• Title/Summary/Keyword: cell contents

Search Result 1,893, Processing Time 0.026 seconds

The Effect of Cellophane Film Packing on Quality of Semi-Salted and Dried Mackerel during Processing and Storage (셀로판 필름보장이 반염건고등어의 가공 및 저장중의 품질에 미치는 효과)

  • 이응호;안창범;김복규;이채한;이호연
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.139-147
    • /
    • 1991
  • The preservative effect of cellophane film packing on the quality of semi-salted and dried mackerel was studied. The product(P) of semi-salted and dried mackerel was prepared from raw mackerel by filleting, cleaning, soaking in 15%9v/w) salt solution for 30min, draining, packing with cellophane film (PT# 300, thickness:$20{\mu}{\textrm}{m}$) and drying for 4 hrs at $40^{\circ}C$ in hot air dryer. The product (C) was also prepared without cellophane film packing after draining. The product (C) and (P) were stored at $5.0{\pm}0.5^{\circ}C$. After processing and during storage, moisture content of product (P) was higher than that of product (C), but contents of VBN(volatile basic nitrogen), amino nitrogen and TMA of product (P) on dry basis were lower than those of product (C). Viable cell count, TBA value, peroxide value and decreasing rate of polyenoic acid of product (P) were also lower than those of product (C). In sensory evaluation, the shelf life of product (C) was about 9 days and that of product (P) was about 14 days. From the results of chemical and sensory evaluation, it was concluded that cellophane film packing was a good condition for preserving the quality of semi-salted and dried mackerel.

  • PDF

Effects of 1-tetradecanol and β-sitosterol Isolated from Dendropanax morbifera Lev. on Skin Whitening, Moisturizing and Preventing Hair Loss (미백, 보습 및 탈모방지에 대한 황칠나무(Dendropanax modifera Lev.)에서 분리한 1-tetradecanol, β-sitosterol의 효과)

  • Lee, Sun Young;Choi, Eun-Jin;Bae, Dong-Hyuck;Lee, Dong-Wook;Kim, Sunoh
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.73-83
    • /
    • 2015
  • Dendropanax morbifera Leveille (Araliaceae) is an endemic species growing in the south-western part of South Korea and has been used in folk medicine. However, the effects of Dendropanax morbifera Lev. on skin biology remain to be elucidated. In this study, we isolated 1-tetradecanol and ${\beta}$-sitosterol from the n-hexane fraction of Dendropanax mobifera Lev. and To investigate the whitening effect of the fraction, we tested the inhibition of tyrosinase activity of 1-tetradecanol. The results show that the inhibitory effect of the 1-tetradecanol was higher than water extract and n-hexane fraction. And 1-tetradecanol significantly reduced melanin contents of B16F10 cells compared to more than water extract and n-haxane fraction dose-dependantly without cell cytotoxicitiy (below $100{\mu}g/mL$). We also investigated the skin moisturizing effect using HR-1 hairless mice. The transepidermal water loss (TEWL) in the 1-tetradecanol treated group was significantly smaller than that in the other groups. To investigate the effect of the preventing hair loss by ${\beta}$-sitosterol, we observed HR-1 hairless mice through periodic growth feature. The results suggest that hair loss of mice by ${\beta}$-sitosterol was delayed and it's hair density showed the highest. These data provide evidence that Dendropanax morbifera Lev. may be a potent candidate for the improvement of both skin whitening, moisturizing and alopecia from the point of cosmetic industry view.

Preparation and Characterization of PLGA Scaffold Impregnated Keratin for Tissue Engineering Application (케라틴이 함유된 조직공학적 PLGA 지지체의 제조 및 특성 분석)

  • Oh, A-Young;Kim, Soon-Hee;Lee, Sang-Jin;Yoo, James J.;Dyke, Mark van;Rhee, John M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.403-408
    • /
    • 2008
  • Keratin is the major structural fibrous protein providing outer covering such as wool, hair, and nail. Keratin is useful as natural protein. We developed the keratin loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds (keratin/PLGA) for the possibility of the application of the tissue engineering using bone marrow mesenchymal (BMSCs). Keratin/PLGA (contents 0%, 10%, 20% and 50% of PLGA weight) scaffolds were prepared by solvent casting/salt leaching method. We characterized porosity, wettability, and water uptake ability, DSC of keratin/PLGA scaffold. We seeded BMSCs isolated from the femurs of rat into the inner core of the hybrid scaffold. Celluar viability were assayed by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) test. We confirmed that keratin/PLGA scaffold is hydrophilic by wettability, and water uptake ability measurement results. In MTT assay results, cell viability in scaffolds impregnated 10 and 20 wt% of keratin were higher than other scaffolds. In conclusion, we suggest that keratin/PLGA scaffold may be useful to tissue engineering using BMSCs.

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

Biogenic Synthesis of Metallic Nanoparticles and Their Antibacterial Applications (금속 나노입자의 생체 합성과 항균적 적용)

  • Patil, Maheshkumar Prakash;Kim, Jong-Oh;Seo, Yong Bae;Kang, Min-jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.862-872
    • /
    • 2021
  • Recent studies on synthesis of metallic nanomaterials such as silver (Ag), gold (Au), platinum (Pt), cerium (Ce), zinc (Zn), and copper (Cu) nanoparticles (NPs) using plants and microbes are attracted researchers for their wide range of applications in the field of biomedical sciences. The plant contains abundant of bioactive contents such as flavonoids, alkaloids, saponins, steroids tannins and nutritionals components. Similarly, microbes produce bioactive metabolites, proteins and secretes valuable chemicals such as color pigments, antibiotics, and acids. Recently reported, biogenic synthesis of NPs in non-hazardous way and are promising candidates for biomedical applications such as antibacterial, antifungal, anti-cell proliferative and anti-plasmodia activity. All those activities are dose dependent, along with their shape and size also matters on potential of NPs. Microbes and plants are great source of metabolites, those useful in biomedical field, such metabolites or chemicals involved in synthesis of NPs in an ecofriendly way. NPs synthesized using microbes or plant materials are reveals more non-toxic, facile, and cost-effective compare to chemically synthesized NPs. In present review we are focusing on NPs synthesis using biological agents such as microbes (bacteria, fungi and algae) and plant, characterization using different techniques and their antibacterial applications on pathogenic Gram-positive and Gram-negative organisms.

Effect of phytol in forage on phytanic acid content in cow's milk

  • Lv, Renlong;Elsabagh, Mabrouk;Obitsu, Taketo;Sugino, Toshihisa;Kurokawa, Yuzo
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1616-1622
    • /
    • 2021
  • Objective: Bioactive compounds in ruminant products are related to functional compounds in their diets. Therefore, this study aimed to explore the effect of forage sources, Italian ryegrass (IR) silage vs corn silage (CS) in the total mixed ration (TMR), on milk production, milk composition, and phytanic acid content in milk, as well as on the extent of conversion of dietary phytol to milk phytanic acid. Methods: Phytanic acid content in milk was investigated for cows fed a TMR containing either IR silage or CS using 17 cows over three periods of 21 days each. In periods 1 and 3, cows were fed CS-based TMR (30% CS), while in period 2, cows were fed IR silage-based TMR (20% IR silage and10% CS). Results: The results showed that there were no differences in fat, protein, lactose, solids-not-fat, somatic cell count, and fatty acid composition of milk among the three experimental periods. There were no differences in the plasma concentration of glucose, triglycerides, total cholesterol, and nonesterified fatty acids among the three experimental periods, while the blood urea nitrogen was higher (p<0.05) in period 2. The milk phytanic acid content was higher (p<0.05) in period 2 (13.9 mg/kg) compared with periods 1 (9.30 mg/kg) and 3 (8.80 mg/kg). Also, the phytanic acid content in the feces was higher (p<0.05) in period 2 (1.65 mg/kg dry matter [DM]) compared with period 1 (1.15 mg/kg DM), and 3 (1.17 mg/kg DM). Although the phytol contents in feces did not differ among the three feeding periods, the conversion ratio from dietary phytol to milk phytanic acid was estimated to be only 2.6%. Conclusion: Phytanic acid content in cow's milk increases with increasing phytol content in diets. However, phytol might not be completely metabolized in the rumen and phytanic acid, in turn, might not be completely recovered into cow's milk. The change of phytanic acid content in milk may be positively correlated with the change of phytol in the diet within a short time.

Preparation and characteristics of yogurt added with enzymatically saccharified Korean rice wine lees powder (효소로 당화시킨 주박 분해물을 첨가한 요구르트의 발효 특성)

  • Kim, Dong Chung;Won, Sun Im;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.315-320
    • /
    • 2018
  • This study was carried out to determine the effect of enzymatically saccharified Korean rice wine lees powder (eKRWLP) on the quality characteristics and storage stability of curd yogurt. Yogurt with different contents [0.5-2.0% (w/w)] of eKRWLP was incubated with commercially available mixed lactic acid bacteria (Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium longum) at $40^{\circ}C$ for 18 h. The production of acid measured at pH and titratable acidity of yogurts increased with increasing eKRWLP content. After 12 h fermentation, titratable acidity of eKRWLP yogurt was 0.77-0.90% and was higher than that (0.72%) of yogurt made without eKRWLP. The viable cell counts of lactic acid bacteria in eKRWLP yogurts were increased in proportion to the addition of eKRWLP, and increased up to 8.01-8.13 log CFU/g after 12 h incubation. The repressive effect of whey separation in eKRWLP yogurt curd significantly decreased than that in Korean rice wine lees powder (KRWLP) yogurt. With sensory evaluation, yogurt with 0.5% eKRWLP obtained the highest scores among all eKRWLP yogurts. When eKRWLP yogurts and the control preparations fermented for 12 h were incubated at $4^{\circ}C$, their pHs and titratable acidities were slightly changed and the number of viable lactic acid bacteria were well maintained above $10^7CFU/g$ for 16 days.

Effect of Semisulcospira libertina Extract on Hepatic Injury Induced by D-galactosamine (다슬기 추출물이 D-galactosamine에 의해 손상된 간에 미치는 효과)

  • Park, Young Mi;Lee, Jong Eun;Seo, Eul Won
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.498-506
    • /
    • 2018
  • The purpose of this study is to examine the restorative effect of Semisulcospira libertina extract, on damaged liver cells induced by D-galactosamine in rats. Treatment of damaged liver cells with S. libertina extract significantly reduced local fatty degeneration, and inflammatory cell necrosis, to levels similar with the undamaged control group. In addition, S. libertina extracts were found to reduce plasma levels of liver damage indicator enzymes, such as AST, ALT, LDH and ALP, to control levels. It also reduced lipid peroxides, and lipid contents within damaged liver tissues. This suggests that S. libertina extract has a restorative effect on liver cells, thus reducing release of damage-associated liver enzymes, and oxidative degradation of lipids. Also, S. libertina extracts were found to be involved in recovery of damaged cells from inflammatory response by suppressing expression of $TNF-{\alpha}$, which leads to tissue injury and necrosis, whereas inducing expression of HO-1 that protects cells during inflammation. Thus, S. libertina extract restores liver tissue from necrosis and fibrosis, as well modulates expression of inflammation-related genes against liver damage. Our findings suggest that S. libertina extract is an effective medicinal resource, for improving and recovering liver cells from hepatic injury.

Anti-inflammatory and Antioxidant Effects of Hot Water Extracts from Kaempferia Galanga L (삼내자 열수추출물의 항산화 및 항염 효과)

  • Chan, Ching Yuen Venus;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.218-226
    • /
    • 2019
  • In this study, we investigated the possibility of Kaempferia Galanga(KG) hot water extract on the antioxidant, cytotoxic and anti-inflammatory efficacy as a cosmetic ingredient. Antioxidant effects were evaluated based on DPPH and ABTS radical scavenging activity, FRAP assay, and total polyphenol contents. The MTT assay was used to confirm the cell toxicity in mouse macrophage RAW264.7 cells. Anti-inflammatory effects were also investigated in LPS-induced RAW264.7 cells by measuring secretion of NO, $TNF-{\alpha}$ and iNOS, $TNF-{\alpha}$ mRNA expression level. As a result, DPPH and ABTS radical scavenging activities were increased in a concentration-dependent manner. The ferric reducing antioxidant power(FRAP) was the highest at 5 mg/mL as 24.5 uM. The measurements of total polyphenol content was $1.28{\pm}0.064mg\;GAE/g$. The cytotoxicity of the KG extract results showed no cytotoxicity at concentration of 0.625 to 2.5 mg/mL. In addition, the extract of KG significantly suppressed the LPS-induced nitrite, $TNF-{\alpha}$ secretion and the mRNA expression of iNOS, $TNF-{\alpha}$ in RAW264.7 cells. Taken together, these data suggest that the KG hot water extracts can be used as a safe and functional cosmetic raw material.

Development of a functional yogurt fortified with ubiquinone, isoflavone, and γ-aminobutyric acid (유비퀴논, 이소플라본, γ-aminobutyric acid가 강화된 기능성 요구르트 개발)

  • Pyo, Young-Hee;Noh, Young-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.200-206
    • /
    • 2019
  • A potentially functional yogurt co-fermented with Monascus-fermented soybean powder (MFSP) was prepared, and its quality and antioxidant properties were investigated. Skim milk powder with (SMP+MFSP, 1:1, w/w) or without MFSP (SMP; control) was fermented by probiotic cultures consisting of L. delbrueckii subsp. bulgaricus KCTC 3635 and S. thermophilus KCTC 5092. The functional yogurt fermented with MFSP contained significantly (p<0.05) higher levels of ${\gamma}-aminobutryric$ acid (GABA; $107.22{\pm}3.06{\mu}g/g$), isoflavone aglycone (daidzein+genistein; $201.21{\pm}6.29{\mu}g/g$), and ubiquinone ($39.05{\pm}0.08{\mu}g/g$) than the control yogurt. During fermentation at $36^{\circ}C$ for 48 h, the functional yogurt displayed higher titratable acidity, viable cell numbers, and radical scavenging activity and a lower pH than the control yogurt (p<0.05). These results indicate that MFSP has great potential for enriching the free isoflavones, GABA, and ubiquinone contents in yogurt.