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Abstract. We study the tensor product algebra Pk(x1)⊗ Pk(x2)⊗ · · · ⊗ Pk(xm), where

Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer

of this algebra and corresponding Schur–Weyl dualities and also index the inequivalent

irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ · · · ⊗ Pk(xm) and compute

their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams

and branching rules. Along with that, we have also constructed the RS correspondence

for the tensor product of m-partition algebras which gives the bijection between the set

of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ · · · ⊗ Pk(nm) and the

pairs of m-vacillating tableaux of shape [λ] ∈ Γmk , Γmk = {[λ] = (λ1, λ2, ..., λm)|λi ∈
Γk, i ∈ {1, 2, ...,m}} where Γk = {λi ` t|0 ≤ t ≤ k}. Also, we provide proof of the

identity (n1n2 · · · nm)k =
∑

[λ]∈Λkn1,n2,...,nm
f [λ]m

[λ]
k where m

[λ]
k is the multiplicity of the

irreducible representation of Sn1 × Sn2 × ....× Snm module indexed by [λ] ∈ Λkn1,n2,...,nm ,

where f [λ] is the degree of the corresponding representation indexed by [λ] ∈ Λkn1,n2,...,nm

and [λ] ∈ Λkn1,n2,...,nm = {[λ] = (λ1, λ2, ..., λm)|λi ∈ Λkni , i ∈ {1, 2, ...,m}} where Λkni =

{µ = (µ1, µ2, ..., µt) ` ni|ni − µ1 ≤ k}.

1. Introduction

The partition algebras Pk(x) have been defined by Martin [7] and by Jones [5]
independently. The algebra was studied as Potts model in statistical mechanics
and generalization of the Temperley–Lieb algebras. In [7, 8] the algebra appears
implicity and in [9] it appears explicitly. Jones considered the algebra Pk(n), as the
symmetric group’s centralizer algebra on V ⊗k (see [5]).

TheG-vertex colored partition algebras Pk(x,G) has been recently introduced in
[11]. The algebra Pk(n,G) realized as the centralizer algebras of the direct product
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group G × Sn which is a subgroup of G o Sn on W⊗k, where W = Cn|G|. In [12],
they also studied the inequivalent irreducible representations and their dimensions.

The class partition algebra Pk(x, y) have been studied recently by Kennedy [6]
and further studied by Martin and Elgamal [10] . The algebra Pk(n,m) realized
as the centralizer algebra of Sm o Sn act on W⊗k, where W = Cnm and W is
permutation module for Snm.

The RS correspondence for the partition algebra by Halverson and Lewandowski
[4] provides the bijection between the set partitions and the pairs of vacillating
tableaux.

In this paper, we demonstrate that the algebra Pk(n1)⊗Pk(n2)⊗ · · · ⊗Pk(nm)
is the centralizer algebra of the direct product Sn1 × Sn2 × .... × Snm on W⊗k,
where W = Cn1n2···nm . We use centralizer theory to study the semisimplicity of
Pk(x1) ⊗ Pk(x2) ⊗ · · · ⊗ Pk(xm) and by using the representation theory of Pk(x)
(from, [1, 3, 5]) the index of the inequivalent irreducible representations of Pk(x1)⊗
Pk(x2) ⊗ · · · ⊗ Pk(xm) is studied and their dimensions in the semisimple case is
computed. In addition, the Bratteli diagrams and branching rules for the towers
Pk−1(x1)⊗Pk−1(x2)⊗···⊗Pk−1(xm) ⊆ Pk(x1)⊗Pk(x2)⊗···⊗Pk(xm) are described.

The RS correspondence for the partition algebra by Halverson and Lewandowski
[4] influenced us to construct the RS correspondence for the tensor product of
m-partition algebras which provides the bijection between the set of tensor prod-
uct of m-partition diagrams and the pairs of m-vacillating tableaux. The proof

of the identity (n1n2 · · · nm)k =
∑

[λ]∈Λkn1,n2,...,nm
f [λ]m

[λ]
k where m

[λ]
k is the

multiplicity of the irreducible representation of Sn1
× Sn2

× .... × Snm module
indexed by [λ] ∈ Λkn1,n2,...,nm , where f [λ] is the degree of the corresponding

representation indexed by [λ] ∈ Λkn1,n2,...,nm and [λ] ∈ Λkn1,n2,...,nm = {[λ] =

(λ1, λ2, ..., λm)|λi ∈ Λkni , i ∈ {1, 2, ...,m}} where Λkni = {µ = (µ1, µ2, ..., µt) `
ni|ni − µ1 ≤ k} is discussed by constructing a bijection between the sequence
((a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk) ofm-tuples of numbers where 1 ≤ ai ≤
n1, 1 ≤ bi ≤ n2, ..., 1 ≤ li ≤ nm and the pair (T[λ], P[λ]) where T[λ] is standard m-
tableau of shape [λ] and P[λ] is m-vacillating tableau of shape [λ].

2. Preliminaries

In this section, some basic definitions and results are discussed herewith.

Definition 2.1.([13, §2.1]) A partition of non-negative integers n is a sequence of
non-negative integers β = (β1, β2, ..., βi) such that β1 ≥ β2 ≥ ... ≥ βi ≥ 0 and
|β| = β1 + β2 + ...+ βi = n. It is denoted by β ` n.

A Young diagram is a diagrammatic representation of a partition β as an array
of n boxes with β1 boxes in the first row, β2 boxes in the second row and so on.

Definition 2.2. A m-partition of size n is an ordered m-tuple of partitions [λ] =
(λ1, λ2, ..., λm) where λ1 ` n1, λ2 ` n2, ..., λm ` nm with n1 +n2 + ...+nm = n. We
denote it [λ] `m n where m is number of partition of n and λi is the ith component
of [λ].
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Remark 2.3. λ ` n denotes a single partition of n and [λ] `m n denotes a m-
partition of n.

A young diagram of a 3-partition of size 9 is as follows: , ,


Figure 1: (λ1, λ2, λ3) = ([3, 2], [2, 1], [1])

Definition 2.4.([13, 2.1.3]) Suppose λ ` n. A tableau of shape λ is an array t
obtained by filling the boxes of the Young diagram of λ with the numbers 1, 2, . .
. , n bijectively.

A tableau t is standard if the entries in the tableau increase along the rows from
left to right and along the columns from top to bottom. Let ti,j stand for the entry
of t in the position (i, j).

Definition 2.5. Suppose [λ] = (λ1, λ2, ..., λm) `m n. A m-tableau of shape [λ]
is an m-tuple of array [t] = (t1, t2, ..., tm) obtained by filling the boxes of the each
Young diagram of λi with the numbers 1, 2, . . . , ni bijectively.

Definition 2.6. A m-tableau [t] of shape [λ] is standard if each ti is standard
tableau of shape λi.

Notation 2.7. Let STm([λ]) = {[t] | [t] is standard tableau of shape [λ]}.

2.1. The partition algebra Pk(x)

A k-partition diagram is a simple graph of one above the other of two lines of
k-vertices. The 2k vertices partitioned into l subsets, 1 ≤ l ≤ 2k by the connected
components of a k-partition diagram. We state that two diagrams are equivalent
when they determine the same partitions of 2k vertices.

'

Figure 2: Two equivalent diagrams

When we are discussing about diagrams, we are really concerned about the asso-
ciated equivalence classes. Define an equivalence classes of k-partition diagrams
by stating that two classes are equivalent if they have same elements in any order.
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Number the vertices 1, 2, ..., k in the upper line from left to right and k+1, k+2, ..., 2k
in the lower line from left to right in a k-partition diagram.

The field F will always represent a field of characteristic which is arbitrary
throughout the paper and x represents a field element of the field F . The following
is known as the product of two diagrams d and d′ (see Figure 3):

1. Set d at the top and d′ below it so that the lower line of d coincides with the
upper line of d′.

2. Now, we have a diagram with upper line, middle line and lower line of ver-
tices. This diagram is named as attachment of d and d′. Let the number of
components that lie completely in the middle line is λ.

3. Make a new diagram d′′ by deleting the vertices in the middle line but keeping
the lower line and upper line and maintaining the connections between them.
Replacing every “component” contained in the middle line with the variable
x. That is, d′d = xλd′′.

d =

d′ =

d′d =

d′d =x2

Figure 3: Product of two k-partition diagrams d and d′

This product is associative and well defined up to equivalence. Linearly extending
this product makes the algebra Pk(x) an associative algebra with identity.

The partition algebra Pk(x) is the F -span of all k-partition diagrams for every
x in the field F and a natural number k. The identity element is given by the
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partition diagram with every vertex in the upper line connected only to the vertex
below it in the lower line. The dimension of the partition algebra Pk(x) is the Bell
number B(2k), where

(2.1) B(2k) =

l=2k∑
l=1

S(2k, l)

and where the number of equivalence relations with exactly l parts for a set of 2k
elements is Stirling number S(2k, l)(see [14]). By convention, P0(x) = F . Replacing
the variable x by complex number ξ, we obtain a F -algebra Pk(ξ).

Schur-Weyl Duality

We follow the notations, as given in [3]. Let V = Cn, where V is the permutation
module for Sn with standard basis v1, v2, ..., vn. Then π(vi) = vπ(i), for π ∈ Sn and

1 ≤ i ≤ n. For every positive integer k, the tensor product space V ⊗k is a module
for Sn with a standard basis given by vi1 ⊗ vi2 ⊗ · · · ⊗ vik , where 1 ≤ ij ≤ n. The
action of π ∈ Sn on a basis vector is given by

(2.2) π(vi1 ⊗ vi2 ⊗ · · · ⊗ vik) = vπ(i1) ⊗ vπ(i2) ⊗ · · · ⊗ vπ(ik).

For every diagram d and every integer sequence i1, i2, ..., i2k with 1 ≤ is ≤ n, define
(2.3)

ψ(d)i1,i2,...,ikik+1,...,i2k
=

{
1 if ir = is whenever vertices s and r are connected in d,

0 otherwise.

Define the action of a diagram d ∈ Pk(n) on V ⊗k by stating it on the standard
basis as

(2.4) d(vi1 ⊗ vi2 ⊗· · ·⊗ vik) =
∑

1≤ik+1,...,i2k≤n

ψ(d)i1,i2,...,ikik+1,...,i2k
vik+1

⊗ vik+2
⊗· · ·⊗ vi2k .

Theorem 2.8.([5]). C[Sn] and Pk(n) generate full centralizers of each other in
End(V ⊗k). In particular, for n ≥ 2k,

(a) Pk(n) ∼= EndSn(V ⊗k)

(b) Sn generates EndPk(n)(V
⊗k).

2.2. The Irreducible Representations of Pk(x)

Double centralizer Theory
We follow the notations as in [1]. Let A be a finite-dimensional associative

algebra over C, the field of complex numbers. The algebra A is said to be semi-
simple if
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A ∼=
⊕
λ∈Â

Mdλ(C)

where Mdλ(C) denotes full matrix algebras, Â a finite index set and dλ be any

positive integer. Corresponding to every λ ∈ Â there is a single irreducible A-
module, call it V λ, which has dimension dλ. If Â is a singleton set then A is said to
be simple. Maschke’s Theorem (see [2]) says that if G is finite, C[G] is semisimple.

A finite dimensional A-module M is completely reducible if it is the direct sum
of irreducible A-modules, i.e.,

M ∼=
⊕
λ∈Â

mλV
λ

where the non-negative integer mλ is the multiplicity (dimension) of the irreducible
A-module V λ in M (some of the mλ may be zero). Wedderburn’s Theorem (see
[2]) discuss that for A being semi-simple every A is completely reducible.

The algebra End(M) comprises of all C-linear transformations on M , where
the composition of transformations is the algebra multiplication. If the represen-
tation ρ : A → End(M) is injective we say that M is faithful A-module. The
centralizer algebra of A on M denoted EndA(M), is the subalgebra of End(M)
comprising of all operators that commute with the A-action:

EndA(M) = {T ∈ End(M) | Tρ(a) ·m = ρ(a)T ·m,∀a ∈ A,m ∈M}.

If M is irreducible, then Schur’s Lemma says that EndA(M) ∼= C. If G is a finite
group and M is a G-module, then we often write EndG(M) in place of EndC[G](M).

Theorem 2.9. Double centralizer Theorem(see [2]).
Suppose that A and M decomposes as above. Then

(a)

EndA(M) ∼=
⊕
λ∈Â

Mmλ(C).

(b) As an EndA(M)-module,

M ∼=
⊕
λ∈Â

dλU
λ,

where dim Uλ = mλ and Uλ is an irreducible module for EndA(M) when
mλ > 0.

(c) As A ⊗ EndA(M)-bimodule,

M ∼=
⊕

λ∈Â such that mλ 6=0

V λ ⊗ Uλ.
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(d) A generates EndEndA(M)(M).

This theorem tells us that if A is semisimple then so is EndA(M). It also says

that the set ÂM = {mλ ∈ Â|mλ > 0} indexes all the irreducible representations
of EndA(M). Finally, we see from this theorem that the roles of multiplicity and
dimension are interchanged when M is viewed as an EndA(M)- module as against
the A-module. When the hypothesis of the above theorem are satisfied, we say that
A and EndA(M) generate full centralizers of each other in M . This is often called
Schur-Weyl Duality between A and EndA(M).

Branching Rules
Let A and B be semisimple algebras and where B be a subalgebra of A. Let M
be a A-module and M can be viewed as B-module by restricting the action of A
on M to B. This B-module is called the restriction of M from A to B and is
denoted M ↓AB. On other side, let N be a B-module. A A-module produced from a
B-module is called induction of N from B to A and is denoted N ↑AB. Let {V λ}

λ∈Â
denote the irreducible A-modules and {V̌ µ}

µ∈B̂ denote the irreducible B-modules.
The decomposition

V λ ↓AB=
⊕
µ∈B̂

gλµV̌
µ,

where the gλµ are non-negative integers are called the (restriction) branching rule
for B ⊆ A. Frobenius reciprocity (see [2]) tells us that

V̌ µ ↑AB=
⊕
λ∈Â

gλµV
λ.

Proposition 2.10. (Branching rule for EndG(M⊗(k−1)) ⊆ EndG(M⊗k)).
Let G be a finite group and ρ : C[G] → End(M) be a representation of G. Let
M⊗k denote the k-fold tensor product of M and {V λ}

λ∈Ĝk denote the irreducible

G-modules that appear in M⊗k where Ĝk indexes the irreducible G-modules that
appear in M⊗k. {Uλk }λ∈Ĝk denote the irreducible EndG(M⊗k)-modules that appear

in M⊗k. View the algebra EndG(M⊗(k−1)) as a subalgebra of EndG(M⊗k) by
identifying it with the subalgebra EndG(M⊗(k−1)) ⊗ id, with id ∈ EndG(M), the
identity transformation. For V µ a summand of M⊗(k−1) consider that as a G-
module

V µ ⊗M =
⊕
λ∈Ĝk

gµλV
λ.

Suppose further that

Uλk ↓
EndG(M⊗k)

EndG(M⊗(k−1))
=

⊕
µ∈Ĝk−1

g′λµU
µ
k−1.

Then gµλ = g′λµ for all µ and λ.
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Theorem 2.11. (see [5]). Let Sλ be an irreducible Sn-module and let V denote the
permutation representation of Sn. Then

Sλ ⊗ V ∼= (Sλ ↓SnSn−1
) ↑SnSn−1

∼=
⊕

µ=(λ−)+

Sµ,

where (λ−)+ denotes a partition of n obtained by removing a box from λ and then
adding a box.

Definition 2.12. The Bratteli diagram is a graph which contains a rows of vertices
with the rows labeled by 0, 1

2 , 1, 1
1
2 , ..., k where vertices in a row i and i+ 1

2 are from
the index sets Λin and Λin−1 respectively. There is a edge between two vertices when
they are in consecutive rows and they differing by one box.

Proposition 2.13. (see [1]). (Branching rule for Pk−1(n) ⊆ Pk(n)).
The lines in the (Sn, Pk(n))-Bratteli diagram when read upward from row k to
k−1, provides the restriction branching rule, the lines downward gives the induction
branching rule Pk−1(n) ⊆ Pk(n). In particular, for n ≥ 2k,

Pλ ↓Pk(n)
Pk−1(n)=

⊕
µ=(λ−)+,n−λ1≤k−1

Pµ,

and
Pµ ↑Pk(n)

Pk−1(n)=
⊕

λ=(µ−)+

Pλ.

3. The Tensor Product of m-Partition Algebras

3.1. The tensor product partition algebra Pk(x1)⊗ Pk(x2)⊗ · · · ⊗ Pk(xm)

In this subsection, the structure of the tensor product partition algebra Pk(x1)⊗
Pk(x2)⊗ · · · ⊗ Pk(xm), where x1, x2, ..., xm ∈ F are discussed.
Consider the tensor product partition algebra Pk(x1)⊗Pk(x2)⊗· · ·⊗Pk(xm). Note
that the standard basis for this algebra is

Tk := {(d1 ⊗ d2 ⊗ · · · ⊗ dm)| d1, d2, ..., dm are k-partition diagrams }

and the dimension is [B(2k)]m.
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Let (d′1 ⊗ d′2 ⊗ · · · ⊗ d′m), (d′′1 ⊗ d′′2 ⊗ · · · ⊗ d′′m) ∈ Tk, then (d′′1 ⊗ d′′2 ⊗
· · · ⊗ d′′m)(d′1 ⊗ d′2 ⊗ · · · ⊗ d′m) = xλ1

1 xλ2
2 · · · xλmm (d1 ⊗ d2 ⊗ · · · ⊗ dm), where

d′′1d
′
1 = xλ1

1 d1 in Pk(x1), d′′2d
′
2 = xλ2

2 d2 in Pk(x2), ..., d′′md
′
m = xλmm dm in Pk(xm).

Thus the product of any two element in Tk is a scalar product of some element in
Tk. Hence, the extension of partition algebras are defined to be the F -span of the
tensor product of m-partition diagrams with identity.

3.2. Two bases for EndSn1
×Sn2

×....×Snm (W⊗k)

In this subsection, two bases for EndSn1
×....×Snm (W⊗k), where W = Cn1n2···nm

are discussed.

Let W = SpanC{v(i,j,...,s)| 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, ..., 1 ≤ s ≤ nm}.(3.1)

The action of Sn1 × Sn2 × ....× Snm on W is defined as

(π1, π2, ..., πm)(v(i,j,...,s)) = v(π1(i),π2(j),...,πm(s)).(3.2)

Note that when ni = 1, for all i ∈ {2, 3, ...,m}, Sn1 ×Sn2 × ....×Snm ∼= Sn1 ; in this
case W specializes to V1, the permutation representation of Sn1

.

Let S := {1, 2, ..., n1} × {1, 2, ..., n2} × ....× {1, 2, ..., nm}(3.3)

be an index set for the basis of W and I = ((i1, j1, ..., s1), (i2, j2, ..., s2), ...,
(ik, jk, ..., sk)), J = ((ik+1, jk+1, ..., sk+1), (ik+2, jk+2, ..., sk+2), ..., (i2k, j2k, ..., s2k))
in Sk. The action of Sn1

× Sn2
× .... × Snm on S by (π1, π2, ..., πm)(i, j, ..., s) =

(π1(i), π2(j), ..., πm(s)) can be extended to an action on S2k by (π1, π2, ..., πm)(I, J)
= ((π1, π2, ..., πm)(I), (π1, π2, ..., πm)(J)).

Diagonally extend the action of Sn1 × Sn2 × .... × Snm on W to an action of
Sn1
× Sn2

× ....× Snm on W⊗k as follows:

(π1, π2, ..., πm)(v(i1,j1,...,s1) ⊗ · · · ⊗ v(ik,jk,...,sk))(3.4)

= v(π1(i1),...,πm(s1)) ⊗ · · · ⊗ v(π1(ik),...,πm(sk))

We will write the above as (π1, π2, ..., πm)(vI) = v(π1,π2,...,πm)(I).

Let A ∈ End(W⊗k). Define A(vJ) =
∑
I A

J
I (vI), where I, J ∈ Sk and AJI ∈ C is

the (I, J)th entry of A and vI is a basis element of W⊗k.

The following is our analog of Jones’s result.

Lemma 3.1. A ∈ EndSn1
×Sn2

×....×Snm (W⊗k) ⇔ AJI = A
(π1,π2,...,πm)(J)
(π1,π2,...,πm)(I) , ∀ (π1, π2,

..., πm) ∈ Sn1
× Sn2

× ....× Snm .
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Proof. We have A ∈ EndSn1
×Sn2

×....×Snm (W⊗k)

⇔(π1, π2, ..., πm)A = A(π1, π2, ..., πm), ∀ (π1, π2, ..., πm) ∈ Sn1
× Sn2

× ...× Snm
⇔(π1, π2, ..., πm)A(vJ) = A(π1, π2, ..., πm)(vJ), ∀ vJ
⇔(π1, π2, ..., πm)

∑
I

AJI (vI) = A(v(π1,π2,...,πm)(J))

⇔
∑
I

AJI (π1, π2, ..., πm)(vI) =
∑
I

A
(π1,π2,...,πm)(J)
I (vI)

⇔
∑
I

AJI (v(π1,π2,...,πm)(I)) =
∑
I

A
(π1,π2,...,πm)(J)
(π1,π2,...,πm)(I) (v(π1,π2,...,πm)(I))

since the action of Sn1 ×Sn2 × ....×Snm is by the permutation representation. The
result follows from equating the scalars and linearly independence. 2

Lemma 3.2.

dim EndSn1×Sn2×....×Snm (W⊗k) =

i=n1,j=n2,...,s=nm∑
i=1,j=1,...,s=1

S(2k, i)S(2k, j) · · · S(2k, s).

when n1, n2, ..., nm ≥ 2k, dim EndSn1×Sn2×....×Snm (W⊗k) = [B(2k)]m.

Proof. By lemma 3.1. A commutes with the Sn1 ×Sn2 × ....×Snm -action on W⊗k if
and only if the matrix entries of A are equal on Sn1 ×Sn2 × ....×Snm-orbits. Thus,
dim EndSn1

×Sn2
×....×Snm (W⊗k) is the number of Sn1

×Sn2
×....×Snm -orbits on S2k.

Fix a tuple of indices (I, J) = ((i1, j1, ..., s1), (i2, j2, ..., s2), ..., (i2k, j2k, ..., s2k)) ∈
S2k which determine the partitions d1 := d̄(i1, i2, ..., i2k), d2 := d̄(j1, j2, ..., j2k), ...,
dm := d̄(s1, s2, ..., s2k) of {1, ..., 2k} (into at most n1, n2, ..., nm subsets respectively)
according to those that have an equal value. Let [(I, J)] be the orbit of (I, J) ∈ S2k.
Then (I ′, J ′) ∈ [(I, J)]

⇔ (I ′, J ′) = (π1, π2, ..., πm)(I, J), for some (π1, π2, ..., πm) ∈ Sn1
× Sn2

× ...× Snm
⇔ (i′r, j

′
r, ..., s

′
r) = (π1, π2, ..., πm)(ir, jr, ..., sr), ∀ r such that 1 ≤ r ≤ 2k, where

(i′r, j
′
r, ..., s

′
r) and (ir, jr, ..., sr) are the rth component of (I ′, J ′) and (I, J)

respectively.

⇔ (i′r, j
′
r, ..., s

′
r) = (π1(ir), π2(jr), ..., πm(sr))

⇔ i′r = π1(ir), j
′
r = π2(jr), ...., s

′
r = πm(sr)

⇔ [ip = iq iff i′p = i′q], [jp = jq iff j′p = j′q], ..., [sp = sq iff s′p = s′q], (1 ≤ p, q ≤ 2k)
(3.5)

⇔ d̄(i1, i2, ..., i2k) = d̄(i′1, i
′
2, ..., i

′
2k), d̄(j1, j2, ..., j2k) = d̄(j′1, j

′
2, ..., j

′
2k), ....,

d̄(s1, s2, ..., s2k) = d̄(s′1, s
′
2, ..., s

′
2k).
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Thus, every Sn1
× Sn2

× ....× Snm-orbits determine the partitions d1, d2, ..., dm
of the set of 2k elements and vice-versa. Hence, the result. 2

For a fixed tuple of indices (I, J) ∈ S2k, define the matrix EIJ ∈ End(W⊗k) to
be the (n1n2 · · · nm)k × (n1n2 · · · nm)k matrix with a 1 in the (I, J)-position and
zero elsewhere. For every Sn1

× Sn2
× .... × Snm-orbit [(I, J)], we define a matrix

T IJ ∈ End(W⊗k) by

T IJ =
∑

(I′,J′)∈[(I,J)]

EI
′

J′ ,

In fact, T IJ ∈ End(W⊗k), since such a matrix satisfies the Lemma 3.1. condition:
The entries of the matrix are equal on Sn1

× Sn2
× ....× Snm-orbits. By using the

equation (3.5), we obtained

(3.6) T
(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,jk+1,...,sk+1),...,(i2k,j2k,...,s2k) =

∑
E

(i′1,j
′
1,...,s

′
1),...,(i′k,j

′
k,...,s

′
k)

(i′k+1,j
′
k+1,...,s

′
k+1),...,(i′2k,j

′
2k,...,s

′
2k),

where the sum is over ip = iq ⇔ i′p = i′q, jp = jq ⇔ j′p = j′q, ...., sp = sq ⇔ s′p =
s′q, (1 ≤ p, q ≤ 2k).

Since every matrix T IJ is the sum of different matrix units, the set {T IJ | [(I, J)]is
an Sn1 × Sn2 × ....× Snm -orbit} is linearly independent set.

For A ∈ EndSn1
×Sn2

×....×Snm (W⊗k), we obtain A =
∑

[(I,J)]A
I
JT

I
J by using the

lemma 3.1. Thus, the matrices T IJ span EndSn1
×Sn2

×....×Snm (W⊗k) and so they

are a basis for EndSn1
×Sn2

×....×Snm (W⊗k).

Definition 3.3. Let d̄ and d̄′ be partitions of [2k]. We say that d̄′ is coarser than
d̄ if any class in d̄ is contained in some class in d̄′. In this case we write d̄′ ≤ d̄.

Now, we state another basis for EndSn1×Sn2×....×Snm (W⊗k) as follows: Define
for every Sn1

× Sn2
× ....× Snm-orbit [(I, J)] = [(i1, j1, ..., s1), ...., (i2k, j2k, ..., s2k)],

the matrix

LIJ =
∑

T I
′

J′ ,

where the sum is over Sn1 × Sn2 × .... × Snm -orbit [(I ′, J ′)] = [(i′1, j
′
1, ..., s

′
1), ...,

(i′2k, j
′
2k, ..., s

′
2k)] such that d̄(i1, i2, ..., i2k) ≥ d̄(i′1, i

′
2, ..., i

′
2k), ...., d̄(s1, s2, ..., s2k) ≥

d̄(s′1, s
′
2, ..., s

′
2k). The matrix T IJ can be expressed in terms of the matrix LIJ by

using Möbius inversion (see [14]). So they also span EndSn1×Sn2×....×Snm (W⊗k).
By using the equation (3.6), we obtain

(3.7) L
(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,jk+1,...,sk+1),...,(i2k,j2k,...,s2k) =

∑
E

(i′1,j
′
1,...,s

′
1),...,(i′k,j

′
k,...,s

′
k)

(i′k+1,j
′
k+1,...,s

′
k+1),...,(i′2k,j

′
2k,...,s

′
2k),

where the sum is over ip = iq ⇒ i′p = i′q, jp = jq ⇒ j′p = j′q, ...., sp = sq ⇒
s′p = s′q, (1 ≤ p, q ≤ 2k). The matrices T IJ and LIJ form two different basis for

EndSn1
×Sn2

×....×Snm (W⊗k).
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Note: For a given tuple (i1, i2, ..., i2k) ∈ {1, 2, ..., n}×2k collect the numbers
i1, i2, ..., i2k into (at most n) subsets then ip and iq are in the same subset if and
only if ip = iq. This determines the relation ∼ on {1, 2, ..., 2k}, i.e., p ∼ q if and
only if ip and iq are in the same subset. Naturally this relation in turn determines
a partition d = d(i1, i2, ..., i2k) of {1, 2, ..., 2k} into subsets.

3.3. Schur-Weyl Duality

An action of Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm) on W⊗k is defined as follows: Define
a map φ̄ : Pk(n1)⊗Pk(n2)⊗ · · · ⊗Pk(nm) −→ End(W⊗k) by defining it on a basis
element (d1 ⊗ d2 ⊗ · · · ⊗ dm) as follows:

φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm) =
(
φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm)

(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,jk+1,...,sk+1),...,(i2k,j2k,...,s2k)

)
=
(
ψ(d1)i1,...,ikik+1,...,i2k

ψ(d2)j1,...,jkjk+1,...,j2k
· · · ψ(dm)s1,...,sksk+1,...,s2k

)
,

where ψ is defined as in equation (2.3). Alternatively, in terms of matrix units we
have

(3.8) φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm) =
∑

p∼q in d1⇒ip=iq
p∼q in d2⇒jp=jq

.

.

.
p∼q in dm⇒sp=sq

E
(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,jk+1,...,sk+1),...,(i2k,j2k,...,s2k)

where 1 ≤ i1, i2, ..., i2k ≤ n1, 1 ≤ j1, j2, ..., j2k ≤ n2, ..., 1 ≤ s1, s2, ..., s2k ≤ nm.
Then, we have an action of Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm) on W⊗k defined by

(d1 ⊗ d2 ⊗ · · · ⊗ dm)(vJ) = φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm)(vJ), for all J ∈ Sk.

when n1 = n and ni = 1, for all i ∈ {2, 3, ...,m}, this action restricted to the
partition algebra coincides with the action defined by Jones [5] on tensors.

Thus, we have an action of a basis element (d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk on W⊗k

by defining it on the standard basis element by

(d1 ⊗ d2 ⊗ · · · ⊗ dm) · (v(i1,j1,...,s1) ⊗ · · · ⊗ v(ik,jk,...,sk))

=
∑

1≤ik+1,...,i2k≤n1

1≤jk+1,...,j2k≤n2
.
.
.

1≤sk+1,...,s2k≤nm

ψ(d1)i1,i2,...,ikik+1,...,i2k
···· ψ(dm)s1,s2,...,sksk+1,...,s2k

(v(ik+1,...,sk+1)⊗···⊗v(i2k,...,s2k).

Lemma 3.4. The map φ̄ : Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm) −→ EndSn1
×...×Snm (W⊗k)

is an algebra homomorphism.
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Proof. From (3.8) we have,

(3.9) φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm) =
∑

d̄(i1,i2,...,i2k)≤d1
d̄(j1,j2,...,j2k)≤d2

.

.

.
d̄(s1,s2,...,s2k)≤dm

E
(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,jk+1,...,sk+1),...,(i2k,j2k,...,s2k),

where 1 ≤ i1, i2, ..., i2k ≤ n1, 1 ≤ j1, j2, ..., j2k ≤ n2, ...., 1 ≤ s1, s2, ..., s2k ≤ nm.

=
∑

d̄(i1,i2,...,i2k)≤d1
d̄(j1,j2,...,j2k)≤d2

.

.

.
d̄(s1,s2,...,s2k)≤dm

T
(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,jk+1,...,sk+1),...,(i2k,j2k,...,s2k),

where the sum over one representative (i1, j1, ..., s1), (i2, j2, ..., s2), ..., (i2k, j2k,
..., s2k) for one Sn1

× Sn2
× .... × Snm -orbit. Thus, φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈

EndSn1×Sn2×....×Snm (W⊗k).

Claim: The map φ̄ is an algebra homomorphism.

Let (d′1 ⊗ d′2 ⊗···⊗ d′m), (d′′1 ⊗ d′′2 ⊗···⊗ d′′m) ∈ Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm)
and (d′′1 ⊗ d′′2 ⊗·· ·⊗ d′′m)(d′1 ⊗ d′2 ⊗·· ·⊗ d′m) = nλ1

1 nλ2
2 · · ·nλmm (d1⊗d2⊗·· ·⊗dm),

where d′′1d
′
1 = nλ1

1 d1 in Pk(n1), d′′2d
′
2 = nλ2

2 d2 in Pk(n2), ...., d′′md
′
m = nλmm dm in

Pk(nm). From (3.9), we have

φ̄(d′′1 ⊗ d′′2 ⊗ · · · ⊗ d′′m)φ̄(d′1 ⊗ d′2 ⊗ · · · ⊗ d′m)

=
∑

d̄(i′′1 ,...,i
′′
2k)≤d′′1
.
.
.

d̄(s′′1 ,...,s
′′
2k)≤d′′m

E
(i′′1 ,j

′′
1 ,...,s

′′
1 ),...,(i′′k ,j

′′
k ,...,s

′′
k )

(i′′k+1,...,s
′′
k+1),...,(i′′2k,...,s

′′
2k)

∑
d̄(i′1,...,i

′
2k)≤d′1
.
.
.

d̄(s′1,...,s
′
2k)≤d′m

E
(i′1,j

′
1,...,s

′
1),...,(i′k,j

′
k,...,s

′
k)

(i′k+1,...,s
′
k+1),...,(i′2k,...,s

′
2k)

where 1 ≤ i′′z , i′z ≤ n1, 1 ≤ j′′z , j′z ≤ n2, ..., 1 ≤ s′′z , s′z ≤ nm and 1 ≤ z ≤ 2k.

=
∑

d̄(i′′1 ,...,i
′′
2k)≤d′′1 ,....,d̄(s′′1 ,...,s

′′
2k)≤d′′m

d̄(i′1,...,i
′
2k)≤d′1,....,d̄(s′1,...,s

′
2k)≤d′m

δ
(i′′1 ,j

′′
1 ,...,s

′′
1 ),...,(i′′k ,j

′′
k ,...,s

′′
k )

(i′k+1,...,s
′
k+1),...,(i′2k,...,s

′
2k)E

(i′1,j
′
1,...,s

′
1),...,(i′k,j

′
k,...,s

′
k)

(i′′k+1,...,s
′′
k+1),...,(i′′2k,...,s

′′
2k)

since EqpE
s
r = δqrE

s
p, where δqr is the Kronecker delta.

=
∑

d̄(i′′1 ,...,i
′′
2k)≤d′′1 ,....,d̄(s′′1 ,...,s

′′
2k)≤d′′m

d̄(i′1,...,i
′
2k)≤d′1,....,d̄(s′1,...,s

′
2k)≤d′m

δ
i′′1 ,i
′′
2 ,...,i

′′
k

i′k+1,...,i
′
2k
· · · δs

′′
1 ,s
′′
2 ,...,s

′′
k

s′k+1,...,s
′
2k
E

(i′1,j
′
1,...,s

′
1),...,(i′k,j

′
k,...,s

′
k)

(i′′k+1,...,s
′′
k+1),...,(i′′2k,...,s

′′
2k)
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= nλ1
1 nλ2

2 · · · nλmm
∑

d̄(i1,...,i2k)≤d1
d̄(j1,...,j2k)≤d2

.

.

.
d̄(s1,...,s2k)≤dm

E
(i1,j1,...,s1),...,(ik,jk,...,sk)
(ik+1,...,sk+1),...,(i2k,...,s2k), as in the partition case.

= nλ1
1 nλ2

2 · · · nλmm φ̄(d1 ⊗ d2 ⊗ · · · ⊗ dm)

= φ̄((d′′1 ⊗ d′′2 ⊗ · · · ⊗ d′′m)(d′1 ⊗ d′2 ⊗ · · · ⊗ d′m)).

2

Theorem 3.5. C[Sn1×Sn2×....×Snm ] and Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm) generate
full centralizers of each other in End(W⊗k). In particular, for n1, n2, ..., nm ≥ 2k,

(a) Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm) ∼= EndSn1
×Sn2

×....×Snm (W⊗k),

(b) Sn1
× Sn2

× ....× Snm generates EndPk(n1)⊗Pk(n2)⊗···⊗Pk(nm)(W
⊗k).

Proof. Since n1, n2, ..., nm ≥ 2k, dimPk(n1) ⊗ Pk(n2) ⊗ · · · ⊗ Pk(nm) = dim
EndSn1

×Sn2
×....×Snm (W⊗k). Therefore, (a) follows from Lemma 3.1 and (b) fol-

lows from (a) and Double Centralizer Theorem. 2

As the centralizer of the semisimple group algebra C[Sn1 ×Sn2 × ....×Snm ], the
C-algebra Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm) is semisimple for n1, n2, ..., nm ≥ 2k.

4. The Irreducible Representations of Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm)

In this section, the inequivalent irreducible representations of the tensor product
partition algebra Pk(n1)⊗Pk(n2)⊗· · ·⊗Pk(nm) by using the representation theory
of the partition algebra Pk(x) (from [1, 3, 5]) and the centralizer theory is being
indexed. Also, their dimensions are computed. When n1, n2, ..., nm ≥ 2k, the
Bratteli diagrams and the branching rules for the tower Pk−1(n1) ⊗ Pk−1(n2) ⊗ · ·
· ⊗ Pk−1(nm) ⊆ Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm) are described.

The C-vector space V ⊗k1 ⊗ V ⊗k2 ⊗ · · · ⊗ V ⊗km is a Sn1
× Sn2

× ....× Snm-module
under the action is given by

(π1, π2, ..., πm)((vi1 ⊗ vi2 ⊗ · · · ⊗ vik)⊗ (vj1 ⊗ vj2 ⊗ · · · ⊗ vjk)⊗ · · · ⊗ (vs1 ⊗ vs2 ⊗
· · · ⊗ vsk)) = (vπ1(i1) ⊗ vπ2(i2) ⊗ · · · ⊗ vπm(ik))⊗ (vπ1(j1) ⊗ vπ2(j2) ⊗ · · · ⊗ vπm(jk))⊗
· · · ⊗ (vπ1(s1) ⊗ vπ2(s2) ⊗ · · · ⊗ vπm(sk)).

Lemma 4.1. The index set of the irreducible Sn1
×Sn2

×....×Snm-modules appearing

as summands in V ⊗k1 ⊗ V ⊗k2 ⊗ · · · ⊗ V ⊗km is P̂k(n1)× P̂k(n2)× ....× P̂k(nm), where

P̂k(ni) is the index set of the irreducible Sni-modules.

Proof. The representation V ⊗k1 ⊗ V ⊗k2 ⊗ · · · ⊗ V ⊗km of Sn1 × Sn2 × ....× Snm is the
product representation of Sn1

× Sn2
× .... × Snm afforded by V ⊗k1 of Sn1

, V ⊗k2 of
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Sn2
, ..., V ⊗km of Snm , where the representation V ⊗ki of Sni , i ∈ {1, 2, ...,m} is the

tensor product permutation representation which is decomposed as (see § 2.2)

V ⊗ki
∼=

⊕
λi∈P̂k(ni)

mλiS
λi

(where mλi is the multiplicity of the irreducible Sni -module appearing as summands
in V ⊗ki ).

Hence, as Sn1
× Sn2

× ....× Snm-module

V ⊗k1 ⊗ V ⊗k2 ⊗ · · · ⊗ V ⊗km
∼=

⊕
λi∈P̂k(ni)
i∈{1,2,...,m}

mλ1mλ2 · · ·mλmS
λ1 ⊗ Sλ2 ⊗ · · · ⊗ Sλm ,

where Sλ1⊗Sλ2⊗· · ·⊗Sλm is the irreducible Sn1
×Sn2

× ....×Snm -module induced
by the irreducible Sn1

-module Sλ1 , Sn2
-module Sλ2 , ...., Snm-module Sλm . 2

Theorem 4.2.

(a) As a Sn1
× Sn2

× ....×nm-module

W⊗k ∼=
⊕

λi∈P̂k(ni)
i∈{1,2,...,m}

mλ1mλ2 · · ·mλmS
λ1 ⊗ Sλ2 ⊗ · · · ⊗ Sλm .

(b) For n1, n2, ..., nm ≥ 2k,

Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm) ∼=
⊕

λi∈P̂k(ni)
i∈{1,2,...,m}

M[λ1,λ2,...,λm](C),

where [λ1, λ2, ..., λm] = mλ1mλ2 · · ·mλm .

(c) For n1, n2, ..., nm ≥ 2k, as Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm)-module

W⊗k ∼=
⊕

λi∈P̂k(ni)
i∈{1,2,...,m}

dλ1dλ2 · · · dλmPλ1,λ2,...,λm ,

where dλi is the dimension of Sλi and Pλ1,λ2,...,λm is the irreducible Pk(n1)⊗
Pk(n2)⊗ · · · ⊗ Pk(nm)-module indexed by λ1 ∈ P̂k(n1), λ2 ∈ P̂k(n2), ..., λm ∈
P̂k(nm) with dimension [λ1, λ2, ..., λm].
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(d) For n1, n2, ..., nm ≥ 2k, as a C[Sn1
× Sn2

× ....× Snm ]⊗ (Pk(n1)⊗Pk(n2)⊗ · ·
· ⊗ Pk(nm))-bimodule,

W⊗k ∼=
⊕

λi∈P̂k(ni)
i∈{1,2,...,m}

(Sλ1,λ2,...,λm ⊗ Pλ1,λ2,...,λm),

where Sλ1,λ2,...,λm = Sλ1 ⊗ Sλ2 ⊗ · · · ⊗ Sλm .

Proof. Since Sn1
× Sn2

× .... × Snm acts on the suffix of v(i,j,...,s), we have the
permutation representation Vi of Sni with respect to Sni−1 for i ∈ {1, 2, ...,m}.
Hence,

W ∼= V1 ⊗ V2 ⊗ · · · ⊗ Vm.

Moreover,

W⊗k ∼= (V1 ⊗ V2 ⊗ · · · ⊗ Vm)⊗k ∼= V ⊗k1 ⊗ V ⊗k2 ⊗ · · · ⊗ V ⊗km .

(a) follows from lemma 4.1. (b), (c) and (d) follows from theorems 2.9. and 3.5. 2

Corollary 4.3. Let Sλ1,λ2,...,λm be an irreducible Sn1×Sn2× ....×Snm-module and
let W be the permutation representation of Sn1

× Sn2
× ....× Snm . Then

Sλ1,λ2,...,λm ⊗W ∼= (Sλ1,λ2,...,λm ↓Sn1
×...×Snm

Sn1−1×...×Snm−1
) ↑Sn1

×...×Snm
Sn1−1×...×Snm−1

∼=
⊕

µi=(λ−i )+

i∈{1,2,...,m}

Sµ1,µ2,...,µm

where (λ−i )+ denotes a partition of ni obtained by removing a box from λi and then
adding a new box.

Proof. This follows from theorems 4.2. and 2.11. 2

From Corollary 4.3. the Bratteli diagram for (Sn1 × Sn2 × ....× Snm , Pk(n1)⊗
Pk(n2) ⊗ · · · ⊗ Pk(nm)) as they act on W⊗k is the tensor product of the Brat-
teli diagram for (Sn1

, Pk(n1)) as they act on V ⊗k1 , (Sn2
, Pk(n2)) as they act on

V ⊗k2 , ...., (Snm , Pk(nm)) as they act on V ⊗km . Note that if ni = 1 for i ∈ {1, 2, ...,m}
except one ni then the Bratteli diagram for (Sn1

×Sn2
×....×Snm , Pk(n1)⊗Pk(n2)⊗

· · · ⊗ Pk(nm)) as they act on W⊗k is the Bratteli diagram for (Sni , Pk(ni)) as they
act on V ⊗ki .

Now, we may write the Bratteli diagram for Sn1
×Sn2

× ....×Snm and Pk(n1)⊗
Pk(n2)⊗ · · · ⊗Pk(nm) as they act on W⊗k when m = 2, n1 = 4, n2 = 4 (see Figure
4).

For k = 2 and m = 2, n1 = 4, n2 = 4, from Figure 4: the dimen-
sions of the irreducible Pk(n1) ⊗ Pk(n2) ⊗ · · · ⊗ Pk(nm)-modules Pλ1,λ2,...,λm are
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k = 0 :

k = 1
2

:

k = 1 :

k = 1 1
2

:

k = 2 :

( , )

( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )( , )

Figure 4: Bratteli diagram for C{Pk(4)⊗ Pk(4)}
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4, 6, 2, 2, 6, 9, 3, 3, 2, 3, 1, 1, 2, 3, 1, 1 (which are multiplicity of the irreducible Sn1
×

Sn2
×....×Snm-module Sλ1⊗Sλ2⊗···⊗Sλm reading from left to right) and 42 +62 +

22+22+62+92+32+32+22+32+12+12+22+32+12+12 = 225 = dim(P2(4)⊗P2(4)).
The multiplicity of Pλ1,λ2,...,λm are 1, 3, 2, 3, 3, 9, 6, 9, 2, 6, 4, 6, 3, 9, 6, 9 (which are
the dimensions of Sλ1 ⊗ Sλ2 ⊗ · · · ⊗ Sλm respectively). Hence, the dimension of
W⊗2 = 162 = 256 = (1×4)+(3×6)+(2×2)+(3×2)+(3×6)+(9×9)+(6×3)+
(9× 3) + (2× 2) + (6× 3) + (4× 1) + (6× 1) + (3× 2) + (9× 3) + (6× 1) + (9× 1).

Proposition 4.4. (Branching rule for Pk−1(n1)⊗ Pk−1(n2)⊗ · · · ⊗ Pk−1(nm) ⊆
Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm)).
The lines in the (Sn1

×Sn2
×....×Snm , Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm))-bratteli diagram

when read upward from row k to k − 1 leads to the restriction branching rule, the
lines downward leads to the induction branching rule for Pk−1(n1)⊗Pk−1(n2)⊗···⊗
Pk−1(nm) ⊆ Pk(n1)⊗Pk(n2)⊗ · · · ⊗Pk(nm). In particular, for n1, n2, ..., nm ≥ 2k,

Pλ1,λ2,...,λm ↓Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm)
Pk−1(n1)⊗···⊗Pk−1(nm) =

⊕
µi=(λ−i )+,ni−µ1

i≤k−1
i∈{1,2,...,m}

Pµ1,µ2,...,µm ,

and

Pµ1,µ2,...,µm ↑Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm)
Pk−1(n1)⊗···⊗Pk−1(nm) =

⊕
λi=(µ−i )+

i∈{1,2,...,m}

Pλ1,λ2,...,λm .

Proof. The proposition follows from proposition 2.10. and corollary 4.3. 2

5. Vacillating Tableaux

Let

Λkn1,n2,...,nm = {[λ] = (λ1, λ2, ..., λm)|λi ∈ Λkni , i ∈ {1, 2, ...,m}},
Λkn1−1,n2−1,...,nm−1 = {[λ] = (λ1, λ2, ..., λm)|λi ∈ Λkni−1, i ∈ {1, 2, ...,m}},

Γmk = {[λ] = (λ1, λ2, ..., λm)|λi ∈ Γk, i ∈ {1, 2, ...,m}}

where Λkni = {µ = (µ1, µ2, ..., µt) ` ni|ni − µ1 ≤ k} and Γk = {λi ` t|0 ≤ t ≤ k}.
Let T

[λ]
k denote the irreducible C{Pk(n1)⊗Pk(n2)⊗···⊗Pk(nm)} representation

indexed by Λkn1,n2,...,nm . Since, the dimension of T
[λ]
k equals the multiplicity of V [λ]

in V ⊗k.
Here, we discuss the vacillating tableau in the case of m-partitions following

the procedure in [4] for partitions of n. The dimension of the irreducible Sn1
×

Sn2
× .... × Snm module V [λ] equals the number of standard m-tableaux of shape

[λ]. We can identify a standard m-tableau T[λ] of shape [λ] with a sequence (∅ =

[λ](0), [λ](1), ..., [λ](n) = [λ]) of m-tableaux such that |[λ](i)| = i, (i.e).|λ(i)
l | = i for all
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l ∈ {1, 2, ...,m}, [λ](i) ⊆ [λ](i+1) and such that [λ](i)/[λ](i−1) is the box containing i
in T[λ]. For example,(

1 3 4
2 5

, 1 2 5
3 4

)
=
(

(∅, ∅),
(
,
)
,
(
,

)
,
(

,
)
,
(

,
)
,
(

,
))
.

Let [λ] ∈ Λkn1,n2,...,nm . A m-vacillating tableaux of shape [λ] and length 2k is a
sequence of m-partitions,(

((n1), (n2), ..., (nm)) = [λ](0), [λ](
1
2 ), [λ](1), ..., [λ](k−

1
2 ), [λ](k) = [λ]

)
,

satisfying for each i,

1. [λ](i) ∈ Λin1,n2,...,nm and [λ](i+
1
2 ) ∈ Λin1−1,n2−1,...,nm−1,

2. [λ](i) ⊇ [λ](i+
1
2 ) and |[λ](i)/[λ](i+

1
2 )| = 1,

3. [λ](i+
1
2 ) ⊆ [λ](i+1) and |[λ](i+1)/[λ](i+

1
2 )| = 1.

The m-vacillating tableaux of shape [λ] corresponds exactly with the paths from
the top of the Bratteli diagram to [λ]. By the double centralizer theorem, we have

m
[λ]
k = dim(T

[λ]
k ) . Thus, if we let V Tmk ([λ]) denote the set of m-vacillating tableaux

of shape [λ] and length k then

m
[λ]
k = dim(T

[λ]
k ) = |V Tmk ([λ])|

where m
[λ]
k is the multiplicity of V [λ] in the decomposition of V ⊗k as a Sn1 ×Sn2 ×

...× Snm module.
Let n1, n2, ..., nm ≥ 2k. The sets Λkn1,n2,...,nm and Γmk are in bijection with one
another using the maps,

Λkn1,n2,...,nm → Γmk Γmk → Λkn1,n2,...,nm .

via these bijections can be used either to Γmk or Λkn1,n2,...,nm so as to index the
irreducible representations of C{Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm)}.

The following sequences represent the same m-vacillating tableau P[λ], the first

one is obtained using the diagrams from Λkn1,n2,...,nm and the second from Γmk ,

P[λ] =

((
,

)
,
(

,
)
,
(

,
)
,
(

,
)
,
(

,
))

=
(

(∅, ∅), (∅, ∅),
(
,
)
,
(
,
)
,
(

,
))

For our bijection, in section 6 we use Λkn1,n2,...,nm and in section 7 we use Γmk .

6. A Bijective Proof of (n1n2 · · · nm)k =
∑

[λ]∈Λkn1,n2,...,nm

f [λ]m
[λ]
k

We follow the notations as given below:
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1. ñi = {1, 2, ..., ni}
2. k̃ = {1, 2, ..., k}

To give a combinatorial proof of identity

(6.1) (n1n2 · · · nm)k =
∑

[λ]∈Λkn1,n2,...,nm

f [λ]m
[λ]
k , for n1, n2, ..., nm ≥ 2k.

We need to find a bijection of the form

{((a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk))|aq ∈ ñ1, bq ∈ ñ2, ..., lq ∈ ñm, q ∈ k̃}

←→
⊔

[λ]∈Λkn1,n2,...,nm

SY Tm([λ])× V Tmk ([λ]).

To do so, construct an invertible function that turns a sequence ((a1, b1, ..., l1),
(a2, b2, ..., l2), ..., (ak, bk, ..., lk)) of m-tuples of numbers in the range 1 ≤ ai ≤ n1, 1 ≤
bi ≤ n2, ..., 1 ≤ li ≤ nm into a pair (T[λ], P[λ]) consisting of a standard m-tableaux
T[λ] of shape [λ] and m-vacillating tableaux P[λ] of shape [λ] and length 2k for some

[λ] ∈ Λkn1,n2,...,nm .

Note: Here the RS insertion and reverse RS algorithm as in [4] is used. Also, we
used the jeu de taquin in each component of the m-partition. If T = (T1, T2, ..., Tm)
is a standard m-tableau of shape [λ] `m n and for r ∈ {1, 2, ...,m}, Tr is a standard
tableau of shape λr ` nr then jeu de taquin provides an algorithm for removing
the box containing xr from Tr and producing a standard tableau Sr of shape µr `
(nr−1) and entries from {1, 2, ..., nr}\{xr}. Let S = (S1, S2, ..., Sm) be the standard
m-tableau and Si,jr denotes the entry of Sr in row i and column j. We say that a box
whose removal leaves the young diagram of a partition is corner of Sr. Thus, the
corner of Sr are the boxes that are end of both the row and column. The following
algorithm will delete xr from Tr leaving a standard tableau Sr with xr removed.

We denote this process by xr
jdt←−− Tr.

1. Let c = Si,jr be the box containing xr.

2. While c is not a corner, do

a. Let c′ be the box containing min{Si+1,j
r , Si,j+1

r };
b. Exchange the positions of c and c′.

3. Delete c.

If only one of Si+1,j
r , Si,j+1

r exits at step 2.a then the minimum is taken to be the
single value.

Let S = (S1, S2, ..., Sm) be the standard m-tableau and Sr be a tableau of shape
µr with |µr| < nr and distinct entries from {1, 2, ..., nr}. Let xr be a positive integer
that is not in Sr. The following algorithm insets xr into Sr producing a standard
tableau Tr of shape λr with µr ⊆ λr, |λr/µr| = 1 whose entries are the union of

those from S and {xr}. We denote this process by xr
RS−−→ Sr.



On the Tensor Product of m-Partition Algebras 699

1. Let R be the first row of Sr.

2. While xr is less than some element in R, do

a. Let yr be the smallest element of R greater than xr;

b. Replace yr ∈ R with xr;

c. Let xr := yr and let R be the next row.

3. Place xr at the end of R (which is possibly empty).

It is possible to invert the process of insertion using the R-S reverse algorithm.

Theorem 6.1. The function ((a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk))
Fd−−→

(T[λ], P[λ]) provides a bijection between sequence of m-tuples in {((a1, b1, ..., l1),
(a2, b2, ..., l2), ..., (ak, bk, ...., lk))|1 ≤ ai ≤ n1, 1 ≤ bi ≤ n2, ..., 1 ≤ li ≤ nm} and⊔
[λ]∈Λkn1,n2,...,nm

SY Tm([λ])×V Tmk ([λ]) and thus gives a combinatorial proof of (6.1).

Proof. The proof is based on [4]. Given (a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk)
with 1 ≤ ai ≤ n1, 1 ≤ bi ≤ n2, ..., 1 ≤ li ≤ nm, we will produce a pair
(T[λ], P[λ]), [λ] ∈ Λkn1,n2,...,nm , consisting of a standard m-tableau T[λ] and a m-
vacillating tableau P[λ].

Let T (j) = (T
(j)
1 , T

(j)
2 , ..., T

(j)
m ). First, we initialize the 0th tableau to be the

standard m-tableau of shape (n1), (n2), ..., (nm), namely,

T (0) = (T
(0)
1 , T

(0)
2 , ..., T

(0)
m )

1 2 · · · n1 , 1 2 · · · n2 , . . . , 1 2 · · · nm
)(

=

Then recursively define standard m-tableau T (j+ 1
2 ) and T (j+1) for 0 ≤ j ≤ k− 1 by

T (j+ 1
2 ) =

(
T

(j+ 1
2 )

1 = aj+1
jdt←−− T (j)

1 , ..., T
(j+ 1

2 )
m = lj+1

jdt←−− T (j)
m

)
T (j+1) =

(
T

(j+1)
1 = aj+1

RS−−→ T
(j+ 1

2 )
1 , ..., T (j+1)

m = lj+1
RS−−→ T

(j+ 1
2 )

m

)
Let [λ](j) ∈ Λjn1,n2,...,nm be the shape of T (j) and [λ](j+

1
2 ) ∈ Λjn1−1,n2−1,...,nm−1 be

the shape of T (j+ 1
2 ). Then let

P[λ] = ([λ](0), [λ](
1
2 ), [λ](1), ...., [λ](k)) and T[λ] = T (k)

so that P[λ] is a m-vacillating tableau of shape [λ] = [λ](k) ∈ Λkn1,n2,...,nm and T[λ]

is a standard m-tableau of the same shape [λ]. We denote this iterative process of
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deletion and insertion that associates the pair (T[λ], P[λ]) to the sequence of m-tuples
(a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk) by

((a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk))
Fd−−→ (T[λ], P[λ]).

Let [λ](j+
1
2 ) ⊆ [λ](j+1) with [λ](j+1) ∈ Λj+1

n1,n2,...,nm , [λ](j+
1
2 ) ∈ Λjn1−1,...,nm−1

and T (j+1) be a standard m-tableau of shape [λ](j+1). We can uniquely de-

termine aj+1, bj+1, ..., lj+1 and a m-tableau T (j+ 1
2 ) of shape [λ](j+

1
2 ) such that

T (j+1) =
(
aj+1

RS−−→ T
(j+ 1

2 )
1 , bj+1

RS−−→ T
(j+ 1

2 )
2 , ..., lj+1

RS−−→ T
(j+ 1

2 )
m

)
. To do this,

let z1, z2, ..., zm be the boxes in λ
(j+1)
1 /λ

(j+ 1
2 )

1 , λ
(j+1)
2 /λ

(j+ 1
2 )

2 ..., λ
(j+1)
m /λ

(j+ 1
2 )

m . We
use reverse RS insertion to delete the numbers in the boxes z1, z2, ..., zm which

gives aj+1 and T
(j+ 1

2 )
1 , bj+1 and T

(j+ 1
2 )

2 , ..., lj+1 and T
(j+ 1

2 )
m . Thus, T (j+ 1

2 ) =[
T

(j+ 1
2 )

1 , T
(j+ 1

2 )
2 , ..., T

(j+ 1
2 )

m

]
.

Now, let T (j+ 1
2 ) = [T

(j+ 1
2 )

1 , T
(j+ 1

2 )
2 , ..., T

(j+ 1
2 )

m ] be a m-tableau of shape

[λ](j+
1
2 ) ∈ Λjn1−1,n2−1,...,nm−1 with increasing rows and columns and entries

{1, 2, ..., n1}\{aj+1}, {1, 2, ..., n2}\{bj+1}, ..., {1, 2, ..., nm}\{lj+1} respectively and

let [λ](j) ⊆ [λ](j+
1
2 ) with [λ](j) ∈ Λjn1,n2,...,nm . We can uniquely produce a stan-

dard m-tableau T (j) such that T (j+ 1
2 ) =

(
aj+1

jdt←−− T (j)
1 , bj+1

jdt←−− T (j)
2 , ..., lj+1

jdt←−−

T
(j)
m

)
. To do this, let z1 be the box in λ

(j)
1 /λ

(j+ 1
2 )

1 , put aj+1 in position of z1

of T
(j+ 1

2 )
1 and perform the inverse of jeu de taquin to produce T

(j)
1 , i.e., move

aj+1 into a standard position by iteratively swapping it with larger of the num-

bers just above it or just left of it. Similarly, we can produce T
(j)
2 , ..., T

(j)
m . Thus,

T (j) =
[
T

(j)
1 , T

(j)
2 , ..., T

(j)
m

]
.

Given [λ] ∈ Λkn1,n2,...,nm and (T[λ], P[λ]) ∈ SY Tm([λ]) × V Tmk ([λ]) we ap-

ply the process above to [λ](k−
1
2 ) ⊆ [λ](k), T (k) = T[λ] producing (ak, bk, ..., lk)

and T (k−1) respectively. Continuing this way, we can produce ((ak, bk, ..., lk),
(ak−1, bk−1, ..., lk−1), ..., (a1, b1, ..., l1)) and T (k), T (k−1), ..., T (1) such that

((a1, b1, ..., l1), (a2, b2, ..., l2), ..., (ak, bk, ..., lk))
Fd−−→ (T[λ], P[λ]). 2

Example 6.2. For ((6, 2), (3, 5), (1, 4)) the pair (T[λ], P[λ]) is as follows.
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j (aj , bj) T (j)

0

1
2 (6, 2)

1 (6, 2)

1 1
2 (3, 5)

2 (3, 5)

2 1
2 (1, 4)

3 (1, 4)

jdt←−−

RS−−→

jdt←−−

RS−−→

jdt←−−

RS−−→

(
1 2 3 4 5 6 , 1 2 3 4 5 6

)
(

1 2 3 4 5 , 1 3 4 5 6

)
(

1 2 3 4 5 6 , 1 2 4 5 6
3

)
(

1 2 4 5 6 , 1 2 4 6
3

)
(

1 2 3 5 6
4

, 1 2 4 5
3 6

)
(

2 3 5 6
4

, 1 2 5
3 6

)
(

1 3 5 6
2
4

, 1 2 4
3 5
6

)

T[λ] =
(

1 3 5 6
2
4

, 1 2 4
3 5
6

)
P[λ] =

(
( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )

)
.

7. The RS Correspondence for the Tensor Product of Partition Algebras

To give a combinatorial proof of the identity

(7.1) [B(2k)]m =
∑

[λ]∈Γmk

(m
[λ]
k )2

we need to find a bijection of the form

Tk ←→
⊔

[λ]∈Γmk

V Tmk ([λ])× V Tmk ([λ])

by constructing a function that takes a tensor product partition diagram (d1⊗d2⊗
· · · ⊗ dm) ∈ Tk and produce a pair (P[λ], Q[λ]) of m-vacillating tableaux.

Represent (d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk as a m-tuple of k-partition diagrams and
draw diagrams for every component (k-partition diagram) dt, t ∈ {1, 2, ...,m} of
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m-tuple using a standard representation as single row with the vertices in order
1, 2, ..., 2k where the vertex j′ is relabeled as 2k − j + 1. We draw the edges of the
standard representation of each component of a m-tuple of k-partition diagrams of
(d1⊗d2⊗· · ·⊗dm) ∈ Tk in a specific way: connect vertices i and j with i ≤ j if and
only if i and j are related in dt, t ∈ {1, 2, ...,m} and there does not exits k related
to i and j with i < k < j. In this way, each vertex is connected only to its nearest
neighbors in its block.

Example 7.1. Consider the diagram (d1 ⊗ d2) ∈ T4

1

1′

2

2′

3

3′

4

4′

⊗

1

1′

2

2′

3

3′

4

4′

Figure 5:

The above diagram has a standard one line representation as follows:

1 2 3 4 5 6 7 8

,

( )
1 2 3 4 5 6 7 8

Figure 6:

We label each edge et of the diagram dt, t ∈ {1, 2, ...,m} with 2k+1−v where v
is the right vertex of et. Define the insertion sequence of m-tuple of diagrams to be
the sequence E = (Ej) = (E1

j , E
2
j , ..., E

m
j ) indexed by the sequence 1

2 , 1, 1
1
2 , ..., 2k−

1, 2k − 1
2 , 2k.

Ej = (E1
j , E

2
j , ..., E

m
j ),

where Eij =


ei, if vertex j is left end point of edge ei in ith component,

i ∈ {1, 2, ...,m}
∅, if vertex j is not left end point.

Ej− 1
2

=
(
E1
j− 1

2

, E2
j− 1

2

, ..., Em
j− 1

2

)
,
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where Eij− 1
2

=


ei, if vertex j is right end point of edge ei in ith component,

i ∈ {1, 2, ...,m}
∅, if vertex j is not right end point.

The edge labeling for Example 7.1 is as follows:

1 2 3 4 5 6 7 8
,

( )
1 2 3 4 5 6 7 8

6 4 3 2

1
5

4
3

2
1

∅ 6 ∅ 1 6 4 ∅ 3 4 ∅ 3 2 2 ∅ 1 ∅ ∅ 5 ∅ 2 ∅ 3 5 4 4 ∅ 3 1 2 ∅ 1 ∅

The insertion sequence of the above edge labeling diagram is

j

(E1
j , E

2
j )

1
2

(∅, ∅)

1

(6, 5)

1 1
2

(∅, ∅)

2

(1, 2)

2 1
2

(6, ∅)

3

(4, 3)

3 1
2

(∅, 5)

4

(3, 4)

4 1
2

(4, 4)

5

(∅, ∅)

5 1
2

(3, 3)

j

(E1
j , E

2
j )

6

(2, 1)

6 1
2

(2, 2)

7

(∅, ∅)

7 1
2

(1, 1)

8

(∅, ∅)

The insertion sequence of a m-tuple of standard diagram completely determines
the edges and thus the connected components of the diagram and therefore the
following proposition follows immediately.

Proposition 7.2. (d1⊗d2⊗···⊗dm) ∈ Tk is completely determined by its insertion
sequence.

For (d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk with insertion sequence Ej = (E1
j , E

2
j , ..., E

m
j )

we generate a pair (P[λ], Q[λ]) of m-vacillating tableaux. Begin with the empty
tableaux,

T (0) = (T
(0)
1 , T

(0)
2 , ..., T (0)

m ) = (∅, ∅, ..., ∅)

Then recursively define standard m-tableaux T (j+ 1
2 ) and T (j+1) for 0 ≤ j ≤ 2k − 1

as follows: The m-tuple of numbers Ej+ 1
2

is removed from the m- tableau T (j) by
the process of applying jeu de taquin on the components in which it appears

T (j+ 1
2 ) =

{
Ej+ 1

2

jdt←−− T (j), if Ej+ 1
2
6= ∅ (as given below)

T (j), if Ej+ 1
2

= ∅.

The process of insertion is as follows:

T (j+1) =

{
Ej+1

RS−−→ T (j+ 1
2 ), if Ej+1 6= ∅ (as given below)

T (j+ 1
2 ), if Ej+1 = ∅.
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Let Ej+1
RS−−→ T (j+ 1

2 ) denotes the insertion of all Eij+1 6= ∅ of Ej+1 into the ith

component T
(j+ 1

2 )
i of T (j+ 1

2 ) and other components remain unchanged.

If Ej+1 6= ∅, then

T (j+1) =
[
T

(j+1)
1 , T

(j+1)
2 , ..., T (j+1)

m

]
and Ej+1 =

[
E1
j+1, E

2
j+1, ..., E

m
j+1

]

where T
(j+1)
i =

{
Eij+1

RS−−→ T
(j+ 1

2 )
i , if Eij+1 6= ∅ for i ∈ {1, 2, ...,m}

T
(j+ 1

2 )
i , if Eij+1 = ∅.

if Ej+ 1
2
6= ∅, then

T (j+ 1
2 ) =

[
T

(j+ 1
2 )

1 , T
(j+ 1

2 )
2 , ..., T

(j+ 1
2 )

m

]
and Ej+ 1

2
=
[
E1
j+ 1

2
, E2

j+ 1
2
, ..., Emj+ 1

2

]

where T
(j+ 1

2 )
i =

Eij+ 1
2

jdt←−− T (j)
i , if Ei

j+ 1
2

6= ∅ for i ∈ {1, 2, ...,m}
T

(j)
i , if Ei

j+ 1
2

= ∅.

Let [λ](i) be the shape of T (i), [λ](i+
1
2 ) be the shape of T (i+ 1

2 ) and [λ] = [λ](k).
Define

Q[λ] =
(
∅, [λ](

1
2 ), [λ](1), ..., [λ](k−

1
2 ), [λ](k)

)
∈ V Tmk ([λ]),

P[λ] =
(

[λ](2k), [λ](2k−
1
2 ), ..., [λ](k+ 1

2 ), [λ](k)
)
∈ V Tmk ([λ]).

In this way, we associate a pair of m-vacillating tableaux (P[λ], Q[λ]) to a tensor
product of m-partition diagrams (d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk which we denote by

(d1 ⊗ d2 ⊗ · · · ⊗ dm) −→ (P[λ], Q[λ]).

For the insertion sequence in Example 7.1:

j

(E1
j , E

2
j )

1
2

(∅, ∅)

1

(6, 5)

1 1
2

(∅, ∅)

2

(1, 2)

2 1
2

(6, ∅)

3

(4, 3)

3 1
2

(∅, 5)

4

(3, 4)

4 1
2

(4, 4)

5

(∅, ∅)

5 1
2

(3, 3)

j

(E1
j , E

2
j )

6

(2, 1)

6 1
2

(2, 2)

7

(∅, ∅)

7 1
2

(1, 1)

8

(∅, ∅)

the pair of 2-vacillating tableaux is given by
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j (E1
j , E

2
j ) T (j) j (E1

j , E
2
j ) T (j)

0

1
2 (∅, ∅)

1 (6, 5)

1 1
2 (∅, ∅)

2 (1, 2)

2 1
2 (6, ∅)

3 (4, 3)

3 1
2 (∅, 5)

4 (3, 4)

jdt←−−

RS−−→

jdt←−−

RS−−→

jdt←−−

RS−−→

jdt←−−

RS−−→

(∅, ∅)

(∅, ∅)(
6 , 5

)
(

6 , 5

)
(

1
6
, 2

5

)
(

1 , 2
5

)
(

1 4 , 2 3
5

)
(

1 4 , 2 3

)
(

1 3
4

, 2 3 4

)

8 (∅, ∅)

7 1
2 (1, 1)

7 (∅, ∅)

6 1
2 (2, 2)

6 (2, 1)

5 1
2 (3, 3)

5 (∅, ∅)

4 1
2 (4, 4)

4

RS−−→

jdt←−−

RS−−→

jdt←−−

RS−−→

jdt←−−

RS−−→

jdt←−−

(∅, ∅)

(∅, ∅)(
1 , 1

)
(

1 , 1

)
(

1 2 , 1
2

)
(

1 , 2

)
(

1 3 , 2 3

)
(

1 3 , 2 3

)
(

1 3
4

, 2 3 4

)

Q[λ] =
(

(∅, ∅), (∅, ∅), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )
)

P[λ] =
(

(∅, ∅), (∅, ∅), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )
)

We have numbered the edges of each standard diagram of m-tuple of diagrams in
increasing order from right to left so if Ei

j+ 1
2

6= ∅, i ∈ {1, 2, ...,m} then Ei
j+ 1

2

is the

largest element of T
(j)
i . Thus, in T

(j+ 1
2 )

i =
(
Ei
j+ 1

2

jdt←−− T (j)
i

)
we know that Ei

j+ 1
2

is

in a corner box and jeu de taquin simply deletes that box.

Theorem 7.3. The function (d1 ⊗ d2 ⊗ · · · ⊗ dm) −→ (P[λ], Q[λ]) provides a
bijection between the set of tensor product of partition diagrams in Tk and pair of
m-vacillating tableaux in

⊔
[λ]∈Γmk

V Tmk ([λ])×V Tmk ([λ]) and thus gives a combinatorial

proof of identity (7.1).

Proof. We prove the theorem by constructing the inverse of (d1⊗d2⊗· · ·⊗dm) −→
(P[λ], Q[λ]). First, we use Q[λ] followed by P[λ] in the reverse order to construct the

sequence [λ](
1
2 ), [λ](1), ..., [λ](2k−

1
2 ), [λ](2k).

We initialize T (2k) = (∅, ∅, ..., ∅).
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We now present the process to construct T (i+ 1
2 ) and Ei+1 so that T (i+1) =

(Ei+1
RS−−→ T (i+ 1

2 )). If λ
(i+ 1

2 )
1 = λ

(i+1)
1 , λ

(i+ 1
2 )

2 = λ
(i+1)
2 , ..., λ

(i+ 1
2 )

m = λ
(i+1)
m

then let T
(i+ 1

2 )
1 = T

(i+1)
1 , T

(i+ 1
2 )

2 = T
(i+1)
2 , ..., T

(i+ 1
2 )

m = T
(i+1)
m and Ei+1 =

(E1
i+1, E

2
i+1, ..., E

m
i+1) = (∅, ∅, ..., ∅). Otherwise, λ

(i+1)
j /λ

(i+ 1
2 )

j is box zj for all
j ∈ X 6= ∅, X ⊆ {1, 2, ...,m} and we use RS reverse insertion on the value in

zj to produce T
(i+ 1

2 )
j and Eji+1 such that T

(i+1)
j = (Eji+1

RS−−→ T
(i+ 1

2 )
j ). Since, we

uninserted the value in position of zj , we know that T
(i+ 1

2 )
j has shape λ

(i+ 1
2 )

j . Since,

λ
(i+ 1

2 )
s = λ

(i+1)
s for s ∈ {1, 2, ...,m}\X then let T

(i+ 1
2 )

s = T
(i+1)
s and Esi+1 = ∅.

Thus, T (i+ 1
2 ) =

[
T

(i+ 1
2 )

1 , T
(i+ 1

2 )
2 , ..., T

(i+ 1
2 )

m

]
and Ei+1 = (E1

i+1, E
2
i+1, ..., E

m
i+1),

Eji+1 6= ∅ where j ∈ X 6= ∅, X ⊆ {1, 2, ...,m} and Esi+1 = ∅ where s ∈
{1, 2, ...,m}\X.

Next we discuss the method to construct T (i) and Ei+ 1
2

so that T (i+ 1
2 ) =

(Ei+ 1
2

jdt←−− T (i)). If λ
(i)
1 = λ

(i+ 1
2 )

1 , λ
(i)
2 = λ

(i+ 1
2 )

2 , ..., λ
(i)
m = λ

(i+ 1
2 )

m then let T
(i)
1 =

T
(i+ 1

2 )
1 , T

(i)
2 = T

(i+ 1
2 )

2 , ..., T
(i)
m = T

(i+ 1
2 )

m and Ei+ 1
2

= (E1
i+ 1

2

, E2
i+ 1

2

, ..., Em
i+ 1

2

) =

(∅, ∅, ..., ∅). Otherwise, λ
(i)
j /λ

(i+ 1
2 )

j is box zj for all j ∈ X 6= ∅, X ⊆ {1, 2, ...,m}.
Let T

(i)
j be the tableau of shape λ

(i)
j with the same entries as T

(i+1)
j and having

the entry 2k − i in box zj . Let Ej
i+ 1

2

= 2k − i. At any given step i, 2k − i is the

largest value added to the tableau thus far, so that T
(i)
j is standard. Further more,

T
(i+ 1

2 )
j = (Ej

i+ 1
2

jdt←−− T
(i)
j ) since Ej

i+ 1
2

= 2k − i is already in a corner and thus jeu

de taquin simply delete it. Since, λ
(i)
s = λ

(i+ 1
2 )

s for s ∈ {1, 2, ...,m}\X then let

T
(i)
s = T

(i+ 1
2 )

s and Es
i+ 1

2

= ∅.
This iterative process will produce E2k, E2k−1, ..., E 1

2
which completely de-

termines the diagram (d1 ⊗ d2 ⊗ · · · ⊗ dm). By this way we have constructed
(d1 ⊗ d2 ⊗ · · · ⊗ dm) and (d1 ⊗ d2 ⊗ · · · ⊗ dm) −→ (P[λ], Q[λ]). 2

Notice that in the m-tuple of standard representation of (d1⊗d2⊗···⊗dm) a flip
corresponds to a reflection over the vertical line between vertices k and k+1 in each
component of a m-tuple. Our aim is to show that if (d1 ⊗ d2 ⊗ · · · ⊗ dm)→ (P,Q)
then flip(d1 ⊗ d2 ⊗ · · · ⊗ dm)→ (Q,P ).

Given a tensor product partition diagram (d1⊗ d2⊗ · · · ⊗ dm) ∈ Tk construct a
triangular grid (as in the case of partition diagrams) in the integer lattice Z×Z that
contains the points in the triangular whose vertices are (0, 0), (2k, 0) and (0, 2k).
Number the columns 1, 2, ..., 2k from left to right and the rows 1, 2, ..., 2k from
bottom to top. Place an X1 in the box in column i and row j if and only if in the
first one row diagram of m-tuple the vertex i is the left end point of edge j. Place
an X2 in the box in column i and row j if and only if in the second one row diagram
of m-tuple the vertex i is the left end point of edge j. Similarly, proceed in this
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way up to the mth one row diagram of m-tuple. We then label the vertices of the
diagram on the bottom row and left column with the m-tuple of empty partition
(∅, ∅, ..., ∅).

Example 7.4.

1 2 3 4 5 6 7 8
,

( )
1 2 3 4 5 6 7 8

6 4 3 2

1
5

4
3

2
1

←→

(∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

X1 X2

X2 X1

X2 X1

X1 X2

X2

X1

Note that the triangular array completely determines the tensor product partition
diagram and vice-versa.

Now we inductively label the remaining vertices using the local rules of Fomin
(as in the case of partition diagrams). If a box is labeled with [µ], [ν], [λ] as given
below then we add the label [ρ] according to the following rule:

[λ] [µ]

[ν] [ρ]
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[RL1] If µj 6= νj , j ∈ {1, 2, ...,m} let ρj = µj ∪ νj , i.e., ρij = max(µij , ν
i
j).

[RL2] If µj = νj , λj ⊂ µj and λj 6= µj , j ∈ {1, 2, ...,m} then this will automatically
imply that µj can be obtained from λj by adding a box to λij . Let ρj can be

obtained from µj by adding a box to µi+1
j .

[RL3] If µj = νj = λj , j ∈ {1, 2, ...,m} then if the square does not contain a Xj , let
ρj = λj and if the square does contain a Xj then ρj be obtained from λj by adding
1 to λ1

j .

Using these rules we can uniquely label every corner one step at a time. The
resulting diagram is called the growth diagram Gd for (d1 ⊗ d2 ⊗ · · · ⊗ dm). The
growth diagram for Example 7.4. is

(∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅) (∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

X1 X2

X2 X1

X2 X1

X1 X2

X2

X1

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, ∅)

(∅, )

( , )

( , )

( , ∅)

( , )

( , )

( , )

( , )

( , )

( , ∅)

( , )

( , )

( , )

( , )

( , ∅)

( , )

( , )

( , )

( , ∅)

( , )

( , )

( , )

( , )

( , )

Let Pd denote the chain of m-partitions that follows the staircase path on the
diagonal of Gd from (0, 2k) to (k, k) and Qd denote the chain of m-partitions that
follows the staircase path on the diagonal of Gd from (2k, 0) to (k, k). The pair
(Pd, Qd) represents a pair of m-vacillating tableaux whose shape is the partition at
(k, k). From the above example

Q[λ] =
(

(∅, ∅), (∅, ∅), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )
)

P[λ] =
(

(∅, ∅), (∅, ∅), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )
)

Theorem 7.5. Let (d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk with (d1 ⊗ d2 ⊗ · · · ⊗ dm)→ (P,Q).
Then Pd = P and Qd = Q.
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Proof. The proof is based on [4]. Turn each diagram ds, s ∈ {1, 2, ...,m} of (d1⊗d2⊗
· · · ⊗ dm) ∈ Tk into a diagram d′s on 4k vertices by splitting each vertex i into two
vertices labeled by i− 1

2 and i. If there is an edge from vertex j to vertex i in ds with
j < i, let j be adjacent to i− 1

2 in d′s. If there is an edge from vertex j to vertex i in
ds with j > i, let i be adjacent to j− 1

2 in d′s. A key advantage of the use of growth
diagrams is that the symmetry of the algorithm is nearly obvious. We have that i
is the left end point of the edge labeled j in diagram ds of (d1⊗d2⊗· · ·⊗dm) if and
only if j is the left point of the edge labeled i in diagram ds of flip(d1⊗d2⊗···⊗dm).
Thus the growth diagram of Gd is the reflection over the line y = x of the growth
diagram of Gflip(d) and so Pd = Qflip(d) and Qd = Pflip(d). 2

Corollary 7.6. If (d1⊗d2⊗···⊗dm)→ (P,Q) then flip(d1⊗d2⊗···⊗dm)→ (Q,P ).

Corollary 7.7. A diagram (d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk is symmetry if and only if
(d1 ⊗ d2 ⊗ · · · ⊗ dm)→ (P, P ).

Proof. The proof is based on [4]. If (d1 ⊗ d2 ⊗ · · · ⊗ dm) is symmetry then by
the above corollary we must have P = Q. To prove the converse part, let P = Q
and place the m-vacillating tableaux on the staircase border of the growth diagram.
The local rules we have defined above are invertible. Given [µ], [ν] and [ρ], one
can follow the rules backwards to uniquely find [λ] and determine whether there
is an Xi, i ∈ {1, 2, ...,m} in the box. Thus, the interior of the growth diagram is
uniquely determined. By the symmetry of having P = Q along the staircase the
growth diagram must have a symmetry interior and a symmetric placement of the
X′is. This forces (d1 ⊗ d2 ⊗ · · · ⊗ dm) to be symmetric. 2

This corollary tells us that the number of symmetry diagrams in Tk is equal to
the number of m-vacillating tableaux of length 2k or the number of paths to level
k in the Bratteli diagram of C{Pk(n1)⊗ Pk(n2)⊗ · · · ⊗ Pk(nm)}. Thus,

Card({(d1 ⊗ d2 ⊗ · · · ⊗ dm) ∈ Tk|(d1 ⊗ d2 ⊗ · · · ⊗ dm) is symmetry}) =
∑

[λ]∈Γmk

m
[λ]
k .
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