KYUNGPOOK Math. J. 61(2021), 679-710
https://doi.org/10.5666/KMJ.2021.61.4.679
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

On the Tensor Product of m-Partition Algebras

A. Joseph Kennedy*and P. Jaish
Department of Mathematics, Pondicherry University, Puducherry 605014, India
e-mail : kennedy.pondi@gmail.com and jaish5577@gmail.com

Abstract. We study the tensor product algebra $P_{k}\left(x_{1}\right) \otimes P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$, where $P_{k}(x)$ is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra $P_{k}\left(x_{1}\right) \otimes P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$ and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ and the pairs of m-vacillating tableaux of shape $[\lambda] \in \Gamma_{k}^{m}, \Gamma_{k}^{m}=\left\{[\lambda]=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \mid \lambda_{i} \in\right.$ $\left.\Gamma_{k}, i \in\{1,2, \ldots, m\}\right\}$ where $\Gamma_{k}=\left\{\lambda_{i} \vdash t \mid 0 \leq t \leq k\right\}$. Also, we provide proof of the identity $\left(n_{1} n_{2} \cdots n_{m}\right)^{k}=\sum_{[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}} f^{[\lambda]} m_{k}^{[\overline{\lambda]}}$ where $m_{k}^{[\lambda]}$ is the multiplicity of the irreducible representation of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ module indexed by $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$, where $f^{[\lambda]}$ is the degree of the corresponding representation indexed by $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}=\left\{[\lambda]=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \mid \lambda_{i} \in \Lambda_{n_{i}}^{k}, i \in\{1,2, \ldots, m\}\right\}$ where $\Lambda_{n_{i}}^{k}=$ $\left\{\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{t}\right) \vdash n_{i} \mid n_{i}-\mu_{1} \leq k\right\}$.

1. Introduction

The partition algebras $P_{k}(x)$ have been defined by Martin [7] and by Jones [5] independently. The algebra was studied as Potts model in statistical mechanics and generalization of the Temperley-Lieb algebras. In [7, 8] the algebra appears implicity and in [9] it appears explicitly. Jones considered the algebra $P_{k}(n)$, as the symmetric group's centralizer algebra on $V^{\otimes k}$ (see [5]).

The G-vertex colored partition algebras $P_{k}(x, G)$ has been recently introduced in [11]. The algebra $P_{k}(n, G)$ realized as the centralizer algebras of the direct product

[^0]group $G \times S_{n}$ which is a subgroup of $G \imath S_{n}$ on $W^{\otimes k}$, where $W=\mathbb{C}^{n|G|}$. In [12], they also studied the inequivalent irreducible representations and their dimensions.

The class partition algebra $P_{k}(x, y)$ have been studied recently by Kennedy [6] and further studied by Martin and Elgamal [10]. The algebra $P_{k}(n, m)$ realized as the centralizer algebra of $S_{m} \backslash S_{n}$ act on $W^{\otimes k}$, where $W=\mathbb{C}^{n m}$ and W is permutation module for $S_{n m}$.

The RS correspondence for the partition algebra by Halverson and Lewandowski [4] provides the bijection between the set partitions and the pairs of vacillating tableaux.

In this paper, we demonstrate that the algebra $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ is the centralizer algebra of the direct product $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ on $W^{\otimes k}$, where $W=\mathbb{C}^{n_{1} n_{2} \cdots n_{m}}$. We use centralizer theory to study the semisimplicity of $P_{k}\left(x_{1}\right) \otimes P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$ and by using the representation theory of $P_{k}(x)$ (from, $[1,3,5])$ the index of the inequivalent irreducible representations of $P_{k}\left(x_{1}\right) \otimes$ $P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$ is studied and their dimensions in the semisimple case is computed. In addition, the Bratteli diagrams and branching rules for the towers $P_{k-1}\left(x_{1}\right) \otimes P_{k-1}\left(x_{2}\right) \otimes \cdots \otimes P_{k-1}\left(x_{m}\right) \subseteq P_{k}\left(x_{1}\right) \otimes P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$ are described.

The RS correspondence for the partition algebra by Halverson and Lewandowski [4] influenced us to construct the RS correspondence for the tensor product of m-partition algebras which provides the bijection between the set of tensor product of m-partition diagrams and the pairs of m-vacillating tableaux. The proof of the identity $\left(n_{1} n_{2} \cdots n_{m}\right)^{k}=\sum_{[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}} f^{[\lambda]} m_{k}^{[\lambda]}$ where $m_{k}^{[\lambda]}$ is the multiplicity of the irreducible representation of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ module indexed by $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$, where $f^{[\lambda]}$ is the degree of the corresponding representation indexed by $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}=\{[\lambda]=$ $\left.\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \mid \lambda_{i} \in \Lambda_{n_{i}}^{k}, i \in\{1,2, \ldots, m\}\right\}$ where $\Lambda_{n_{i}}^{k}=\left\{\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{t}\right) \vdash\right.$ $\left.n_{i} \mid n_{i}-\mu_{1} \leq k\right\}$ is discussed by constructing a bijection between the sequence $\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right.$ of m-tuples of numbers where $1 \leq a_{i} \leq$ $n_{1}, 1 \leq b_{i} \leq n_{2}, \ldots, 1 \leq l_{i} \leq n_{m}$ and the pair $\left(T_{[\lambda]}, P_{[\lambda]}\right)$ where $T_{[\lambda]}$ is standard m tableau of shape $[\lambda]$ and $P_{[\lambda]}$ is m-vacillating tableau of shape $[\lambda]$.

2. Preliminaries

In this section, some basic definitions and results are discussed herewith.
Definition 2.1. ([13, §2.1]) A partition of non-negative integers n is a sequence of non-negative integers $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{i}\right)$ such that $\beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{i} \geq 0$ and $|\beta|=\beta_{1}+\beta_{2}+\ldots+\beta_{i}=n$. It is denoted by $\beta \vdash n$.

A Young diagram is a diagrammatic representation of a partition β as an array of n boxes with β_{1} boxes in the first row, β_{2} boxes in the second row and so on.

Definition 2.2. A m-partition of size n is an ordered m-tuple of partitions $[\lambda]=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ where $\lambda_{1} \vdash n_{1}, \lambda_{2} \vdash n_{2}, \ldots, \lambda_{m} \vdash n_{m}$ with $n_{1}+n_{2}+\ldots+n_{m}=n$. We denote it $[\lambda] \vdash_{m} n$ where m is number of partition of n and λ_{i} is the $i^{t h}$ component of $[\lambda]$.

Remark 2.3. $\lambda \vdash n$ denotes a single partition of n and $[\lambda] \vdash_{m} n$ denotes a m partition of n.

A young diagram of a 3 -partition of size 9 is as follows:

Figure 1: $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=([3,2],[2,1],[1])$

Definition 2.4. ([13, 2.1.3]) Suppose $\lambda \vdash n$. A tableau of shape λ is an array t obtained by filling the boxes of the Young diagram of λ with the numbers $1,2, \ldots$., n bijectively.

A tableau t is standard if the entries in the tableau increase along the rows from left to right and along the columns from top to bottom. Let $t_{i, j}$ stand for the entry of t in the position (i, j).
Definition 2.5. Suppose $[\lambda]=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \vdash_{m} n$. A m-tableau of shape $[\lambda]$ is an m-tuple of array $[t]=\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ obtained by filling the boxes of the each Young diagram of λ_{i} with the numbers $1,2, \ldots, n_{i}$ bijectively.

Definition 2.6. A m-tableau $[t]$ of shape $[\lambda]$ is standard if each t_{i} is standard tableau of shape λ_{i}.
Notation 2.7. Let $S T^{m}([\lambda])=\{[t] \mid[t]$ is standard tableau of shape $[\lambda]\}$.

2.1. The partition algebra $P_{k}(x)$

A k-partition diagram is a simple graph of one above the other of two lines of k-vertices. The $2 k$ vertices partitioned into l subsets, $1 \leq l \leq 2 k$ by the connected components of a k-partition diagram. We state that two diagrams are equivalent when they determine the same partitions of $2 k$ vertices.

Figure 2: Two equivalent diagrams
When we are discussing about diagrams, we are really concerned about the associated equivalence classes. Define an equivalence classes of k-partition diagrams by stating that two classes are equivalent if they have same elements in any order.

Number the vertices $1,2, \ldots, k$ in the upper line from left to right and $k+1, k+2, \ldots, 2 k$ in the lower line from left to right in a k-partition diagram.

The field F will always represent a field of characteristic which is arbitrary throughout the paper and x represents a field element of the field F. The following is known as the product of two diagrams d and d^{\prime} (see Figure 3):

1. Set d at the top and d^{\prime} below it so that the lower line of d coincides with the upper line of d^{\prime}.
2. Now, we have a diagram with upper line, middle line and lower line of vertices. This diagram is named as attachment of d and d^{\prime}. Let the number of components that lie completely in the middle line is λ.
3. Make a new diagram $d^{\prime \prime}$ by deleting the vertices in the middle line but keeping the lower line and upper line and maintaining the connections between them. Replacing every "component" contained in the middle line with the variable x. That is, $d^{\prime} d=x^{\lambda} d^{\prime \prime}$.

Figure 3: Product of two k-partition diagrams d and d^{\prime}
This product is associative and well defined up to equivalence. Linearly extending this product makes the algebra $P_{k}(x)$ an associative algebra with identity.

The partition algebra $P_{k}(x)$ is the F-span of all k-partition diagrams for every x in the field F and a natural number k. The identity element is given by the
partition diagram with every vertex in the upper line connected only to the vertex below it in the lower line. The dimension of the partition algebra $P_{k}(x)$ is the Bell number $B(2 k)$, where

$$
\begin{equation*}
B(2 k)=\sum_{l=1}^{l=2 k} S(2 k, l) \tag{2.1}
\end{equation*}
$$

and where the number of equivalence relations with exactly l parts for a set of $2 k$ elements is Stirling number $S(2 k, l)$ (see [14]). By convention, $P_{0}(x)=F$. Replacing the variable x by complex number ξ, we obtain a F-algebra $P_{k}(\xi)$.

Schur-Weyl Duality

We follow the notations, as given in [3]. Let $V=\mathbb{C}^{n}$, where V is the permutation module for S_{n} with standard basis $v_{1}, v_{2}, \ldots, v_{n}$. Then $\pi\left(v_{i}\right)=v_{\pi(i)}$, for $\pi \in S_{n}$ and $1 \leq i \leq n$. For every positive integer k, the tensor product space $V^{\otimes k}$ is a module for S_{n} with a standard basis given by $v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}}$, where $1 \leq i_{j} \leq n$. The action of $\pi \in S_{n}$ on a basis vector is given by

$$
\begin{equation*}
\pi\left(v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}}\right)=v_{\pi\left(i_{1}\right)} \otimes v_{\pi\left(i_{2}\right)} \otimes \cdots \otimes v_{\pi\left(i_{k}\right)} \tag{2.2}
\end{equation*}
$$

For every diagram d and every integer sequence $i_{1}, i_{2}, \ldots, i_{2 k}$ with $1 \leq i_{s} \leq n$, define (2.3)

$$
\psi(d)_{i_{k+1}, \ldots, i_{2 k}}^{i_{1}, i_{2}, \ldots, i_{k}}= \begin{cases}1 & \text { if } i_{r}=i_{s} \text { whenever vertices } s \text { and } r \text { are connected in } d \\ 0 & \text { otherwise }\end{cases}
$$

Define the action of a diagram $d \in P_{k}(n)$ on $V^{\otimes k}$ by stating it on the standard basis as

$$
\begin{equation*}
d\left(v_{i_{1}} \otimes v_{i_{2}} \otimes \cdots \otimes v_{i_{k}}\right)=\sum_{1 \leq i_{k+1}, \ldots, i_{2 k} \leq n} \psi(d)_{i_{k+1}, \ldots, i_{2 k}}^{i_{1}, i_{2}, \ldots, i_{k}} v_{i_{k+1}} \otimes v_{i_{k+2}} \otimes \cdots \otimes v_{i_{2 k}} . \tag{2.4}
\end{equation*}
$$

Theorem 2.8.([5]). $\mathbb{C}\left[S_{n}\right]$ and $P_{k}(n)$ generate full centralizers of each other in $\operatorname{End}\left(V^{\otimes k}\right)$. In particular, for $n \geq 2 k$,
(a) $P_{k}(n) \cong E n d_{S_{n}}\left(V^{\otimes k}\right)$
(b) S_{n} generates $\operatorname{End}_{P_{k}(n)}\left(V^{\otimes k}\right)$.

2.2. The Irreducible Representations of $P_{k}(x)$

Double centralizer Theory

We follow the notations as in [1]. Let \mathcal{A} be a finite-dimensional associative algebra over \mathbb{C}, the field of complex numbers. The algebra \mathcal{A} is said to be semisimple if

$$
\mathcal{A} \cong \bigoplus_{\lambda \in \widehat{\mathcal{A}}} \mathcal{M}_{d_{\lambda}}(\mathbb{C})
$$

where $\mathcal{M}_{d_{\lambda}}(\mathbb{C})$ denotes full matrix algebras, $\widehat{\mathcal{A}}$ a finite index set and d_{λ} be any positive integer. Corresponding to every $\lambda \in \widehat{\mathcal{A}}$ there is a single irreducible \mathcal{A} module, call it V^{λ}, which has dimension d_{λ}. If $\widehat{\mathcal{A}}$ is a singleton set then \mathcal{A} is said to be simple. Maschke's Theorem (see [2]) says that if G is finite, $\mathbb{C}[G]$ is semisimple.

A finite dimensional \mathcal{A}-module M is completely reducible if it is the direct sum of irreducible \mathcal{A}-modules, i.e.,

$$
M \cong \bigoplus_{\lambda \in \widehat{\mathcal{A}}} m_{\lambda} V^{\lambda}
$$

where the non-negative integer m_{λ} is the multiplicity (dimension) of the irreducible \mathcal{A}-module V^{λ} in M (some of the m_{λ} may be zero). Wedderburn's Theorem (see [2]) discuss that for \mathcal{A} being semi-simple every \mathcal{A} is completely reducible.

The algebra $\operatorname{End}(M)$ comprises of all \mathbb{C}-linear transformations on M, where the composition of transformations is the algebra multiplication. If the representation $\rho: \mathcal{A} \rightarrow \operatorname{End}(M)$ is injective we say that M is faithful \mathcal{A}-module. The centralizer algebra of \mathcal{A} on M denoted $\operatorname{End}_{\mathcal{A}}(M)$, is the subalgebra of $\operatorname{End}(M)$ comprising of all operators that commute with the \mathcal{A}-action:

$$
\operatorname{End}_{\mathcal{A}}(M)=\{T \in \operatorname{End}(M) \mid T \rho(a) \cdot m=\rho(a) T \cdot m, \forall a \in \mathcal{A}, m \in M\}
$$

If M is irreducible, then Schur's Lemma says that $\operatorname{End}_{\mathcal{A}}(M) \cong \mathbb{C}$. If G is a finite group and M is a G-module, then we often write $\operatorname{End}_{G}(M)$ in place of $\operatorname{End}_{\mathbb{C}[G]}(M)$.

Theorem 2.9. Double centralizer Theorem(see [2]).
Suppose that \mathcal{A} and M decomposes as above. Then
(a)

$$
\operatorname{End}_{\mathcal{A}}(M) \cong \bigoplus_{\lambda \in \widehat{\mathcal{A}}} \mathcal{M}_{m_{\lambda}}(\mathbb{C})
$$

(b) As an $E n d_{\mathcal{A}}(M)$-module,

$$
M \cong \bigoplus_{\lambda \in \widehat{\mathcal{A}}} d_{\lambda} U^{\lambda}
$$

where $\operatorname{dim} U^{\lambda}=m_{\lambda}$ and U^{λ} is an irreducible module for $\operatorname{End}_{\mathcal{A}}(M)$ when $m_{\lambda}>0$.
(c) As $\mathcal{A} \otimes \operatorname{End}_{\mathcal{A}}(M)$-bimodule,

$$
M \cong \bigoplus_{\lambda \in \widehat{\mathcal{A}} \text { such that } m_{\lambda} \neq 0} V^{\lambda} \otimes U^{\lambda}
$$

(d) \mathcal{A} generates $\operatorname{End}_{E n d_{\mathcal{A}}(M)}(M)$.

This theorem tells us that if \mathcal{A} is semisimple then so is $\operatorname{End}_{\mathcal{A}}(M)$. It also says that the set $\widehat{\mathcal{A}}_{M}=\left\{m_{\lambda} \in \widehat{\mathcal{A}} \mid m_{\lambda}>0\right\}$ indexes all the irreducible representations of $\operatorname{End}_{\mathcal{A}}(M)$. Finally, we see from this theorem that the roles of multiplicity and dimension are interchanged when M is viewed as an $\operatorname{End}_{\mathcal{A}}(M)$ - module as against the \mathcal{A}-module. When the hypothesis of the above theorem are satisfied, we say that \mathcal{A} and $\operatorname{End}_{\mathcal{A}}(M)$ generate full centralizers of each other in M. This is often called Schur-Weyl Duality between \mathcal{A} and $\operatorname{End}_{\mathcal{A}}(M)$.

Branching Rules

Let \mathcal{A} and \mathcal{B} be semisimple algebras and where \mathcal{B} be a subalgebra of \mathcal{A}. Let M be a \mathcal{A}-module and M can be viewed as \mathcal{B}-module by restricting the action of \mathcal{A} on M to \mathcal{B}. This \mathcal{B}-module is called the restriction of M from \mathcal{A} to \mathcal{B} and is denoted $M \downarrow_{\mathcal{B}}^{\mathcal{A}}$. On other side, let N be a \mathcal{B}-module. A \mathcal{A}-module produced from a \mathcal{B}-module is called induction of N from \mathcal{B} to \mathcal{A} and is denoted $N \uparrow_{\mathcal{B}}^{\mathcal{A}}$. Let $\left\{V^{\lambda}\right\}_{\lambda \in \widehat{\mathcal{A}}}$ denote the irreducible \mathcal{A}-modules and $\left\{\check{V}^{\mu}\right\}_{\mu \in \widehat{\mathcal{B}}}$ denote the irreducible \mathcal{B}-modules. The decomposition

$$
V^{\lambda} \downarrow_{\mathcal{B}}^{\mathcal{A}}=\bigoplus_{\mu \in \widehat{\mathfrak{B}}} g_{\lambda \mu} \check{V}^{\mu}
$$

where the $g_{\lambda \mu}$ are non-negative integers are called the (restriction) branching rule for $\mathcal{B} \subseteq \mathcal{A}$. Frobenius reciprocity (see [2]) tells us that

$$
\check{V}^{\mu} \uparrow_{\mathcal{B}}^{\mathcal{A}}=\bigoplus_{\lambda \in \hat{\mathcal{A}}} g_{\lambda \mu} V^{\lambda} .
$$

Proposition 2.10. (Branching rule for $E n d_{G}\left(M^{\otimes(k-1)}\right) \subseteq \operatorname{End}_{G}\left(M^{\otimes k}\right)$).
Let G be a finite group and $\rho: \mathbb{C}[G] \rightarrow \operatorname{End}(M)$ be a representation of G. Let $M^{\otimes k}$ denote the k-fold tensor product of M and $\left\{V^{\lambda}\right\}_{\lambda \in \widehat{\mathcal{G}}_{k}}$ denote the irreducible G-modules that appear in $M^{\otimes k}$ where $\widehat{\mathcal{G}}_{k}$ indexes the irreducible G-modules that appear in $M^{\otimes k} .\left\{U_{k}^{\lambda}\right\}_{\lambda \in \widehat{\mathfrak{g}}_{k}}$ denote the irreducible End ${ }_{G}\left(M^{\otimes k}\right)$-modules that appear in $M^{\otimes k}$. View the algebra $E n d_{G}\left(M^{\otimes(k-1)}\right)$ as a subalgebra of $\operatorname{End}_{G}\left(M^{\otimes k}\right)$ by identifying it with the subalgebra $\operatorname{End}_{G}\left(M^{\otimes(k-1)}\right) \otimes$ id, with id $\in \operatorname{End}_{G}(M)$, the identity transformation. For V^{μ} a summand of $M^{\otimes(k-1)}$ consider that as a G module

$$
V^{\mu} \otimes M=\bigoplus_{\lambda \in \widehat{\mathfrak{G}}_{k}} g_{\mu \lambda} V^{\lambda} .
$$

Suppose further that

$$
U_{k}^{\lambda} \downarrow_{E n d_{G}\left(M^{\otimes(k-1)}\right)}^{E n d_{G}\left(M^{\otimes k}\right)}=\bigoplus_{\mu \in \widehat{\mathfrak{G}}_{k}-1} g_{\lambda \mu}^{\prime} U_{k-1}^{\mu} .
$$

Then $g_{\mu \lambda}=g_{\lambda \mu}^{\prime}$ for all μ and λ.

Theorem 2.11. (see [5]). Let S^{λ} be an irreducible S_{n}-module and let V denote the permutation representation of S_{n}. Then

$$
S^{\lambda} \otimes V \cong\left(S^{\lambda} \downarrow_{S_{n-1}}^{S_{n}}\right) \uparrow_{S_{n-1}}^{S_{n}} \cong \bigoplus_{\mu=\left(\lambda^{-}\right)^{+}} S^{\mu}
$$

where $\left(\lambda^{-}\right)^{+}$denotes a partition of n obtained by removing a box from λ and then adding a box.

Definition 2.12. The Bratteli diagram is a graph which contains a rows of vertices with the rows labeled by $0, \frac{1}{2}, 1,1 \frac{1}{2}, \ldots, k$ where vertices in a row i and $i+\frac{1}{2}$ are from the index sets Λ_{n}^{i} and Λ_{n-1}^{i} respectively. There is a edge between two vertices when they are in consecutive rows and they differing by one box.

Proposition 2.13. (see [1]). (Branching rule for $P_{k-1}(n) \subseteq P_{k}(n)$).
The lines in the $\left(S_{n}, P_{k}(n)\right)$-Bratteli diagram when read upward from row k to $k-1$, provides the restriction branching rule, the lines downward gives the induction branching rule $P_{k-1}(n) \subseteq P_{k}(n)$. In particular, for $n \geq 2 k$,

$$
P^{\lambda} \downarrow_{P_{k-1}(n)}^{P_{k}(n)}=\bigoplus_{\mu=\left(\lambda^{-}\right)^{+}, n-\lambda_{1} \leq k-1} P^{\mu}
$$

and

$$
P^{\mu} \uparrow_{P_{k-1}(n)}^{P_{k}(n)}=\bigoplus_{\lambda=\left(\mu^{-}\right)^{+}} P^{\lambda}
$$

3. The Tensor Product of m-Partition Algebras

3.1. The tensor product partition algebra $P_{k}\left(x_{1}\right) \otimes P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$

In this subsection, the structure of the tensor product partition algebra $P_{k}\left(x_{1}\right) \otimes$ $P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$, where $x_{1}, x_{2}, \ldots, x_{m} \in F$ are discussed. Consider the tensor product partition algebra $P_{k}\left(x_{1}\right) \otimes P_{k}\left(x_{2}\right) \otimes \cdots \otimes P_{k}\left(x_{m}\right)$. Note that the standard basis for this algebra is

$$
\mathcal{T}_{k}:=\left\{\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \mid d_{1}, d_{2}, \ldots, d_{m} \text { are } k \text {-partition diagrams }\right\}
$$

and the dimension is $[B(2 k)]^{m}$.

Let $\left(d_{1}^{\prime} \otimes d_{2}^{\prime} \otimes \cdots \otimes d_{m}^{\prime}\right),\left(d_{1}^{\prime \prime} \otimes d_{2}^{\prime \prime} \otimes \cdots \otimes d_{m}^{\prime \prime}\right) \in \mathcal{T}_{k}$, then $\left(d_{1}^{\prime \prime} \otimes d_{2}^{\prime \prime} \otimes\right.$ $\left.\cdots \otimes d_{m}^{\prime \prime}\right)\left(d_{1}^{\prime} \otimes d_{2}^{\prime} \otimes \cdots \otimes d_{m}^{\prime}\right)=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{m}^{\lambda_{m}}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$, where $d_{1}^{\prime \prime} d_{1}^{\prime}=x_{1}^{\lambda_{1}} d_{1}$ in $P_{k}\left(x_{1}\right), d_{2}^{\prime \prime} d_{2}^{\prime}=x_{2}^{\lambda_{2}} d_{2}$ in $P_{k}\left(x_{2}\right), \ldots, d_{m}^{\prime \prime} d_{m}^{\prime}=x_{m}^{\lambda_{m}} d_{m}$ in $P_{k}\left(x_{m}\right)$. Thus the product of any two element in \mathfrak{T}_{k} is a scalar product of some element in \mathfrak{T}_{k}. Hence, the extension of partition algebras are defined to be the F-span of the tensor product of m-partition diagrams with identity.

3.2. Two bases for $E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$

In this subsection, two bases for $E n d_{S_{n_{1}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$, where $W=\mathbb{C}^{n_{1} n_{2} \cdots n_{m}}$ are discussed.

$$
\begin{equation*}
\text { Let } W=\operatorname{Span}_{\mathbb{C}}\left\{v_{(i, j, \ldots, s)} \mid 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}, \ldots, 1 \leq s \leq n_{m}\right\} . \tag{3.1}
\end{equation*}
$$

The action of $S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}$ on W is defined as

$$
\begin{equation*}
\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left(v_{(i, j, \ldots, s)}\right)=v_{\left(\pi_{1}(i), \pi_{2}(j), \ldots, \pi_{m}(s)\right)} . \tag{3.2}
\end{equation*}
$$

Note that when $n_{i}=1$, for all $i \in\{2,3, \ldots, m\}, S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}} \cong S_{n_{1}}$; in this case W specializes to V_{1}, the permutation representation of $S_{n_{1}}$.

$$
\begin{equation*}
\text { Let } \mathbb{S}:=\left\{1,2, \ldots, n_{1}\right\} \times\left\{1,2, \ldots, n_{2}\right\} \times \ldots \times\left\{1,2, \ldots, n_{m}\right\} \tag{3.3}
\end{equation*}
$$

be an index set for the basis of W and $I=\left(\left(i_{1}, j_{1}, \ldots, s_{1}\right),\left(i_{2}, j_{2}, \ldots, s_{2}\right), \ldots\right.$, $\left.\left(i_{k}, j_{k}, \ldots, s_{k}\right)\right), J=\left(\left(i_{k+1}, j_{k+1}, \ldots, s_{k+1}\right),\left(i_{k+2}, j_{k+2}, \ldots, s_{k+2}\right), \ldots,\left(i_{2 k}, j_{2 k}, \ldots, s_{2 k}\right)\right)$ in \mathbb{S}^{k}. The action of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ on \mathbb{S} by $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(i, j, \ldots, s)=$ $\left(\pi_{1}(i), \pi_{2}(j), \ldots, \pi_{m}(s)\right)$ can be extended to an action on $\mathbb{S}^{2 k}$ by $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I, J)$ $=\left(\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I),\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(J)\right)$.

Diagonally extend the action of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ on W to an action of $S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}$ on $W^{\otimes k}$ as follows:

$$
\begin{align*}
& \left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left(v_{\left(i_{1}, j_{1}, \ldots, s_{1}\right)} \otimes \cdots \otimes v_{\left(i_{k}, j_{k}, \ldots, s_{k}\right)}\right) \tag{3.4}\\
& \quad=v_{\left(\pi_{1}\left(i_{1}\right), \ldots, \pi_{m}\left(s_{1}\right)\right)} \otimes \cdots \otimes v_{\left(\pi_{1}\left(i_{k}\right), \ldots, \pi_{m}\left(s_{k}\right)\right)}
\end{align*}
$$

We will write the above as $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left(v_{I}\right)=v_{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I)}$.
Let $A \in \operatorname{End}\left(W^{\otimes k}\right)$. Define $A\left(v_{J}\right)=\sum_{I} A_{I}^{J}\left(v_{I}\right)$, where $I, J \in \mathbb{S}^{k}$ and $A_{I}^{J} \in \mathbb{C}$ is the $(I, J)^{t h}$ entry of A and v_{I} is a basis element of $W^{\otimes k}$.

The following is our analog of Jones's result.
Lemma 3.1. $A \in \operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right) \Leftrightarrow A_{I}^{J}=A_{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I)}^{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(J)}, \forall\left(\pi_{1}, \pi_{2}\right.$, $\left.\ldots, \pi_{m}\right) \in S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$.

Proof. We have $A \in \operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$

$$
\begin{aligned}
& \Leftrightarrow\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) A=A\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right), \forall\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) \in S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}} \\
& \Leftrightarrow\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) A\left(v_{J}\right)=A\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left(v_{J}\right), \forall v_{J} \\
& \Leftrightarrow\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) \sum_{I} A_{I}^{J}\left(v_{I}\right)=A\left(v_{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(J)}\right) \\
& \Leftrightarrow \sum_{I} A_{I}^{J}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left(v_{I}\right)=\sum_{I} A_{I}^{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(J)}\left(v_{I}\right) \\
& \Leftrightarrow \sum_{I} A_{I}^{J}\left(v_{\left.\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I)\right)}\right)=\sum_{I} A_{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I)}^{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(J)}\left(v_{\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I)}\right)
\end{aligned}
$$

since the action of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ is by the permutation representation. The result follows from equating the scalars and linearly independence.

Lemma 3.2.

$$
\operatorname{dim} E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)=\sum_{i=1, j=1, \ldots, s=1}^{i=n_{1}, j=n_{2}, \ldots, s=n_{m}} S(2 k, i) S(2 k, j) \cdots S(2 k, s) .
$$

$$
\text { when } n_{1}, n_{2}, \ldots, n_{m} \geq 2 k, \quad \operatorname{dim} \operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)=[B(2 k)]^{m} .
$$

Proof. By lemma 3.1. A commutes with the $S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}$-action on $W^{\otimes k}$ if and only if the matrix entries of A are equal on $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbits. Thus, $\operatorname{dim} E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$ is the number of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbits on $\mathbb{S}^{2 k}$. Fix a tuple of indices $(I, J)=\left(\left(i_{1}, j_{1}, \ldots, s_{1}\right),\left(i_{2}, j_{2}, \ldots, s_{2}\right), \ldots,\left(i_{2 k}, j_{2 k}, \ldots, s_{2 k}\right)\right) \in$ $\mathbb{S}^{2 k}$ which determine the partitions $d_{1}:=\bar{d}\left(i_{1}, i_{2}, \ldots, i_{2 k}\right), d_{2}:=\bar{d}\left(j_{1}, j_{2}, \ldots, j_{2 k}\right), \ldots$, $d_{m}:=\bar{d}\left(s_{1}, s_{2}, \ldots, s_{2 k}\right)$ of $\{1, \ldots, 2 k\}$ (into at most $n_{1}, n_{2}, \ldots, n_{m}$ subsets respectively) according to those that have an equal value. Let $[(I, J)]$ be the orbit of $(I, J) \in \mathbb{S}^{2 k}$. Then $\left(I^{\prime}, J^{\prime}\right) \in[(I, J)]$
$\Leftrightarrow\left(I^{\prime}, J^{\prime}\right)=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)(I, J)$, for some $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right) \in S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ $\Leftrightarrow\left(i_{r}^{\prime}, j_{r}^{\prime}, \ldots, s_{r}^{\prime}\right)=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left(i_{r}, j_{r}, \ldots, s_{r}\right), \forall r$ such that $1 \leq r \leq 2 k$, where
$\left(i_{r}^{\prime}, j_{r}^{\prime}, \ldots, s_{r}^{\prime}\right)$ and $\left(i_{r}, j_{r}, \ldots, s_{r}\right)$ are the $r^{t h}$ component of $\left(I^{\prime}, J^{\prime}\right)$ and (I, J)
respectively.
$\Leftrightarrow\left(i_{r}^{\prime}, j_{r}^{\prime}, \ldots, s_{r}^{\prime}\right)=\left(\pi_{1}\left(i_{r}\right), \pi_{2}\left(j_{r}\right), \ldots, \pi_{m}\left(s_{r}\right)\right)$
$\Leftrightarrow i_{r}^{\prime}=\pi_{1}\left(i_{r}\right), j_{r}^{\prime}=\pi_{2}\left(j_{r}\right), \ldots ., s_{r}^{\prime}=\pi_{m}\left(s_{r}\right)$

$$
\begin{align*}
\Leftrightarrow & {\left[i_{p}=i_{q} \text { iff } i_{p}^{\prime}=i_{q}^{\prime}\right],\left[j_{p}=j_{q} \text { iff } j_{p}^{\prime}=j_{q}^{\prime}\right], \ldots,\left[s_{p}=s_{q} \text { iff } s_{p}^{\prime}=s_{q}^{\prime}\right],(1 \leq p, q \leq 2 k) } \tag{3.5}\\
\Leftrightarrow & \bar{d}\left(i_{1}, i_{2}, \ldots, i_{2 k}\right)=\bar{d}\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{2 k}^{\prime}\right), \bar{d}\left(j_{1}, j_{2}, \ldots, j_{2 k}\right)=\bar{d}\left(j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{2 k}^{\prime}\right), \ldots . \\
& \bar{d}\left(s_{1}, s_{2}, \ldots, s_{2 k}\right)=\bar{d}\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{2 k}^{\prime}\right) .
\end{align*}
$$

Thus, every $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbits determine the partitions $d_{1}, d_{2}, \ldots, d_{m}$ of the set of $2 k$ elements and vice-versa. Hence, the result.

For a fixed tuple of indices $(I, J) \in \mathbb{S}^{2 k}$, define the matrix $E_{J}^{I} \in \operatorname{End}\left(W^{\otimes k}\right)$ to be the $\left(n_{1} n_{2} \cdots n_{m}\right)^{k} \times\left(n_{1} n_{2} \cdots n_{m}\right)^{k}$ matrix with a 1 in the (I, J)-position and zero elsewhere. For every $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ orbit $[(I, J)$], we define a matrix $T_{J}^{I} \in \operatorname{End}\left(W^{\otimes k}\right)$ by

$$
T_{J}^{I}=\sum_{\left(I^{\prime}, J^{\prime}\right) \in[(I, J)]} E_{J^{\prime}}^{I^{\prime}}
$$

In fact, $T_{J}^{I} \in \operatorname{End}\left(W^{\otimes k}\right)$, since such a matrix satisfies the Lemma 3.1. condition: The entries of the matrix are equal on $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbits. By using the equation (3.5), we obtained

$$
\begin{equation*}
T_{\left(i_{k+1}, j_{k+1}, \ldots, s_{k+1}\right), \ldots,\left(i_{2 k}, j_{2 k}, \ldots, s_{2 k}\right)}^{\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{k}, j_{k}, \ldots, s_{k}\right)}=\sum E_{\left(i_{k+1}^{\prime}, j_{k+1}^{\prime}, \ldots, s_{k+1}^{\prime}\right), \ldots,\left(i_{2 k}^{\prime}, j_{2 k}^{\prime}, \ldots, s_{2 k}^{\prime}\right)}^{\left(i_{1}^{\prime}, j_{1}^{\prime}, \ldots, s_{1}^{\prime}\right), \ldots,\left(i_{k}^{\prime}, j_{k}^{\prime}, \ldots, s_{k}^{\prime}\right)} \tag{3.6}
\end{equation*}
$$

where the sum is over $i_{p}=i_{q} \Leftrightarrow i_{p}^{\prime}=i_{q}^{\prime}, j_{p}=j_{q} \Leftrightarrow j_{p}^{\prime}=j_{q}^{\prime}, \ldots, s_{p}=s_{q} \Leftrightarrow s_{p}^{\prime}=$ $s_{q}^{\prime},(1 \leq p, q \leq 2 k)$.

Since every matrix T_{J}^{I} is the sum of different matrix units, the set $\left\{T_{J}^{I} \mid[(I, J)]\right.$ is an $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbit \} is linearly independent set.

For $A \in E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$, we obtain $A=\sum_{[(I, J)]} A_{J}^{I} T_{J}^{I}$ by using the lemma 3.1. Thus, the matrices T_{J}^{I} span $E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$ and so they are a basis for $\operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$.
Definition 3.3. Let \bar{d} and \bar{d}^{\prime} be partitions of $[2 k]$. We say that \bar{d}^{\prime} is coarser than \bar{d} if any class in \bar{d} is contained in some class in \bar{d}^{\prime}. In this case we write $\bar{d}^{\prime} \leq \bar{d}$.

Now, we state another basis for $E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$ as follows: Define for every $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbit $[(I, J)]=\left[\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{2 k}, j_{2 k}, \ldots, s_{2 k}\right)\right]$, the matrix

$$
L_{J}^{I}=\sum T_{J^{\prime}}^{I^{\prime}}
$$

where the sum is over $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{\underline{m}}}$-orbit $\left[\left(I^{\prime}, J^{\prime}\right)\right]=\left[\left(i_{1}^{\prime}, j_{1}^{\prime}, \ldots, s_{1}^{\prime}\right), \ldots\right.$, $\left.\left(i_{2 k}^{\prime}, j_{2 k}^{\prime}, \ldots, s_{2 k}^{\prime}\right)\right]$ such that $\bar{d}\left(i_{1}, i_{2}, \ldots, i_{2 k}\right) \geq \bar{d}\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{2 k}^{\prime}\right), \ldots, \bar{d}\left(s_{1}, s_{2}, \ldots, s_{2 k}\right) \geq$ $\bar{d}\left(s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{2 k}^{\prime}\right)$. The matrix T_{J}^{I} can be expressed in terms of the matrix L_{J}^{I} by using Möbius inversion (see [14]). So they also span $E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$. By using the equation (3.6), we obtain

$$
\begin{equation*}
L_{\left(i_{k+1}, j_{k+1}, \ldots, s_{k+1}\right), \ldots,\left(i_{2 k}, j_{2 k}, \ldots, s_{2 k}\right)}^{\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{k}, j_{k}, \ldots, s_{k}\right)}=\sum E_{\left(i_{k+1}^{\prime}, j_{k+1}^{\prime}, \ldots, s_{k+1}^{\prime}\right), \ldots,\left(i_{2 k}^{\prime}, j_{2 k}^{\prime}, \ldots, s_{2 k}^{\prime}\right)}^{\left(i_{1}^{\prime}, j_{1}^{\prime}, \ldots, s_{1}^{\prime}\right), \ldots,\left(i_{k}^{\prime}, j_{k}^{\prime}, \ldots, s_{k}^{\prime}\right)} \tag{3.7}
\end{equation*}
$$

where the sum is over $i_{p}=i_{q} \Rightarrow i_{p}^{\prime}=i_{q}^{\prime}, j_{p}=j_{q} \Rightarrow j_{p}^{\prime}=j_{q}^{\prime}, \ldots, s_{p}=s_{q} \Rightarrow$ $s_{p}^{\prime}=s_{q}^{\prime},(1 \leq p, q \leq 2 k)$. The matrices T_{J}^{I} and L_{J}^{I} form two different basis for $\operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$.

Note: For a given tuple $\left(i_{1}, i_{2}, \ldots, i_{2 k}\right) \in\{1,2, \ldots, n\}^{\times 2 k}$ collect the numbers $i_{1}, i_{2}, \ldots, i_{2 k}$ into (at most n) subsets then i_{p} and i_{q} are in the same subset if and only if $i_{p}=i_{q}$. This determines the relation \sim on $\{1,2, \ldots, 2 k\}$, i.e., $p \sim q$ if and only if i_{p} and i_{q} are in the same subset. Naturally this relation in turn determines a partition $d=d\left(i_{1}, i_{2}, \ldots, i_{2 k}\right)$ of $\{1,2, \ldots, 2 k\}$ into subsets.

3.3. Schur-Weyl Duality

An action of $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ on $W^{\otimes k}$ is defined as follows: Define a map $\bar{\phi}: P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right) \longrightarrow \operatorname{End}\left(W^{\otimes k}\right)$ by defining it on a basis element $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$ as follows:

$$
\left.\begin{array}{rl}
\bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) & =\left(\bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)_{\left(i_{k+1}, j_{k+1}, \ldots, s_{k}\right.}^{\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{k}, j_{k}, \ldots, s_{k}\right)}, \ldots, i_{2 k}\right) \\
& =\left(\psi\left(d_{1}\right)_{i_{k+1}, \ldots, j_{2 k}, \ldots, s_{2 k}}^{i_{1}, \ldots, i_{k}} \psi\left(d_{2}\right)_{j_{k+1}, \ldots,,_{2 k}}^{j_{1}, \ldots, j_{k}} \cdots \psi\left(d_{m}\right)_{s_{k+1}, \ldots, j_{2 k}, s_{2 k}}^{s_{1}, \ldots, s_{k}}\right)
\end{array}\right)
$$

where ψ is defined as in equation (2.3). Alternatively, in terms of matrix units we have

$$
\begin{equation*}
\bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)=\sum_{\substack{p \sim q \\ p \sim q \text { in } \\ p \sim d_{1} \Rightarrow i_{p}=i_{q} \\ d_{2}=\Rightarrow p_{p}=j_{q}}} E_{\left.\left(i_{k+1}, j_{k+1}, \ldots, s_{k+1}\right), \ldots,\left(i_{2 k}\right), j_{2 k}, \ldots, s_{2 k}\right)}^{\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots\left(i_{k}, j_{k}, \ldots, s_{k}\right)} \tag{3.8}
\end{equation*}
$$

where $1 \leq i_{1}, i_{2}, \ldots, i_{2 k} \leq n_{1}, 1 \leq j_{1}, j_{2}, \ldots, j_{2 k} \leq n_{2}, \ldots, 1 \leq s_{1}, s_{2}, \ldots, s_{2 k} \leq n_{m}$. Then, we have an action of $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ on $W^{\otimes k}$ defined by

$$
\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)\left(v_{J}\right)=\bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)\left(v_{J}\right), \quad \text { for all } J \in \mathbb{S}^{k}
$$

when $n_{1}=n$ and $n_{i}=1$, for all $i \in\{2,3, \ldots, m\}$, this action restricted to the partition algebra coincides with the action defined by Jones [5] on tensors.

Thus, we have an action of a basis element $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ on $W^{\otimes k}$ by defining it on the standard basis element by

$$
\begin{aligned}
& \left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \cdot\left(v_{\left(i_{1}, j_{1}, \ldots, s_{1}\right)} \otimes \cdots \otimes v_{\left(i_{k}, j_{k}, \ldots, s_{k}\right)}\right) \\
& =\sum_{\substack{1 \leq i_{k+1}, \ldots, i_{2 k} \leq n_{1} \\
1 \leq j_{k+1}, \ldots, j_{2 k} \leq n_{2}}} \psi\left(d_{1}\right)_{i_{i_{k+1}}, \ldots, i_{2 k}}^{i_{2}, \ldots, i_{k}} \cdots \psi\left(d_{m}\right)_{s_{k+1}, \ldots, s_{2 k}}^{s_{1}, s_{2}, \ldots, s_{k}}\left(v_{\left(i_{k+1}, \ldots, s_{k+1}\right)} \otimes \cdots \otimes v_{\left(i_{2 k}, \ldots, s_{2 k}\right)}\right) \\
& 1 \leq s_{k+1}, \ldots, s_{2 k} \leq n_{m}
\end{aligned}
$$

Lemma 3.4. The map $\bar{\phi}: P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right) \longrightarrow \operatorname{End}_{S_{n_{1}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$ is an algebra homomorphism.

Proof. From (3.8) we have,

$$
\begin{align*}
\bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)= & \sum_{\substack{\bar{d}\left(i_{1}, i_{2}, \ldots, i_{2 k}\right) \leq d_{1} \\
\\
\\
\\
\\
\\
\\
\\
\\
\bar{d}\left(j_{1}, j_{2}, \ldots, j_{2 k}\right) \leq d_{2}}}^{\left(s_{1}, s_{2}, \ldots, s_{2 k}\right) \leq d_{m}} \begin{array}{l}
\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{k}, j_{k}, \ldots, s_{k}\right) \\
\vdots \\
\hline
\end{array} \tag{3.9}
\end{align*}
$$

where $1 \leq i_{1}, i_{2}, \ldots, i_{2 k} \leq n_{1}, 1 \leq j_{1}, j_{2}, \ldots, j_{2 k} \leq n_{2}, \ldots ., 1 \leq s_{1}, s_{2}, \ldots, s_{2 k} \leq n_{m}$.

$$
\begin{aligned}
& =\sum_{\substack{\bar{d}\left(i_{1}, i_{2}, \ldots, i_{2 k}\right) \leq d_{1} \\
\bar{d}\left(j_{1}, j_{2}, \ldots, j_{2 k}\right) \leq d_{2}}} T_{\left(i_{k+1}, j_{k+1}, \ldots, s_{k+1}\right), \ldots,\left(i_{2 k}, j_{2 k}, \ldots, s_{2 k}\right)}^{\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{k}, j_{k}, \ldots, s_{k}\right)} \\
& \vdots \\
& \bar{d}\left(s_{1}, s_{2}, \ldots, s_{2 k}\right) \leq d_{m}
\end{aligned}
$$

where the sum over one representative $\left(i_{1}, j_{1}, \ldots, s_{1}\right),\left(i_{2}, j_{2}, \ldots, s_{2}\right), \ldots,\left(i_{2 k}, j_{2 k}\right.$, $\left.\ldots, s_{2 k}\right)$ for one $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-orbit. Thus, $\bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in$ $\operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$.

Claim: The map $\bar{\phi}$ is an algebra homomorphism.
Let $\left(d_{1}^{\prime} \otimes d_{2}^{\prime} \otimes \cdots \otimes d_{m}^{\prime}\right),\left(d_{1}^{\prime \prime} \otimes d_{2}^{\prime \prime} \otimes \cdots \otimes d_{m}^{\prime \prime}\right) \in P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ and $\left(d_{1}^{\prime \prime} \otimes d_{2}^{\prime \prime} \otimes \cdots \otimes d_{m}^{\prime \prime}\right)\left(d_{1}^{\prime} \otimes d_{2}^{\prime} \otimes \cdots \otimes d_{m}^{\prime}\right)=n_{1}^{\lambda_{1}} n_{2}^{\lambda_{2}} \cdots n_{m}^{\lambda_{m}}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$, where $d_{1}^{\prime \prime} d_{1}^{\prime}=n_{1}^{\lambda_{1}} d_{1}$ in $P_{k}\left(n_{1}\right), d_{2}^{\prime \prime} d_{2}^{\prime}=n_{2}^{\lambda_{2}} d_{2}$ in $P_{k}\left(n_{2}\right), \ldots ., d_{m}^{\prime \prime} d_{m}^{\prime}=n_{m}^{\lambda_{m}} d_{m}$ in $P_{k}\left(n_{m}\right)$. From (3.9), we have

$$
\begin{aligned}
& \bar{\phi}\left(d_{1}^{\prime \prime} \otimes d_{2}^{\prime \prime} \otimes \cdots \otimes d_{m}^{\prime \prime}\right) \bar{\phi}\left(d_{1}^{\prime} \otimes d_{2}^{\prime} \otimes \cdots \otimes d_{m}^{\prime}\right) \\
& =\sum_{\bar{d}\left(i_{1}^{\prime \prime}, \ldots, i_{2 k}^{\prime \prime}\right) \leq d_{1}^{\prime \prime}} E_{\left(i_{k+1}^{\prime \prime}, \ldots, s_{k+1}^{\prime}\right), \ldots,\left(i_{2 k}^{\prime}, \ldots, s_{2 k}^{\prime}\right)}^{\left(i_{1}^{\prime \prime}, j_{1}^{\prime \prime}, \ldots, s_{1}^{\prime \prime}\right), \ldots\left(i^{\prime \prime}, j_{k}^{\prime \prime}, \ldots, s_{k}^{\prime \prime}\right)} \sum_{\bar{d}\left(i_{1}^{\prime}, \ldots, i_{2 k}^{\prime}\right) \leq d_{1}^{\prime}} E_{\left(i_{k+1}^{\prime}, \ldots, s_{k+1}^{\prime}\right), \ldots,\left(i_{2 k}^{\prime}, \ldots, s_{2 k}^{\prime}\right)}^{\left(i_{1}^{\prime}, j_{1}^{\prime}, \ldots, s_{1}^{\prime}\right), \ldots,\left(i_{k}^{\prime}, j_{k}^{\prime}, \ldots, s_{k}^{\prime}\right)} \\
& \bar{d}\left(s_{1}^{\prime \prime}, \ldots, \dot{s}_{2 k}^{\prime \prime}\right) \leq d_{m}^{\prime \prime} \quad \bar{d}\left(s_{1}^{\prime}, \ldots, \dot{s}_{2 k}^{\prime}\right) \leq d_{m}^{\prime}
\end{aligned}
$$

where $1 \leq i_{z}^{\prime \prime}, i_{z}^{\prime} \leq n_{1}, 1 \leq j_{z}^{\prime \prime}, j_{z}^{\prime} \leq n_{2}, \ldots, 1 \leq s_{z}^{\prime \prime}, s_{z}^{\prime} \leq n_{m}$ and $1 \leq z \leq 2 k$.
since $E_{p}^{q} E_{r}^{s}=\delta_{q r} E_{p}^{s}$, where $\delta_{q r}$ is the Kronecker delta.

$$
\left.\begin{array}{l}
=n_{1}^{\lambda_{1}} n_{2}^{\lambda_{2}} \cdots n_{m}^{\lambda_{m}} \sum_{\substack{\bar{d}\left(i_{1}, \ldots, i_{2 k}\right) \leq d_{1} \\
\bar{d}\left(j_{1}, \ldots, j_{2 k}\right) \leq d_{2}}} E_{\left(i_{k+1}, \ldots, s_{k+1}\right), \ldots,\left(i_{2 k}, \ldots, s_{2 k}\right)}^{\left(i_{1}, j_{1}, \ldots, s_{1}\right), \ldots,\left(i_{k}, j_{k}, \ldots, s_{k}\right)}, \text { as in the partition case. } \\
\vdots \\
\bar{d}\left(s_{1}, \ldots, s_{2 k}\right) \leq d_{m}
\end{array}\right\} \begin{gathered}
=n_{1}^{\lambda_{1}} n_{2}^{\lambda_{2}} \cdots n_{m}^{\lambda_{m}} \bar{\phi}\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \\
=\bar{\phi}\left(\left(d_{1}^{\prime \prime} \otimes d_{2}^{\prime \prime} \otimes \cdots \otimes d_{m}^{\prime \prime}\right)\left(d_{1}^{\prime} \otimes d_{2}^{\prime} \otimes \cdots \otimes d_{m}^{\prime}\right)\right) .
\end{gathered}
$$

Theorem 3.5. $\mathbb{C}\left[S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}\right]$ and $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ generate full centralizers of each other in End $\left(W^{\otimes k}\right)$. In particular, for $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$,
(a) $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right) \cong \operatorname{End}_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$,
(b) $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ generates $\operatorname{End}_{P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)}\left(W^{\otimes k}\right)$.

Proof. Since $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k, \operatorname{dim} P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)=\operatorname{dim}$ $E n d_{S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}}\left(W^{\otimes k}\right)$. Therefore, (a) follows from Lemma 3.1 and (b) follows from (a) and Double Centralizer Theorem.

As the centralizer of the semisimple group algebra $\mathbb{C}\left[S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}\right]$, the \mathbb{C}-algebra $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ is semisimple for $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$.

4. The Irreducible Representations of $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$

In this section, the inequivalent irreducible representations of the tensor product partition algebra $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ by using the representation theory of the partition algebra $P_{k}(x)$ (from $[1,3,5]$) and the centralizer theory is being indexed. Also, their dimensions are computed. When $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$, the Bratteli diagrams and the branching rules for the tower $P_{k-1}\left(n_{1}\right) \otimes P_{k-1}\left(n_{2}\right) \otimes \cdots$ $\cdot \otimes P_{k-1}\left(n_{m}\right) \subseteq P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ are described.

The \mathbb{C}-vector space $V_{1}^{\otimes k} \otimes V_{2}^{\otimes k} \otimes \cdots \otimes V_{m}^{\otimes k}$ is a $S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}$-module under the action is given by

$$
\begin{aligned}
& \quad\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)\left((v _ { i _ { 1 } } \otimes v _ { i _ { 2 } } \otimes \cdots \otimes v _ { i _ { k } }) \otimes (v _ { j _ { 1 } } \otimes v _ { j _ { 2 } } \otimes \cdots \otimes v _ { j _ { k } }) \otimes \cdots \otimes \left(v_{s_{1}} \otimes v_{s_{2}} \otimes\right.\right. \\
& \left.\left.\cdots \otimes v_{s_{k}}\right)\right)=\left(v_{\pi_{1}\left(i_{1}\right)} \otimes v_{\pi_{2}\left(i_{2}\right)} \otimes \cdots \otimes v_{\pi_{m}\left(i_{k}\right)}\right) \otimes\left(v_{\pi_{1}\left(j_{1}\right)} \otimes v_{\pi_{2}\left(j_{2}\right)} \otimes \cdots \otimes v_{\pi_{m}\left(j_{k}\right)}\right) \otimes \\
& \cdots \otimes \otimes\left(v_{\pi_{1}\left(s_{1}\right)} \otimes v_{\pi_{2}\left(s_{2}\right)} \otimes \cdots \otimes v_{\pi_{m}\left(s_{k}\right)}\right) .
\end{aligned}
$$

Lemma 4.1. The index set of the irreducible $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-modules appearing as summands in $V_{1}^{\otimes k} \otimes V_{2}^{\otimes k} \otimes \cdots \otimes V_{m}^{\otimes k}$ is $\widehat{P_{k}\left(n_{1}\right)} \times \widehat{P_{k}\left(n_{2}\right)} \times \ldots \times \widehat{P_{k}\left(n_{m}\right)}$, where $\widehat{P_{k}\left(n_{i}\right)}$ is the index set of the irreducible $S_{n_{i}}$-modules.
Proof. The representation $V_{1}^{\otimes k} \otimes V_{2}^{\otimes k} \otimes \cdots \otimes V_{m}^{\otimes k}$ of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ is the product representation of $S_{n_{1}} \times S_{n_{2}}^{2} \times \ldots \times S_{n_{m}}$ afforded by $V_{1}^{\otimes k}$ of $S_{n_{1}}, V_{2}^{\otimes k}$ of
$S_{n_{2}}, \ldots, V_{m}^{\otimes k}$ of $S_{n_{m}}$, where the representation $V_{i}^{\otimes k}$ of $S_{n_{i}}, i \in\{1,2, \ldots, m\}$ is the tensor product permutation representation which is decomposed as (see § 2.2)

$$
V_{i}^{\otimes k} \cong \bigoplus_{\lambda_{i} \in \widehat{P_{k}\left(n_{i}\right)}} m_{\lambda_{i}} S^{\lambda_{i}}
$$

(where $m_{\lambda_{i}}$ is the multiplicity of the irreducible $S_{n_{i}}$-module appearing as summands in $V_{i}^{\otimes k}$).
Hence, as $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-module

$$
V_{1}^{\otimes k} \otimes V_{2}^{\otimes k} \otimes \cdots \otimes V_{m}^{\otimes k} \cong \bigoplus_{\substack{\lambda_{i} \in \widehat{P_{k}\left(n_{i}\right)} \\ i \in\{1,2, \ldots, m\}}} m_{\lambda_{1}} m_{\lambda_{2}} \cdots m_{\lambda_{m}} S^{\lambda_{1}} \otimes S^{\lambda_{2}} \otimes \cdots \otimes S^{\lambda_{m}}
$$

where $S^{\lambda_{1}} \otimes S^{\lambda_{2}} \otimes \cdots \otimes S^{\lambda_{m}}$ is the irreducible $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-module induced by the irreducible $S_{n_{1}}$-module $S^{\lambda_{1}}, S_{n_{2}}$-module $S^{\lambda_{2}}, \ldots, S_{n_{m}}$-module $S^{\lambda_{m}}$.

Theorem 4.2.

(a) As a $S_{n_{1}} \times S_{n_{2}} \times \ldots \times{ }_{n_{m}}$-module

$$
W^{\otimes k} \cong \bigoplus_{\substack{\lambda_{i} \in \overrightarrow{P_{k}\left(n_{i}\right)} \\ i \in\{1,2, \ldots, m\}}} m_{\lambda_{1}} m_{\lambda_{2}} \cdots m_{\lambda_{m}} S^{\lambda_{1}} \otimes S^{\lambda_{2}} \otimes \cdots \otimes S^{\lambda_{m}}
$$

(b) For $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$,

$$
P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right) \cong \bigoplus_{\substack{\lambda_{i} \in P_{k}\left(n_{i}\right) \\ i \in\{1,2, \ldots, m\}}}^{\bigoplus} \mathcal{M}_{\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right]}(\mathbb{C})
$$

where $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right]=m_{\lambda_{1}} m_{\lambda_{2}} \cdots m_{\lambda_{m}}$.
(c) For $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$, as $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$-module

$$
W^{\otimes k} \cong \bigoplus_{\substack{\lambda_{i} \in \widehat{P_{k}\left(n_{i}\right)} \\ i \in\{1,2, \ldots, m\}}} d^{\lambda_{1}} d^{\lambda_{2}} \cdots d^{\lambda_{m}} P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}
$$

where $d^{\lambda_{i}}$ is the dimension of $S^{\lambda_{i}}$ and $P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}$ is the irreducible $P_{k}\left(n_{1}\right) \otimes$ $P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$-module indexed by $\lambda_{1} \in \widehat{P_{k}\left(n_{1}\right)}, \lambda_{2} \in \widehat{P_{k}\left(n_{2}\right)}, \ldots, \lambda_{m} \in$ $\widehat{P_{k}\left(n_{m}\right)}$ with dimension $\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right]$.
(d) For $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$, as a $\mathbb{C}\left[S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}\right] \otimes\left(P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdot\right.$. $\cdot \otimes P_{k}\left(n_{m}\right)$)-bimodule,

$$
W^{\otimes k} \cong \bigoplus_{\substack{\lambda_{i} \in P_{k}\left(n_{i}\right) \\ i\{\{1,2, \ldots, m\}}}\left(S^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}} \otimes P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}\right),
$$

where $S^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}=S^{\lambda_{1}} \otimes S^{\lambda_{2}} \otimes \cdots \otimes S^{\lambda_{m}}$.
Proof. Since $S_{n_{1}} \times S_{n_{2}} \times \ldots . \times S_{n_{m}}$ acts on the suffix of $v_{(i, j, \ldots, s)}$, we have the permutation representation V_{i} of $S_{n_{i}}$ with respect to $S_{n_{i}-1}$ for $i \in\{1,2, \ldots, m\}$. Hence,

$$
W \cong V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m} .
$$

Moreover,

$$
W^{\otimes k} \cong\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m}\right)^{\otimes k} \cong V_{1}^{\otimes k} \otimes V_{2}^{\otimes k} \otimes \cdots \otimes V_{m}^{\otimes k} .
$$

(a) follows from lemma 4.1. (b), (c) and (d) follows from theorems 2.9. and 3.5.

Corollary 4.3. Let $S^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}$ be an irreducible $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$-module and let W be the permutation representation of $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$. Then

$$
\left.\begin{array}{rl}
S^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}} \otimes W & \cong\left(S^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}} \downarrow_{S_{n_{1}} \times \ldots \times S_{n_{m}}}^{S_{S_{1}} \times \ldots \times S_{n_{m}-1}}\right)
\end{array}\right) \uparrow_{S_{n_{1}-1} \times \ldots \times S_{n_{m}-1}}^{S_{n_{1}} \times \ldots \times S_{n_{m}}}
$$

where $\left(\lambda_{i}^{-}\right)^{+}$denotes a partition of n_{i} obtained by removing a box from λ_{i} and then adding a new box.
Proof. This follows from theorems 4.2. and 2.11.
From Corollary 4.3. the Bratteli diagram for ($S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}, P_{k}\left(n_{1}\right) \otimes$ $\left.P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)\right)$ as they act on $W^{\otimes k}$ is the tensor product of the Bratteli diagram for $\left(S_{n_{1}}, P_{k}\left(n_{1}\right)\right)$ as they act on $V_{1}^{\otimes k},\left(S_{n_{2}}, P_{k}\left(n_{2}\right)\right)$ as they act on $V_{2}^{\otimes k}, \ldots,\left(S_{n_{m}}, P_{k}\left(n_{m}\right)\right)$ as they act on $V_{m}^{\otimes k}$. Note that if $n_{i}=1$ for $i \in\{1,2, \ldots, m\}$ except one n_{i} then the Bratteli diagram for ($S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}, P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes$ $\left.\cdots \otimes P_{k}\left(n_{m}\right)\right)$ as they act on $W^{\otimes k}$ is the Bratteli diagram for ($S_{n_{i}}, P_{k}\left(n_{i}\right)$) as they act on $V_{i}^{\otimes k}$.

Now, we may write the Bratteli diagram for $S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}$ and $P_{k}\left(n_{1}\right) \otimes$ $P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$ as they act on $W^{\otimes k}$ when $m=2, n_{1}=4, n_{2}=4$ (see Figure $4)$.

For $k=2$ and $m=2, n_{1}=4, n_{2}=4$, from Figure 4: the dimensions of the irreducible $P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$-modules $P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}$ are

Figure 4: Bratteli diagram for $\mathbb{C}\left\{P_{k}(4) \otimes P_{k}(4)\right\}$
$4,6,2,2,6,9,3,3,2,3,1,1,2,3,1,1$ (which are multiplicity of the irreducible $S_{n_{1}} \times$ $S_{n_{2}} \times \ldots \times S_{n_{m}}$-module $S^{\lambda_{1}} \otimes S^{\lambda_{2}} \otimes \cdots \otimes S^{\lambda_{m}}$ reading from left to right) and $4^{2}+6^{2}+$ $2^{2}+2^{2}+6^{2}+9^{2}+3^{2}+3^{2}+2^{2}+3^{2}+1^{2}+1^{2}+2^{2}+3^{2}+1^{2}+1^{2}=225=\operatorname{dim}\left(P_{2}(4) \otimes P_{2}(4)\right)$. The multiplicity of $P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}$ are $1,3,2,3,3,9,6,9,2,6,4,6,3,9,6,9$ (which are the dimensions of $S^{\lambda_{1}} \otimes S^{\lambda_{2}} \otimes \cdots \otimes S^{\lambda_{m}}$ respectively). Hence, the dimension of $W^{\otimes 2}=16^{2}=256=(1 \times 4)+(3 \times 6)+(2 \times 2)+(3 \times 2)+(3 \times 6)+(9 \times 9)+(6 \times 3)+$ $(9 \times 3)+(2 \times 2)+(6 \times 3)+(4 \times 1)+(6 \times 1)+(3 \times 2)+(9 \times 3)+(6 \times 1)+(9 \times 1)$.

Proposition 4.4. (Branching rule for $P_{k-1}\left(n_{1}\right) \otimes P_{k-1}\left(n_{2}\right) \otimes \cdots \otimes P_{k-1}\left(n_{m}\right) \subseteq$ $\left.P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)\right)$.
The lines in the $\left(S_{n_{1}} \times S_{n_{2}} \times \ldots \times S_{n_{m}}, P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)\right)$-bratteli diagram when read upward from row k to $k-1$ leads to the restriction branching rule, the lines downward leads to the induction branching rule for $P_{k-1}\left(n_{1}\right) \otimes P_{k-1}\left(n_{2}\right) \otimes \cdots \otimes$ $P_{k-1}\left(n_{m}\right) \subseteq P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)$. In particular, for $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$,

$$
P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}} \downarrow_{\substack{P_{k-1}\left(n_{1}\right) \otimes \cdots \otimes P_{k-1}\left(n_{m}\right)}}^{\bigoplus_{\substack{\left.P_{i}=\left(\lambda_{i}^{-}\right)\right)^{+}, n_{i}-\mu_{i}^{1} \leq k-1 \\ i \in\{1,2, \ldots, m\}}}} P^{\mu_{1}, \mu_{2}, \ldots, \mu_{m}},
$$

and

$$
P^{\mu_{1}, \mu_{2}, \ldots, \mu_{m}} \uparrow_{P_{k-1}\left(n_{1}\right) \otimes \cdots \otimes P_{k-1}\left(n_{m}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)}^{P_{k-1}\left(n_{1}\right)} \underset{\substack{\lambda_{i}=\left(\mu_{i}^{-}\right)^{+} \\ i \in\{1,2, \ldots, m\}}}{ } P^{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}} .
$$

Proof. The proposition follows from proposition 2.10. and corollary 4.3.

5. Vacillating Tableaux

Let

$$
\begin{aligned}
\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k} & =\left\{[\lambda]=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \mid \lambda_{i} \in \Lambda_{n_{i}}^{k}, i \in\{1,2, \ldots, m\}\right\} \\
\Lambda_{n_{1}-1, n_{2}-1, \ldots, n_{m}-1}^{k} & =\left\{[\lambda]=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \mid \lambda_{i} \in \Lambda_{n_{i}-1}^{k}, i \in\{1,2, \ldots, m\}\right\} \\
\Gamma_{k}^{m}=\{[\lambda] & \left.=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \mid \lambda_{i} \in \Gamma_{k}, i \in\{1,2, \ldots, m\}\right\}
\end{aligned}
$$

where $\Lambda_{n_{i}}^{k}=\left\{\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{t}\right) \vdash n_{i} \mid n_{i}-\mu_{1} \leq k\right\}$ and $\Gamma_{k}=\left\{\lambda_{i} \vdash t \mid 0 \leq t \leq k\right\}$.
Let $T_{k}^{[\lambda]}$ denote the irreducible $\mathbb{C}\left\{P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)\right\}$ representation indexed by $\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$. Since, the dimension of $T_{k}^{[\lambda]}$ equals the multiplicity of $V^{[\lambda]}$ in $V^{\otimes k}$.

Here, we discuss the vacillating tableau in the case of m-partitions following the procedure in [4] for partitions of n. The dimension of the irreducible $S_{n_{1}} \times$ $S_{n_{2}} \times \ldots \times S_{n_{m}}$ module $V^{[\lambda]}$ equals the number of standard m-tableaux of shape $[\lambda]$. We can identify a standard m-tableau $T_{[\lambda]}$ of shape $[\lambda]$ with a sequence $(\emptyset=$ $\left.[\lambda]^{(0)},[\lambda]^{(1)}, \ldots,[\lambda]^{(n)}=[\lambda]\right)$ of m-tableaux such that $\left|[\lambda]^{(i)}\right|=i,(i . e) .\left|\lambda_{l}^{(i)}\right|=i$ for all
$l \in\{1,2, \ldots, m\},[\lambda]^{(i)} \subseteq[\lambda]^{(i+1)}$ and such that $[\lambda]^{(i)} /[\lambda]^{(i-1)}$ is the box containing i in $T_{[\lambda]}$. For example,

$$
\left(\begin{array}{|l|l|l}
1 & 3 & 4 \\
2 & 5
\end{array}, \begin{array}{|l|l|}
\hline 1 & 2 \\
3 & 4
\end{array}{ }^{5}\right)=((\emptyset, \emptyset),(\square, \square),(\square, \square),(\square, \square),(\square \square, \square),(\square, \square \square))
$$

Let $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$. A m-vacillating tableaux of shape $[\lambda]$ and length $2 k$ is a sequence of m-partitions,

$$
\left(\left(\left(n_{1}\right),\left(n_{2}\right), \ldots,\left(n_{m}\right)\right)=[\lambda]^{(0)},[\lambda]^{\left(\frac{1}{2}\right)},[\lambda]^{(1)}, \ldots,[\lambda]^{\left(k-\frac{1}{2}\right)},[\lambda]^{(k)}=[\lambda]\right)
$$

satisfying for each i,

1. $[\lambda]^{(i)} \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{i}$ and $[\lambda]^{\left(i+\frac{1}{2}\right)} \in \Lambda_{n_{1}-1, n_{2}-1, \ldots, n_{m}-1}^{i}$,
2. $[\lambda]^{(i)} \supseteq[\lambda]^{\left(i+\frac{1}{2}\right)}$ and $\left|[\lambda]^{(i)} /[\lambda]^{\left(i+\frac{1}{2}\right)}\right|=1$,
3. $[\lambda]^{\left(i+\frac{1}{2}\right)} \subseteq[\lambda]^{(i+1)}$ and $\left|[\lambda]^{(i+1)} /[\lambda]^{\left(i+\frac{1}{2}\right)}\right|=1$.

The m-vacillating tableaux of shape $[\lambda]$ corresponds exactly with the paths from the top of the Bratteli diagram to $[\lambda]$. By the double centralizer theorem, we have $m_{k}^{[\lambda]}=\operatorname{dim}\left(T_{k}^{[\lambda]}\right)$. Thus, if we let $V T_{k}^{m}([\lambda])$ denote the set of m-vacillating tableaux of shape $[\lambda]$ and length k then

$$
m_{k}^{[\lambda]}=\operatorname{dim}\left(T_{k}^{[\lambda]}\right)=\left|V T_{k}^{m}([\lambda])\right|
$$

where $m_{k}^{[\lambda]}$ is the multiplicity of $V^{[\lambda]}$ in the decomposition of $V^{\otimes k}$ as a $S_{n_{1}} \times S_{n_{2}} \times$ $\ldots \times S_{n_{m}}$ module.
Let $n_{1}, n_{2}, \ldots, n_{m} \geq 2 k$. The sets $\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and Γ_{k}^{m} are in bijection with one another using the maps,

$$
\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k} \rightarrow \Gamma_{k}^{m} \quad \Gamma_{k}^{m} \rightarrow \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}
$$

via these bijections can be used either to Γ_{k}^{m} or $\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ so as to index the irreducible representations of $\mathbb{C}\left\{P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)\right\}$.

The following sequences represent the same m-vacillating tableau $P_{[\lambda]}$, the first one is obtained using the diagrams from $\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and the second from Γ_{k}^{m},

$$
\begin{aligned}
P_{[\lambda]} & =((\square \square \square, \square \square \square),(\square \square, \square \square),(\square \square, \square \square),(\square, \square),(\square, \square \square)) \\
& =((\emptyset, \emptyset),(\emptyset, \emptyset),(\square, \square),(\square, \square),(\square, \square))
\end{aligned}
$$

For our bijection, in section 6 we use $\Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and in section 7 we use Γ_{k}^{m}.
6. A Bijective Proof of $\left(n_{1} n_{2} \cdots n_{m}\right)^{k}=\sum_{[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}} f^{[\lambda]} m_{k}^{[\lambda]}$

We follow the notations as given below:

1. $\tilde{n_{i}}=\left\{1,2, \ldots, n_{i}\right\}$
2. $\tilde{k}=\{1,2, \ldots, k\}$

To give a combinatorial proof of identity

$$
\begin{equation*}
\left(n_{1} n_{2} \cdots n_{m}\right)^{k}=\sum_{[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}} f^{[\lambda]} m_{k}^{[\lambda]}, \quad \text { for } n_{1}, n_{2}, \ldots, n_{m} \geq 2 k \tag{6.1}
\end{equation*}
$$

We need to find a bijection of the form

$$
\begin{gathered}
\left\{\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right) \mid a_{q} \in \tilde{n_{1}}, b_{q} \in \tilde{n_{2}}, \ldots, l_{q} \in \tilde{n_{m}}, q \in \tilde{k}\right\} \\
\longleftrightarrow \underset{[\lambda] \in \Lambda_{n_{1}}^{k}, n_{2}, \ldots, n_{m}}{\bigsqcup} S Y T^{m}([\lambda]) \times V T_{k}^{m}([\lambda]) .
\end{gathered}
$$

To do so, construct an invertible function that turns a sequence $\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right)\right.$, $\left.\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right)$ of m-tuples of numbers in the range $1 \leq a_{i} \leq n_{1}, 1 \leq$ $b_{i} \leq n_{2}, \ldots, 1 \leq l_{i} \leq n_{m}$ into a pair $\left(T_{[\lambda]}, P_{[\lambda]}\right)$ consisting of a standard m-tableaux $T_{[\lambda]}$ of shape $[\lambda]$ and m-vacillating tableaux $P_{[\lambda]}$ of shape $[\lambda]$ and length $2 k$ for some $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$.
Note: Here the RS insertion and reverse RS algorithm as in [4] is used. Also, we used the jeu de taquin in each component of the m-partition. If $T=\left(T_{1}, T_{2}, \ldots, T_{m}\right)$ is a standard m-tableau of shape $[\lambda] \vdash_{m} n$ and for $r \in\{1,2, \ldots, m\}, T_{r}$ is a standard tableau of shape $\lambda_{r} \vdash n_{r}$ then jeu de taquin provides an algorithm for removing the box containing x_{r} from T_{r} and producing a standard tableau S_{r} of shape $\mu_{r} \vdash$ $\left(n_{r}-1\right)$ and entries from $\left\{1,2, \ldots, n_{r}\right\} \backslash\left\{x_{r}\right\}$. Let $S=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ be the standard m-tableau and $S_{r}^{i, j}$ denotes the entry of S_{r} in row i and column j. We say that a box whose removal leaves the young diagram of a partition is corner of S_{r}. Thus, the corner of S_{r} are the boxes that are end of both the row and column. The following algorithm will delete x_{r} from T_{r} leaving a standard tableau S_{r} with x_{r} removed. We denote this process by $x_{r} \stackrel{{ }^{\text {jdt }}}{\leftrightarrows} T_{r}$.

1. Let $c=S_{r}^{i, j}$ be the box containing x_{r}.
2. While c is not a corner, do
a. Let c^{\prime} be the box containing $\min \left\{S_{r}^{i+1, j}, S_{r}^{i, j+1}\right\}$;
b. Exchange the positions of c and c^{\prime}.
3. Delete c.

If only one of $S_{r}^{i+1, j}, S_{r}^{i, j+1}$ exits at step $2 . a$ then the minimum is taken to be the single value.

Let $S=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ be the standard m-tableau and S_{r} be a tableau of shape μ_{r} with $\left|\mu_{r}\right|<n_{r}$ and distinct entries from $\left\{1,2, \ldots, n_{r}\right\}$. Let x_{r} be a positive integer that is not in S_{r}. The following algorithm insets x_{r} into S_{r} producing a standard tableau T_{r} of shape λ_{r} with $\mu_{r} \subseteq \lambda_{r},\left|\lambda_{r} / \mu_{r}\right|=1$ whose entries are the union of those from S and $\left\{x_{r}\right\}$. We denote this process by $x_{r} \xrightarrow{R S} S_{r}$.

1. Let R be the first row of S_{r}.

2 . While x_{r} is less than some element in R, do
a. Let y_{r} be the smallest element of R greater than x_{r};
b. Replace $y_{r} \in R$ with x_{r};
c. Let $x_{r}:=y_{r}$ and let R be the next row.
3. Place x_{r} at the end of R (which is possibly empty).

It is possible to invert the process of insertion using the R-S reverse algorithm.
Theorem 6.1. The function $\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right) \xrightarrow{F d}$ $\left(T_{[\lambda]}, P_{[\lambda]}\right)$ provides a bijection between sequence of m-tuples in $\left\{\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right)\right.\right.$, $\left.\left.\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right) \mid 1 \leq a_{i} \leq n_{1}, 1 \leq b_{i} \leq n_{2}, \ldots, 1 \leq l_{i} \leq n_{m}\right\}$ and $\sqcup \quad S Y T^{m}([\lambda]) \times V T_{k}^{m}([\bar{\lambda})$ and thus gives a combinatorial proof of (6.1). $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$

Proof. The proof is based on [4]. Given $\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)$ with $1 \leq a_{i} \leq n_{1}, 1 \leq b_{i} \leq n_{2}, \ldots, 1 \leq l_{i} \leq n_{m}$, we will produce a pair $\left(T_{[\lambda]}, P_{[\lambda]}\right),[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$, consisting of a standard m-tableau $T_{[\lambda]}$ and a m vacillating tableau $P_{[\lambda]}$.

Let $T^{(j)}=\left(T_{1}^{(j)}, T_{2}^{(j)}, \ldots, T_{m}^{(j)}\right)$. First, we initialize the $0^{\text {th }}$ tableau to be the standard m-tableau of shape $\left(n_{1}\right),\left(n_{2}\right), \ldots,\left(n_{m}\right)$, namely,

$$
\begin{aligned}
& T^{(0)}=\left(T_{1}^{(0)}, T_{2}^{(0)}, \ldots, T_{m}^{(0)}\right) \\
& =\left(\begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & n_{1} \\
\hline
\end{array}, \begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & n_{2} \\
\hline
\end{array}, \ldots, \begin{array}{|l|l|l|l|}
\hline 1 & 2 & \cdots & n_{m} \\
\hline
\end{array}\right.
\end{aligned}
$$

Then recursively define standard m-tableau $T^{\left(j+\frac{1}{2}\right)}$ and $T^{(j+1)}$ for $0 \leq j \leq k-1$ by

$$
\begin{gathered}
T^{\left(j+\frac{1}{2}\right)}=\left(T_{1}^{\left(j+\frac{1}{2}\right)}=a_{j+1} \stackrel{j d t}{\longleftrightarrow} T_{1}^{(j)}, \ldots, T_{m}^{\left(j+\frac{1}{2}\right)}=l_{j+1} \stackrel{j d t}{\leftrightarrows} T_{m}^{(j)}\right) \\
T^{(j+1)}=\left(T_{1}^{(j+1)}=a_{j+1} \xrightarrow{R S} T_{1}^{\left(j+\frac{1}{2}\right)}, \ldots, T_{m}^{(j+1)}=l_{j+1} \xrightarrow{R S} T_{m}^{\left(j+\frac{1}{2}\right)}\right)
\end{gathered}
$$

Let $[\lambda]^{(j)} \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{j}$ be the shape of $T^{(j)}$ and $[\lambda]^{\left(j+\frac{1}{2}\right)} \in \Lambda_{n_{1}-1, n_{2}-1, \ldots, n_{m}-1}^{j}$ be the shape of $T^{\left(j+\frac{1}{2}\right)}$. Then let

$$
P_{[\lambda]}=\left([\lambda]^{(0)},[\lambda]^{\left(\frac{1}{2}\right)},[\lambda]^{(1)}, \ldots .,[\lambda]^{(k)}\right) \quad \text { and } \quad T_{[\lambda]}=T^{(k)}
$$

so that $P_{[\lambda]}$ is a m-vacillating tableau of shape $[\lambda]=[\lambda]^{(k)} \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and $T_{[\lambda]}$ is a standard m-tableau of the same shape $[\lambda]$. We denote this iterative process of
deletion and insertion that associates the pair $\left(T_{[\lambda]}, P_{[\lambda]}\right)$ to the sequence of m-tuples $\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)$ by

$$
\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right) \xrightarrow{F d}\left(T_{[\lambda]}, P_{[\lambda]}\right) .
$$

Let $[\lambda]^{\left(j+\frac{1}{2}\right)} \subseteq[\lambda]^{(j+1)}$ with $[\lambda]^{(j+1)} \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{j+1},[\lambda]^{\left(j+\frac{1}{2}\right)} \in \Lambda_{n_{1}-1, \ldots, n_{m}-1}^{j}$ and $T^{(j+1)}$ be a standard m-tableau of shape $[\lambda]^{(j+1)}$. We can uniquely determine $a_{j+1}, b_{j+1}, \ldots, l_{j+1}$ and a m-tableau $T^{\left(j+\frac{1}{2}\right)}$ of shape $[\lambda]^{\left(j+\frac{1}{2}\right)}$ such that $T^{(j+1)}=\left(a_{j+1} \xrightarrow{R S} T_{1}^{\left(j+\frac{1}{2}\right)}, b_{j+1} \xrightarrow{R S} T_{2}^{\left(j+\frac{1}{2}\right)}, \ldots, l_{j+1} \xrightarrow{R S} T_{m}^{\left(j+\frac{1}{2}\right)}\right)$. To do this, let $z_{1}, z_{2}, \ldots, z_{m}$ be the boxes in $\lambda_{1}^{(j+1)} / \lambda_{1}^{\left(j+\frac{1}{2}\right)}, \lambda_{2}^{(j+1)} / \lambda_{2}^{\left(j+\frac{1}{2}\right)} \ldots, \lambda_{m}^{(j+1)} / \lambda_{m}^{\left(j+\frac{1}{2}\right)}$. We use reverse RS insertion to delete the numbers in the boxes $z_{1}, z_{2}, \ldots, z_{m}$ which gives a_{j+1} and $T_{1}^{\left(j+\frac{1}{2}\right)}, b_{j+1}$ and $T_{2}^{\left(j+\frac{1}{2}\right)}, \ldots, l_{j+1}$ and $T_{m}^{\left(j+\frac{1}{2}\right)}$. Thus, $T^{\left(j+\frac{1}{2}\right)}=$ $\left[T_{1}^{\left(j+\frac{1}{2}\right)}, T_{2}^{\left(j+\frac{1}{2}\right)}, \ldots, T_{m}^{\left(j+\frac{1}{2}\right)}\right]$.

Now, let $T^{\left(j+\frac{1}{2}\right)}=\left[T_{1}^{\left(j+\frac{1}{2}\right)}, T_{2}^{\left(j+\frac{1}{2}\right)}, \ldots, T_{m}^{\left(j+\frac{1}{2}\right)}\right]$ be a m-tableau of shape $[\lambda]^{\left(j+\frac{1}{2}\right)} \in \Lambda_{n_{1}-1, n_{2}-1, \ldots, n_{m}-1}^{j}$ with increasing rows and columns and entries $\left\{1,2, \ldots, n_{1}\right\} \backslash\left\{a_{j+1}\right\},\left\{1,2, \ldots, n_{2}\right\} \backslash\left\{b_{j+1}\right\}, \ldots,\left\{1,2, \ldots, n_{m}\right\} \backslash\left\{l_{j+1}\right\}$ respectively and let $[\lambda]^{(j)} \subseteq[\lambda]^{\left(j+\frac{1}{2}\right)}$ with $[\lambda]^{(j)} \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{j}$. We can uniquely produce a standard m-tableau $T^{(j)}$ such that $T^{\left(j+\frac{1}{2}\right)}=\left(a_{j+1} \stackrel{j d t}{\leftrightarrows} T_{1}^{(j)}, b_{j+1} \stackrel{j d t}{\leftrightarrows} T_{2}^{(j)}, \ldots, l_{j+1} \stackrel{j d t}{\leftrightarrows}\right.$ $\left.T_{m}^{(j)}\right)$. To do this, let z_{1} be the box in $\lambda_{1}^{(j)} / \lambda_{1}^{\left(j+\frac{1}{2}\right)}$, put a_{j+1} in position of z_{1} of $T_{1}^{\left(j+\frac{1}{2}\right)}$ and perform the inverse of jeu de taquin to produce $T_{1}^{(j)}$, i.e., move a_{j+1} into a standard position by iteratively swapping it with larger of the numbers just above it or just left of it. Similarly, we can produce $T_{2}^{(j)}, \ldots, T_{m}^{(j)}$. Thus, $T^{(j)}=\left[T_{1}^{(j)}, T_{2}^{(j)}, \ldots, T_{m}^{(j)}\right]$.

Given $[\lambda] \in \Lambda_{n_{1}, n_{2}, \ldots, n_{m}}^{k}$ and $\left(T_{[\lambda]}, P_{[\lambda]}\right) \in S Y T^{m}([\lambda]) \times V T_{k}^{m}([\lambda])$ we apply the process above to $[\lambda]^{\left(k-\frac{1}{2}\right)} \subseteq[\lambda]^{(k)}, T^{(k)}=T_{[\lambda]}$ producing $\left(a_{k}, b_{k}, \ldots, l_{k}\right)$ and $T^{(k-1)}$ respectively. Continuing this way, we can produce $\left(\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right.$, $\left.\left(a_{k-1}, b_{k-1}, \ldots, l_{k-1}\right), \ldots,\left(a_{1}, b_{1}, \ldots, l_{1}\right)\right)$ and $T^{(k)}, T^{(k-1)}, \ldots, T^{(1)}$ such that $\left(\left(a_{1}, b_{1}, \ldots, l_{1}\right),\left(a_{2}, b_{2}, \ldots, l_{2}\right), \ldots,\left(a_{k}, b_{k}, \ldots, l_{k}\right)\right) \xrightarrow{F d}\left(T_{[\lambda]}, P_{[\lambda]}\right)$.

Example 6.2. For $((6,2),(3,5),(1,4))$ the pair $\left(T_{[\lambda]}, P_{[\lambda]}\right)$ is as follows.

7. The RS Correspondence for the Tensor Product of Partition Algebras

To give a combinatorial proof of the identity

$$
\begin{equation*}
[B(2 k)]^{m}=\sum_{[\lambda] \in \Gamma_{k}^{m}}\left(m_{k}^{[\lambda]}\right)^{2} \tag{7.1}
\end{equation*}
$$

we need to find a bijection of the form

$$
\mathcal{T}_{k} \longleftrightarrow \bigsqcup_{[\lambda] \in \Gamma_{k}^{m}} V T_{k}^{m}([\lambda]) \times V T_{k}^{m}([\lambda])
$$

by constructing a function that takes a tensor product partition diagram $\left(d_{1} \otimes d_{2} \otimes\right.$ $\left.\cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ and produce a pair $\left(P_{[\lambda]}, Q_{[\lambda]}\right)$ of m-vacillating tableaux.

Represent $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ as a m-tuple of k-partition diagrams and draw diagrams for every component (k-partition diagram) $d_{t}, t \in\{1,2, \ldots, m\}$ of
m-tuple using a standard representation as single row with the vertices in order $1,2, \ldots, 2 k$ where the vertex j^{\prime} is relabeled as $2 k-j+1$. We draw the edges of the standard representation of each component of a m-tuple of k-partition diagrams of $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ in a specific way: connect vertices i and j with $i \leq j$ if and only if i and j are related in $d_{t}, t \in\{1,2, \ldots, m\}$ and there does not exits k related to i and j with $i<k<j$. In this way, each vertex is connected only to its nearest neighbors in its block.

Example 7.1. Consider the diagram $\left(d_{1} \otimes d_{2}\right) \in \mathcal{T}_{4}$

Figure 5:

The above diagram has a standard one line representation as follows:

Figure 6:

We label each edge e_{t} of the diagram $d_{t}, t \in\{1,2, \ldots, m\}$ with $2 k+1-v$ where v is the right vertex of e_{t}. Define the insertion sequence of m-tuple of diagrams to be the sequence $E=\left(E_{j}\right)=\left(E_{j}^{1}, E_{j}^{2}, \ldots, E_{j}^{m}\right)$ indexed by the sequence $\frac{1}{2}, 1,1 \frac{1}{2}, \ldots, 2 k-$ $1,2 k-\frac{1}{2}, 2 k$.

$$
\begin{aligned}
& E_{j}=\left(E_{j}^{1}, E_{j}^{2}, \ldots, E_{j}^{m}\right) \\
& \text { where } E_{j}^{i}= \begin{cases}e_{i}, & \text { if vertex } j \text { is left end point of edge } e_{i} \text { in } i^{t h} \text { component, } \\
i \in\{1,2, \ldots, m\} \\
\emptyset, & \text { if vertex } j \text { is not left end point. } \\
E_{j-\frac{1}{2}}=\left(E_{j-\frac{1}{2}}^{1}, E_{j-\frac{1}{2}}^{2}, \ldots, E_{j-\frac{1}{2}}^{m}\right)\end{cases}
\end{aligned}
$$

where $E_{j-\frac{1}{2}}^{i}= \begin{cases}e_{i}, & \text { if vertex } j \text { is right end point of edge } e_{i} \text { in } i^{t h} \text { component, } \\ \emptyset, & i \in\{1,2, \ldots, m\} \\ \emptyset, & \text { if vertex } j \text { is not right end point. }\end{cases}$
The edge labeling for Example 7.1 is as follows:

The insertion sequence of the above edge labeling diagram is

j		1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	$4 \frac{1}{2}$	5	
$\left(E_{j}^{1}, E_{j}^{2}\right)$	$(\emptyset, \emptyset)(6,5)(\emptyset, \emptyset)(1,2)(6, \emptyset)(4,3)(\emptyset, 5)(3,4)(4,4)(\emptyset, \emptyset)(3,3)$										
j	6	$6 \frac{1}{2}$	7	$7 \frac{1}{2}$	8						
$\left(E_{j}^{1}, E_{j}^{2}\right)$	$(2,1)(2,2)(\emptyset, \emptyset)(1,1)(\emptyset, \emptyset)$										

The insertion sequence of a m-tuple of standard diagram completely determines the edges and thus the connected components of the diagram and therefore the following proposition follows immediately.
Proposition 7.2. $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ is completely determined by its insertion sequence.

For $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ with insertion sequence $E_{j}=\left(E_{j}^{1}, E_{j}^{2}, \ldots, E_{j}^{m}\right)$ we generate a pair $\left(P_{[\lambda]}, Q_{[\lambda]}\right)$ of m-vacillating tableaux. Begin with the empty tableaux,

$$
T^{(0)}=\left(T_{1}^{(0)}, T_{2}^{(0)}, \ldots, T_{m}^{(0)}\right)=(\emptyset, \emptyset, \ldots, \emptyset)
$$

Then recursively define standard m-tableaux $T^{\left(j+\frac{1}{2}\right)}$ and $T^{(j+1)}$ for $0 \leq j \leq 2 k-1$ as follows: The m-tuple of numbers $E_{j+\frac{1}{2}}$ is removed from the m - tableau $T^{(j)}$ by the process of applying jeu de taquin on the components in which it appears

$$
T^{\left(j+\frac{1}{2}\right)}= \begin{cases}E_{j+\frac{1}{2}} \stackrel{j d t}{\longleftrightarrow} T^{(j)}, & \text { if } E_{j+\frac{1}{2}} \neq \emptyset \text { (as given below) } \\ T^{(j)}, & \text { if } E_{j+\frac{1}{2}}=\emptyset .\end{cases}
$$

The process of insertion is as follows:

$$
T^{(j+1)}= \begin{cases}E_{j+1} \xrightarrow{R S} T^{\left(j+\frac{1}{2}\right)}, & \text { if } E_{j+1} \neq \emptyset(\text { as given below) } \\ T^{\left(j+\frac{1}{2}\right)}, & \text { if } E_{j+1}=\emptyset .\end{cases}
$$

Let $E_{j+1} \xrightarrow{R S} T^{\left(j+\frac{1}{2}\right)}$ denotes the insertion of all $E_{j+1}^{i} \neq \emptyset$ of E_{j+1} into the $i^{\text {th }}$ component $T_{i}^{\left(j+\frac{1}{2}\right)}$ of $T^{\left(j+\frac{1}{2}\right)}$ and other components remain unchanged.

If $E_{j+1} \neq \emptyset$, then

$$
\begin{gathered}
T^{(j+1)}=\left[T_{1}^{(j+1)}, T_{2}^{(j+1)}, \ldots, T_{m}^{(j+1)}\right] \quad \text { and } E_{j+1}=\left[E_{j+1}^{1}, E_{j+1}^{2}, \ldots, E_{j+1}^{m}\right] \\
\quad \text { where } T_{i}^{(j+1)}= \begin{cases}E_{j+1}^{i} \xrightarrow{R S} T_{i}^{\left(j+\frac{1}{2}\right)}, & \text { if } E_{j+1}^{i} \neq \emptyset \text { for } i \in\{1,2, \ldots, m\} \\
T_{i}^{\left(j+\frac{1}{2}\right)}, & \text { if } E_{j+1}^{i}=\emptyset .\end{cases}
\end{gathered}
$$

if $E_{j+\frac{1}{2}} \neq \emptyset$, then

$$
\begin{gathered}
T^{\left(j+\frac{1}{2}\right)}=\left[T_{1}^{\left(j+\frac{1}{2}\right)}, T_{2}^{\left(j+\frac{1}{2}\right)}, \ldots, T_{m}^{\left(j+\frac{1}{2}\right)}\right] \quad \text { and } E_{j+\frac{1}{2}}=\left[E_{j+\frac{1}{2}}^{1}, E_{j+\frac{1}{2}}^{2}, \ldots, E_{j+\frac{1}{2}}^{m}\right] \\
\quad \text { where } T_{i}^{\left(j+\frac{1}{2}\right)}= \begin{cases}E_{j+\frac{1}{2}}^{i} \stackrel{j d t}{\leftrightarrows} T_{i}^{(j)}, & \text { if } E_{j+\frac{1}{2}}^{i} \neq \emptyset \text { for } i \in\{1,2, \ldots, m\} \\
T_{i}^{(j)}, & \text { if } E_{j+\frac{1}{2}}^{i}=\emptyset .\end{cases}
\end{gathered}
$$

Let $[\lambda]^{(i)}$ be the shape of $T^{(i)},[\lambda]^{\left(i+\frac{1}{2}\right)}$ be the shape of $T^{\left(i+\frac{1}{2}\right)}$ and $[\lambda]=[\lambda]^{(k)}$. Define

$$
\begin{gathered}
Q_{[\lambda]}=\left(\emptyset,[\lambda]^{\left(\frac{1}{2}\right)},[\lambda]^{(1)}, \ldots,[\lambda]^{\left(k-\frac{1}{2}\right)},[\lambda]^{(k)}\right) \in V T_{k}^{m}([\lambda]), \\
P_{[\lambda]}=\left([\lambda]^{(2 k)},[\lambda]^{\left(2 k-\frac{1}{2}\right)}, \ldots,[\lambda]^{\left(k+\frac{1}{2}\right)},[\lambda]^{(k)}\right) \in V T_{k}^{m}([\lambda]) .
\end{gathered}
$$

In this way, we associate a pair of m-vacillating tableaux $\left(P_{[\lambda]}, Q_{[\lambda]}\right)$ to a tensor product of m-partition diagrams $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ which we denote by

$$
\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \longrightarrow\left(P_{[\lambda]}, Q_{[\lambda]}\right) .
$$

For the insertion sequence in Example 7.1:

j	$\frac{1}{2}$	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4	2	5	
$\left(E_{j}^{1}, E_{j}^{2}\right)$	$(\emptyset, \emptyset)(6,5)(\emptyset, \emptyset)(1,2)(6, \emptyset)(4,3)(\emptyset, 5)(3,4)(4,4)(\emptyset, \emptyset)(3,3)$										
j	6	$6 \frac{1}{2}$	7	$7 \frac{1}{2}$	8						
$\left(E_{j}^{1}, E_{j}^{2}\right)$	$(2,1)(2,2)(\emptyset, \emptyset)(1,1)(\emptyset, \emptyset)$										

the pair of 2 -vacillating tableaux is given by

j	$\left(E_{j}^{1}, E_{j}^{2}\right)$		$T^{(j)}$	j	$\left(E_{j}^{1}, E_{j}^{2}\right)$		$T^{(j)}$
0			(\emptyset, \emptyset)	8	(\emptyset, \emptyset)	$\xrightarrow{\text { RS }}$	(Ø, Ø)
$\frac{1}{2}$	(\emptyset, \emptyset)	$\stackrel{j}{\stackrel{j d t}{ }}$	(\emptyset, \emptyset)	$7 \frac{1}{2}$	$(1,1)$	$\stackrel{j d t}{ }$	(\emptyset, \emptyset)
1	$(6,5)$	$\xrightarrow{R S}$	$(6,5)$	7	(Ø, Ø)	$\xrightarrow{R S}$	(\square, \square)
$1 \frac{1}{2}$	(Ø, Ø)	$\stackrel{\text { jd }}{ }$	$(6,5)$	$6 \frac{1}{2}$	(2,2)	$\stackrel{\text { jdt }}{ }$	$(1, \boxed{1})$
2	$(1,2)$	$\xrightarrow{\text { RS }}$	$\left(\frac{1}{6}, \frac{2}{5}\right)$	6	$(2,1)$	$\xrightarrow{\text { RS }}$	$\left(1{ }^{12}, \frac{1}{2}\right)$
$2 \frac{1}{2}$	$(6, \emptyset)$	$\stackrel{j}{ } \stackrel{\text { jdt }}{ }$	(1, ${ }^{\frac{2}{5}}$)	$5 \frac{1}{2}$	(3, 3)	$\stackrel{\text { jdt }}{ }$	(1, [2)
3	$(4,3)$	$\xrightarrow{\text { RS }}$	$\left(\sqrt{14}, \frac{2}{5}^{3}\right)$	5	(Ø, Ø)	$\xrightarrow{\text { RS }}$	$(\boxed{113}, 2 \mid 3)$
$3 \frac{1}{2}$	$(\emptyset, 5)$	$\stackrel{\text { ¢ }}{ } \stackrel{\text { jdt }}{ }$	$(\underline{14}, 2 / 3)$	$4 \frac{1}{2}$	$(4,4)$	$\stackrel{\text { jdt }}{ }$	$(\underline{13}, \underline{213})$
4	$(3,4)$	$\xrightarrow{R S}$	$\left(\sqrt{\frac{1}{4}}{ }^{3}, 2\|3\| 3\right)$	4			$\left(\sqrt{\frac{13}{4}}, \underline{2[3]}\right)$
$\begin{aligned} & Q_{[\lambda]}=((\emptyset, \emptyset),(\emptyset, \emptyset),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square \square)) \\ & P_{[\lambda]}=((\emptyset, \emptyset),(\emptyset, \emptyset),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square \square)) \end{aligned}$							

We have numbered the edges of each standard diagram of m-tuple of diagrams in increasing order from right to left so if $E_{j+\frac{1}{2}}^{i} \neq \emptyset, i \in\{1,2, \ldots, m\}$ then $E_{j+\frac{1}{2}}^{i}$ is the largest element of $T_{i}^{(j)}$. Thus, in $T_{i}^{\left(j+\frac{1}{2}\right)}=\left(E_{j+\frac{1}{2}}^{i} \stackrel{j d t}{\longleftarrow} T_{i}^{(j)}\right)$ we know that $E_{j+\frac{1}{2}}^{i}$ is in a corner box and jeu de taquin simply deletes that box.

Theorem 7.3. The function $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \longrightarrow\left(P_{[\lambda]}, Q_{[\lambda]}\right)$ provides a bijection between the set of tensor product of partition diagrams in \mathcal{T}_{k} and pair of m-vacillating tableaux in $\underset{[\lambda] \in \Gamma_{k}^{m}}{\bigsqcup} V T_{k}^{m}([\lambda]) \times V T_{k}^{m}([\lambda])$ and thus gives a combinatorial proof of identity (7.1).

Proof. We prove the theorem by constructing the inverse of $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \longrightarrow$ $\left(P_{[\lambda]}, Q_{[\lambda]}\right)$. First, we use $Q_{[\lambda]}$ followed by $P_{[\lambda]}$ in the reverse order to construct the sequence $[\lambda]^{\left(\frac{1}{2}\right)},[\lambda]^{(1)}, \ldots,[\lambda]^{\left(2 k-\frac{1}{2}\right)},[\lambda]^{(2 k)}$.
We initialize $T^{(2 k)}=(\emptyset, \emptyset, \ldots, \emptyset)$.

We now present the process to construct $T^{\left(i+\frac{1}{2}\right)}$ and E_{i+1} so that $T^{(i+1)}=$ $\left(E_{i+1} \xrightarrow{R S} T^{\left(i+\frac{1}{2}\right)}\right)$. If $\lambda_{1}^{\left(i+\frac{1}{2}\right)}=\lambda_{1}^{(i+1)}, \lambda_{2}^{\left(i+\frac{1}{2}\right)}=\lambda_{2}^{(i+1)}, \ldots, \lambda_{m}^{\left(i+\frac{1}{2}\right)}=\lambda_{m}^{(i+1)}$ then let $T_{1}^{\left(i+\frac{1}{2}\right)}=T_{1}^{(i+1)}, T_{2}^{\left(i+\frac{1}{2}\right)}=T_{2}^{(i+1)}, \ldots, T_{m}^{\left(i+\frac{1}{2}\right)}=T_{m}^{(i+1)}$ and $E_{i+1}=$ $\left(E_{i+1}^{1}, E_{i+1}^{2}, \ldots, E_{i+1}^{m}\right)=(\emptyset, \emptyset, \ldots, \emptyset)$. Otherwise, $\lambda_{j}^{(i+1)} / \lambda_{j}^{\left(i+\frac{1}{2}\right)}$ is box z_{j} for all $j \in X \neq \emptyset, X \subseteq\{1,2, \ldots, m\}$ and we use RS reverse insertion on the value in z_{j} to produce $T_{j}^{\left(i+\frac{1}{2}\right)}$ and E_{i+1}^{j} such that $T_{j}^{(i+1)}=\left(E_{i+1}^{j} \xrightarrow{R S} T_{j}^{\left(i+\frac{1}{2}\right)}\right)$. Since, we uninserted the value in position of z_{j}, we know that $T_{j}^{\left(i+\frac{1}{2}\right)}$ has shape $\lambda_{j}^{\left(i+\frac{1}{2}\right)}$. Since, $\lambda_{s}^{\left(i+\frac{1}{2}\right)}=\lambda_{s}^{(i+1)}$ for $s \in\{1,2, \ldots, m\} \backslash X$ then let $T_{s}^{\left(i+\frac{1}{2}\right)}=T_{s}^{(i+1)}$ and $E_{i+1}^{s}=\emptyset$.
Thus, $T^{\left(i+\frac{1}{2}\right)}=\left[T_{1}^{\left(i+\frac{1}{2}\right)}, T_{2}^{\left(i+\frac{1}{2}\right)}, \ldots, T_{m}^{\left(i+\frac{1}{2}\right)}\right]$ and $E_{i+1}=\left(E_{i+1}^{1}, E_{i+1}^{2}, \ldots, E_{i+1}^{m}\right)$, $E_{i+1}^{j} \neq \emptyset$ where $j \in X \neq \emptyset, X \subseteq\{1,2, \ldots, m\}$ and $E_{i+1}^{s}=\emptyset$ where $s \in$ $\{1,2, \ldots, m\} \backslash X$.

Next we discuss the method to construct $T^{(i)}$ and $E_{i+\frac{1}{2}}$ so that $T^{\left(i+\frac{1}{2}\right)}=$ $\left(E_{i+\frac{1}{2}} \stackrel{j d t}{\leftrightarrows} T^{(i)}\right.$. If $\lambda_{1}^{(i)}=\lambda_{1}^{\left(i+\frac{1}{2}\right)}, \lambda_{2}^{(i)}=\lambda_{2}^{\left(i+\frac{1}{2}\right)}, \ldots, \lambda_{m}^{(i)}=\lambda_{m}^{\left(i+\frac{1}{2}\right)}$ then let $T_{1}^{(i)}=$ $T_{1}^{\left(i+\frac{1}{2}\right)}, T_{2}^{(i)}=T_{2}^{\left(i+\frac{1}{2}\right)}, \ldots, T_{m}^{(i)}=T_{m}^{\left(i+\frac{1}{2}\right)}$ and $E_{i+\frac{1}{2}}=\left(E_{i+\frac{1}{2}}^{1}, E_{i+\frac{1}{2}}^{2}, \ldots, E_{i+\frac{1}{2}}^{m}\right)=$ $(\emptyset, \emptyset, \ldots, \emptyset)$. Otherwise, $\lambda_{j}^{(i)} / \lambda_{j}^{\left(i+\frac{1}{2}\right)}$ is box z_{j} for all $j \in X \neq \emptyset, X \subseteq\{1,2, \ldots, m\}$. Let $T_{j}^{(i)}$ be the tableau of shape $\lambda_{j}^{(i)}$ with the same entries as $T_{j}^{(i+1)}$ and having the entry $2 k-i$ in box z_{j}. Let $E_{i+\frac{1}{2}}^{j}=2 k-i$. At any given step $i, 2 k-i$ is the largest value added to the tableau thus far, so that $T_{j}^{(i)}$ is standard. Further more, $T_{j}^{\left(i+\frac{1}{2}\right)}=\left(E_{i+\frac{1}{2}}^{j} \stackrel{j d t}{\longleftarrow} T_{j}^{(i)}\right)$ since $E_{i+\frac{1}{2}}^{j}=2 k-i$ is already in a corner and thus jeu de taquin simply delete it. Since, $\lambda_{s}^{(i)}=\lambda_{s}^{\left(i+\frac{1}{2}\right)}$ for $s \in\{1,2, \ldots, m\} \backslash X$ then let $T_{s}^{(i)}=T_{s}^{\left(i+\frac{1}{2}\right)}$ and $E_{i+\frac{1}{2}}^{s}=\emptyset$.

This iterative process will produce $E_{2 k}, E_{2 k-1}, \ldots, E_{\frac{1}{2}}$ which completely determines the diagram $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$. By this way we have constructed $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$ and $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \longrightarrow\left(P_{[\lambda]}, Q_{[\lambda]}\right)$.

Notice that in the m-tuple of standard representation of $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$ a flip corresponds to a reflection over the vertical line between vertices k and $k+1$ in each component of a m-tuple. Our aim is to show that if $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \rightarrow(P, Q)$ then $f l i p\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \rightarrow(Q, P)$.

Given a tensor product partition diagram $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ construct a triangular grid (as in the case of partition diagrams) in the integer lattice $\mathbb{Z} \times \mathbb{Z}$ that contains the points in the triangular whose vertices are $(0,0),(2 k, 0)$ and $(0,2 k)$. Number the columns $1,2, \ldots, 2 k$ from left to right and the rows $1,2, \ldots, 2 k$ from bottom to top. Place an \mathbf{X}_{1} in the box in column i and row j if and only if in the first one row diagram of m-tuple the vertex i is the left end point of edge j. Place an \mathbf{X}_{2} in the box in column i and row j if and only if in the second one row diagram of m-tuple the vertex i is the left end point of edge j. Similarly, proceed in this
way up to the $m^{t h}$ one row diagram of m-tuple. We then label the vertices of the diagram on the bottom row and left column with the m-tuple of empty partition $(\emptyset, \emptyset, \ldots, \emptyset)$.

Example 7.4.

Note that the triangular array completely determines the tensor product partition diagram and vice-versa.

Now we inductively label the remaining vertices using the local rules of Fomin (as in the case of partition diagrams). If a box is labeled with $[\mu],[\nu],[\lambda]$ as given below then we add the label $[\rho]$ according to the following rule:

[RL1] If $\mu_{j} \neq \nu_{j}, j \in\{1,2, \ldots, m\}$ let $\rho_{j}=\mu_{j} \cup \nu_{j}$, i.e., $\rho_{j}^{i}=\max \left(\mu_{j}^{i}, \nu_{j}^{i}\right)$.
[RL2] If $\mu_{j}=\nu_{j}, \lambda_{j} \subset \mu_{j}$ and $\lambda_{j} \neq \mu_{j}, j \in\{1,2, \ldots, m\}$ then this will automatically imply that μ_{j} can be obtained from λ_{j} by adding a box to λ_{j}^{i}. Let ρ_{j} can be obtained from μ_{j} by adding a box to μ_{j}^{i+1}.
[RL3] If $\mu_{j}=\nu_{j}=\lambda_{j}, j \in\{1,2, \ldots, m\}$ then if the square does not contain a \mathbf{X}_{j}, let $\rho_{j}=\lambda_{j}$ and if the square does contain a \mathbf{X}_{j} then ρ_{j} be obtained from λ_{j} by adding 1 to λ_{j}^{1}.
Using these rules we can uniquely label every corner one step at a time. The resulting diagram is called the growth diagram $G_{\underline{d}}$ for $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$. The growth diagram for Example 7.4. is

Let $P_{\underline{d}}$ denote the chain of m-partitions that follows the staircase path on the diagonal of $G_{\underline{d}}$ from $(0,2 k)$ to (k, k) and $Q_{\underline{d}}$ denote the chain of m-partitions that follows the staircase path on the diagonal of $G_{\underline{d}}$ from $(2 k, 0)$ to (k, k). The pair $\left(P_{\underline{d}}, Q_{\underline{d}}\right)$ represents a pair of m-vacillating tableaux whose shape is the partition at (k, k). From the above example

$$
\begin{aligned}
& Q_{[\lambda]}=((\emptyset, \emptyset),(\emptyset, \emptyset),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square \square)) \\
& P_{[\lambda]}=((\emptyset, \emptyset),(\emptyset, \emptyset),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square),(\square, \square \square))
\end{aligned}
$$

Theorem 7.5. Let $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ with $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \rightarrow(P, Q)$. Then $P_{\underline{d}}=P$ and $Q_{\underline{d}}=Q$.

Proof. The proof is based on [4]. Turn each diagram $d_{s}, s \in\{1,2, \ldots, m\}$ of $\left(d_{1} \otimes d_{2} \otimes\right.$ $\left.\cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ into a diagram d_{s}^{\prime} on $4 k$ vertices by splitting each vertex i into two vertices labeled by $i-\frac{1}{2}$ and i. If there is an edge from vertex j to vertex i in d_{s} with $j<i$, let j be adjacent to $i-\frac{1}{2}$ in d_{s}^{\prime}. If there is an edge from vertex j to vertex i in d_{s} with $j>i$, let i be adjacent to $j-\frac{1}{2}$ in d_{s}^{\prime}. A key advantage of the use of growth diagrams is that the symmetry of the algorithm is nearly obvious. We have that i is the left end point of the edge labeled j in diagram d_{s} of $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$ if and only if j is the left point of the edge labeled i in diagram d_{s} of $f l i p\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$. Thus the growth diagram of $G_{\underline{d}}$ is the reflection over the line $y=x$ of the growth diagram of $G_{f l i p(\underline{d})}$ and so $P_{\underline{d}}=Q_{f l i p(\underline{d})}$ and $Q_{\underline{d}}=P_{f l i p(\underline{d})}$.

Corollary 7.6. If $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \rightarrow(P, Q)$ then flip $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \rightarrow(Q, P)$.

Corollary 7.7. A diagram $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k}$ is symmetry if and only if $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \rightarrow(P, P)$.

Proof. The proof is based on [4]. If $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$ is symmetry then by the above corollary we must have $P=Q$. To prove the converse part, let $P=Q$ and place the m-vacillating tableaux on the staircase border of the growth diagram. The local rules we have defined above are invertible. Given $[\mu],[\nu]$ and $[\rho]$, one can follow the rules backwards to uniquely find $[\lambda]$ and determine whether there is an $\mathbf{X}_{i}, i \in\{1,2, \ldots, m\}$ in the box. Thus, the interior of the growth diagram is uniquely determined. By the symmetry of having $P=Q$ along the staircase the growth diagram must have a symmetry interior and a symmetric placement of the $\mathbf{X}_{i}^{\prime} s$. This forces $\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)$ to be symmetric.

This corollary tells us that the number of symmetry diagrams in \mathcal{T}_{k} is equal to the number of m-vacillating tableaux of length $2 k$ or the number of paths to level k in the Bratteli diagram of $\mathbb{C}\left\{P_{k}\left(n_{1}\right) \otimes P_{k}\left(n_{2}\right) \otimes \cdots \otimes P_{k}\left(n_{m}\right)\right\}$. Thus,
$\operatorname{Card}\left(\left\{\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right) \in \mathcal{T}_{k} \mid\left(d_{1} \otimes d_{2} \otimes \cdots \otimes d_{m}\right)\right.\right.$ is symmetry $\left.\}\right)=\sum_{[\lambda] \in \Gamma_{k}^{m}} m_{k}^{[\lambda]}$.

References

[1] M. Bloss, Partition algebras and permutation representations of wreath products, Thesis, University of Wisconsin, Madison, 2002.
[2] R. Goodman and N. R. Wallach, Representations and invariants of classical groups, Cambridge University Press, Cambridge, 1998.
[3] T. Halverson, Characters of the partition algebras, J . Algebra, 238(2001), 502-533.
[4] T. Halverson and T. Lewandowski, RSK Insertion for set partitions and diagram algebras, The Electronic Journal of Combinatorics, 11(2)(2005), R24.
[5] V. F. R Jones, The Potts model and the symmetric group, in "Subfactors: Proceedings of the Taniguchi Symposium on Operater Algebra, Kyuzeso, 1993," pp. 259-267, World Scientific, River edge, NJ, 1994.
[6] A. Joseph Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35(2007), 145-170.
[7] P. Martin, Representations of graph Temperley-Lieb algebras, Pupl. Res. Inst. Math. Sci., 26(1990), 485-503.
[8] P. Martin, Potts Models and Related Problems in statistical mechanics, World Scientific, Singapore, 1991.
[9] P. Martin, Temperley-Lieb algebras for non planar statistical mechanics-The partition algebra construction, J. Knot Theory Ramifications, 3(1994), 51-82.
[10] P. P. Martin and A. Elgamal, Ramified partition algebras, Math. Z., 246(2004), 473500.
[11] M. Parvathi and A. Joseph Kennedy, G-vertex colored partition algebras as centralizer algebras of direct products, Commun. Algebra, 32(11)(2004), 4337-4361.
[12] M. Parvathi and A. Joseph Kennedy, Representations of Vertex Colored Partition Algebras, Southeast Asian Bull. Math, 28(2004), 493-518.
[13] B. E. Sagan, The Symmetric Group. Representations, combinatorial algorithms and symmetric functions, Graduate Texts in Mathematics Springer-Verlag, 2001.
[14] R. Stanley, Enumerative Combinatorics, Vol 2, 1998

[^0]: * Corresponding Author.

 Received September 3, 2020; revised April 9, 2021; accepted July 12, 2021.
 2020 Mathematics Subject Classification: 05E10,16S99 and 20C99.
 Key words and phrases: Centralizer algebra, Representation, Partition algebra, RobinsonSchensted correspondence.
 This work was supported by Department of Mathematics, Pondicherry University, Puducherry-605014.

