®--®d,, ).
Thus the growth diagram of G4 is the reflection over the line y = z of the growth

diagram of G f;p(q) and so Py = Qriip(ay and Qa = Ppiip(a)- a

Corollary 7.6. If (d1®d2®---Qd,,) — (P, Q) then flip(di@da®---®d,,) — (Q, P).

Corollary 7.7. A diagram (d1 @ da ® - - - @ dy,) € Ty, is symmetry if and only if
(1 ®@dy®---®@dy,) — (P, P).

Proof. The proof is based on [4]. If (d1 ® ds ® - - - ® d,,) is symmetry then by
the above corollary we must have P = ). To prove the converse part, let P =
and place the m-vacillating tableaux on the staircase border of the growth diagram.
The local rules we have defined above are invertible. Given [u],[v] and [p], one
can follow the rules backwards to uniquely find [A] and determine whether there
is an X;,i € {1,2,...,m} in the box. Thus, the interior of the growth diagram is
uniquely determined. By the symmetry of having P = ) along the staircase the
growth diagram must have a symmetry interior and a symmetric placement of the
X/s. This forces (d1 @ da ® - - - ® dp,) to be symmetric. ]

This corollary tells us that the number of symmetry diagrams in T is equal to
the number of m-vacillating tableaux of length 2k or the number of paths to level
k in the Bratteli diagram of C{Py(n1) ® Pr(n2) ® - - - ® Pr(ny,)}. Thus,

Card({(d1 ®@de® -+ - ®dp) € Ti|(d1 @ d2 ® - - - R dy,) is symmetry}) = Z mgj].
[Alery
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