Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.9.862

Biogenic Synthesis of Metallic Nanoparticles and Their Antibacterial Applications  

Patil, Maheshkumar Prakash (Industry-University Cooperation Foundation, Pukyong National University)
Kim, Jong-Oh (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Seo, Yong Bae (Research Institute for Basic Science, Pukyong National University)
Kang, Min-jae (School of Marine and Fisheries Life Science, Pukyong National University)
Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
Publication Information
Journal of Life Science / v.31, no.9, 2021 , pp. 862-872 More about this Journal
Abstract
Recent studies on synthesis of metallic nanomaterials such as silver (Ag), gold (Au), platinum (Pt), cerium (Ce), zinc (Zn), and copper (Cu) nanoparticles (NPs) using plants and microbes are attracted researchers for their wide range of applications in the field of biomedical sciences. The plant contains abundant of bioactive contents such as flavonoids, alkaloids, saponins, steroids tannins and nutritionals components. Similarly, microbes produce bioactive metabolites, proteins and secretes valuable chemicals such as color pigments, antibiotics, and acids. Recently reported, biogenic synthesis of NPs in non-hazardous way and are promising candidates for biomedical applications such as antibacterial, antifungal, anti-cell proliferative and anti-plasmodia activity. All those activities are dose dependent, along with their shape and size also matters on potential of NPs. Microbes and plants are great source of metabolites, those useful in biomedical field, such metabolites or chemicals involved in synthesis of NPs in an ecofriendly way. NPs synthesized using microbes or plant materials are reveals more non-toxic, facile, and cost-effective compare to chemically synthesized NPs. In present review we are focusing on NPs synthesis using biological agents such as microbes (bacteria, fungi and algae) and plant, characterization using different techniques and their antibacterial applications on pathogenic Gram-positive and Gram-negative organisms.
Keywords
Antibacterial; biogenic synthesis; ecofriendly; metal oxides; metallic nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Azam, A., Ahmed, A. S., Oves, M., Khan, M. S. and Memic, A. 2012. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int. J. Nanomed. 7, 3527.
2 Patil, M. P., Seo, Y. B. and Kim, G. D. 2016. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa. Microb. Pathog. 116, 84-90.   DOI
3 Muthuvel, A., Jothibas, M., Mohana, V. and Manoharan, C. 2020. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 119, 108086.   DOI
4 Sakamoto, M., Fujistuka, M. and Majima, T. 2009. Light as a construction tool of metal nanoparticles: synthesis and mechanism. J. Photochem. Photobiol. C 10, 33-56.   DOI
5 Sumanth, B., Lakshmeesha, T. R., Ansari, M. A., Alzohairy, M. A., Udayashankar, A. C., Shobha, B., Niranjana, S. R., Srinivas, C. and Almatroudi, A. 2020. Mycogenic synthesis of extracellular zinc oxide nanoparticles from Xylaria acuta and its nanoantibiotic potential. Int. J. Nanomed. 15, 8519.   DOI
6 Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., Thiripuranathar, G., Fatima Rana, N. and Menaa, F. 2020. Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering 7, 129.   DOI
7 Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I. and Nel, A. E. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2, 2121-2134.   DOI
8 Zhang, Q., Kusada, K. and Kitagawa, H. 2021. Phase control of noble monometallic and alloy nanomaterials by chemical reduction methods. ChemPlusChem 86, 504-519.   DOI
9 Sanaeimehr, Z., Javadi, I. and Namvar, F. 2018. Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol. 9, 1-16.   DOI
10 Es-Haghi, A., Taghavizadeh Yazdi, M. E., Sharifalhoseini, M., Baghani, M., Yousefi, E., Rahdar, A. and Baino, F. 2021. Application of response surface methodology for optimizing the therapeutic activity of ZnO nanoparticles biosynthesized from Aspergillus niger. Biomimetics 6, 34.   DOI
11 Tahir, K., Nazir, S., Ahmad, A., Li, B., Khan, A. U., Khan, Z. U. H., Khan, F. U., Khan, Q. U., Khan, A. and Rahman, A. U. 2017. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J. Photochem. Photobiol. B 166, 246-251.   DOI
12 Patil, M. P. and Kim, G. D. 2017. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 101, 79-92.   DOI
13 Senapati, S., Syed, A., Moeez, S., Kumar, A. and Ahmad, A. 2012. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater. Lett. 79, 116-118.   DOI
14 Shende, S., Ingle, A. P., Gade, A. and Rai, M. 2015. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microb. Biotechnol. 31, 865-873.   DOI
15 Umar, H., Kavaz, D. and Rizaner, N. 2019. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomed. 14, 87-100.   DOI
16 Venkatesh, K. S., Gopinath, K., Palani, N. S., Arumugam, A., Jose, S. P., Bahadur, S. A. and Ilangovan, R. 2016. Plant pathogenic fungus F. solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv. 6, 42720-42729.   DOI
17 Riddin, T. L., Gericke, M. and Whiteley, C. G. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17, 3482.   DOI
18 Rajesh, K. M., Ajitha, B., Reddy, Y. A. K., Suneetha, Y. and Reddy, P. S. 2018. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 154, 593-600.   DOI
19 Ramanathan, R., Field, M. R., O'Mullane, A. P., Smooker, P. M., Bhargava, S. K. and Bansal, V. 2013. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial system. Nanoscale 21, 2300-2306.
20 Ramkumar, V. S., Pugazhendhi, A., Prakash, S., Ahila, N. K., Vinoj, G., Selvam, S., Kumar, G., Kannapiran, E. and Rajendran, R. B. 2017. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother. 92, 479-490.   DOI
21 Salem, S. S. and Fouda, A. 2021. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res. 199, 344-370.   DOI
22 Salvadori, M. R., Ando, R. A., Oller do Nascimento, C. A. and Correa, B. 2014. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9, e87968.   DOI
23 Saratale, R. G., Saratale, G. D., Shin, H. S., Jacob, J. M., Pugazhendhi, A., Bhaisare, M. and Kumar, G. 2018. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. 25, 10164-10183.   DOI
24 Shafey, A. M. E. 2020. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. De Gruyter 9, 304-339.
25 Punniyakotti, P., Panneerselvam, P., Perumal, D., Aruliah, R. and Angaiah, S. 2020. Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess Biosyst. Eng. 43, 1649-1657.   DOI
26 Patil, M. P., Rokade, A. A., Ngabire, D. and Kim, G. D. 2016. Green synthesis of silver nanoparticles using water extract from galls of Rhus chinensis and its antibacterial activity. J. Clust. Sci. 27, 1737-1750.   DOI
27 Behzadi, S., Ghasemi, F., Ghalkhani, M., Ashkarran, A. A., Akbari, S. M., Pakpour, S., Hormozi-Nazhad, M. R., Jamshidi, Z., Miradeghi, S., Dinarvand, R., Atyabi, F. and Mohmoudi, M. 2015. Determination of nanoparticles using UV-Vis spectra. Nanoscale 7, 5134-5139.   DOI
28 Patil, M. P. and Kim, G. D. 2018. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf., B 172, 487-495.   DOI
29 Patil, M. P. and Kim, G. D. 2020. Microorganisms-mediated functionalization of nanoparticles for different applications. pp. 279-298. In: Kumar, V., Guleria, P., Dasgupta, N. and Ranjan, S. (eds.), Functionalized Nanomaterials I: Fabrications. CRC Press, Taylor and Francis group.
30 Patil, M. P., Kang, M. J., Niyonizigiye, I., Singh, A., Kim, J. O., Seo, Y. B. and Kim, G. D. 2019. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant and antiproliferative effect on normal and cancer cell lines. Colloids Surf., B 183, 110455.   DOI
31 Poinern, G. E. J. 2014. A laboratory course in nanoscience and nanotechnology, 1st edn. CRC press, Taylor and Francis Group, Boca Raton.
32 Rajan, A., Rajan, A. R. and Philip, D. 2017. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano 2, 1-8.   DOI
33 Patil, M. P., Singh, R. D., Koli, P. B. Patil, K. T., Jagadale, B. S., Tipare, A. R. and Kim, G. D. 2018. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 121, 184-189.   DOI
34 Khodashenas, B. and Ghorbani, H. R. 2019. Synthesis of silver nanoparticles with different shapes. Arabian J. Chem. 12, 1823-1838.   DOI
35 Sharmila, G., Muthukumaran, C., Saraswathi, H., Sangeetha, E., Soundarya, S. and Kumar, N. M. 2019. Green synthesis, characterization and biological activities of nanoceria. Ceram. Int. 45, 12382-12386.   DOI
36 Singh, P., Kim, Y. J., Zhang, D. and Yang, D. C. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588-599.   DOI
37 Sisubalan, N., Ramkumar, V. S., Pugazhendhi, A., Karthikeyan, C., Indira, K., Gopinath, K., Hameed, A. S. H. and Basha, M. H. G. 2017. ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ. Sci. Pollut. Res. 25, 10482-10492.   DOI
38 Su, D. 2017. Advanced elctron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. 2, 70-83.   DOI
39 Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A. and Nabiev, I. 2018. Dependence of nanoparticles toxicity on their physical and chemical properties. Nanoscle Res. Lett. 13, 44.   DOI
40 Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z. U., Hano, C. and Abbasi, B. H. 2020. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int. J. Nanomed. 15, 5951.   DOI
41 Perveen, K., Husain, F. M., Qais, F. A., Khan, A., Razak, S., Afsar, T., Alam, P., Almajwal, A. M. and Abulmeaty, M. 2021. Microwave-assisted rapid green Synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity. Biomolecules 11, 197.   DOI
42 Zhang, D., Ma, X. L., Gu, Y., Huang, H. and Zhang, G. W. 2020. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem. 8, 799.   DOI
43 Chaudhary, R., Nawaz, K., Khan, A. K., Hano, C., Abbasi, B. H. and Anjum, S. 2020. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules 10, 1498.   DOI
44 Fahmy, S. A., Preis, E., Bakowsky, U. and Azzazy, H. M. E. 2020. Platinum nanoparticles: green synthesis and biomedical applications. Molecules 25, 4981.   DOI
45 Wu, S., Rajeshkumar, S., Madasamy, M. and Mahendran, V. 2020. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif. Cells Nanomed. Biotechnol. 48, 1153-1158.   DOI
46 Zhang, L., Ding, Y., Povey, M. and York, D. 2008. ZnO nanofluids-A potential antibacterial agent. Prog. Nat. Sci. 18, 939-944.   DOI
47 Hulkoti, N. I. and Taranath, T. C. 2014. Biosynthesis of nanoparticles using microbes-a review. Colloids Surf. B 121, 474-483.   DOI
48 Tyagi, S., Tyagi, P. K., Gola, D., Chauhan, N. and Bharti, R. K. 2019. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl. Sci. 1, 1-9.
49 Jadoun, S., Arif, R., Jangid, N. K. and Meena, R. K. 2021. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 19, 355-374.   DOI
50 Guilger-Casagrande, M. and Lima, R. D. 2019. Synthesis of silver nanoparticles mediated by fungi: a review. Front. Bioeng. Biotechnol. 7, 287.   DOI
51 Javadi, F., Yazdi, M. E. T., Baghani, M. and Es-haghi, A. 2019. Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater. Res. Express 6. 065408.   DOI
52 Jeyapaul, U., Kala, M. J., Bosco, A. J., Piruthiviraj, P. and Easuraja, M. 2018. An eco-friendly approach for synthesis of platinum nanoparticles using leaf extracts of Jatropa grossypifolia and Jatropa glandulifera and its antibacterial activity. Orien. J. Chem. 34, 783-790.   DOI
53 Kairyte, K., Kadys, A. and Luksiene, Z. 2013. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B 128, 78-84.   DOI
54 Bose, D. and Chatterjee, S. 2015. Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol. 55, 163-167.   DOI
55 Klaus, T., Joerger, R., Olsson, E. and Granqvist, C. G. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 96, 13611-13614.   DOI
56 Azizi, S., Ahmad, M. B., Namvar, F. and Mohamad, R. 2014. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 116, 275-277.   DOI
57 Borkow, G. and Gabbay, J. 2009. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 3, 272-278.   DOI
58 Chahardoli, A., Karimi, N., Sadeghi, F. and Fattahi, A. 2018. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif. Cells Nanomed. Biotechnol. 46, 579-588.
59 Dhamecha, D., Jalalpure, S. and Jadhav, K. 2016. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. J. Photochem. Photobiol. B 154, 108-117.   DOI
60 Du, L., Xian, L. and Feng, J. X. 2011. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J. Nanopart. Res. 13, 921-930.   DOI
61 Awwad, A. M., Amer, M. W., Salem, N. M. and Abdeen, A. O. 2020. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem. Int. 6, 151-159.
62 Gaidhani, S. V., Yeshvekar, R. K., Shedbalkar, U. U., Bellare, J. H. and Chopade, B. A. 2014. Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem. 49, 2313-2319.   DOI
63 Aygun, A., Gulbagca, F., Ozer, L. Y., Ustaoglu, B., Altunoglu, Y. C., Baloglu, M. C., Atalar, M. N., Alma, M. H. and Sen, F. 2020. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal. 179, 112961.   DOI
64 Markus, J., Mathiyalagan, R., Kim, Y. J., Abbai, R., Singh, P., Ahn, S., Perez, Z. E. J., Hurh, J. and Yang, D. C. 2016. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme Microb. Technol. 95, 85-93.   DOI
65 Arya, A., Gupta, K., Chundawat, T. S. and Vaya, D. 2018. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg. Chem. Appl. 2018, 7879403.   DOI
66 Asimuddin, M., Shaik, M. R., Fathima, N., Afreen, M. S., Adil, S. F., Siddiqui, R. H., Jamil, K. and Khan, M. 2020. Study of antibacterial properties of Ziziphus mauritiana based green synthesized silver nanoparticles against various bacterial strains. Sustainability 12, 1484.   DOI
67 Mata, R., Nakkala, J. R. and Sadras, S. R. 2016. Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induces apoptosis in HT-29 colon cancer cells. Colloids Surf., B 143, 499-510.   DOI
68 Krithiga, N., Rajalakshami, A. and Jayachitra, A. 2015. Green synthesis of silver nanoparticles using leaf extract of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci. 2015, 928204.
69 Kuppusamy, P., Yusoff, M. M., Maniam, G. P. and Govindan, N. 2016. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J. 24, 473-484.   DOI
70 Luksiene, Z. 2017. Nanoparticles and their potential application as antimicrobials in the food industry. In Food Preservation (pp. 567-601). Academic press.
71 Mollick, M. M. R., Rana, D., Dash, S. K., Chattopadhyay, S., Bhowmick, B., Maity, D., Mondal, D., Pattanayak, S., Roy, S., Chakraborty, M. and Chattopadhyay, D. 2019. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian J. Chem. 12, 2572-2584.   DOI
72 Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B. and Yacaman, M. J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346-2353.   DOI
73 Al Qhtani, M. S., El-Debaiky, S. A. and Sayed, M. 2020. Antifungal and cytotoxic activities of biosynthesized silver, zinc and gold nanoparticles by flower extract of Rhanterium epapposum. Open J. Appl. Sci. 10, 663.   DOI
74 Ozturk, B. Y., Gursu, B. Y. and Dag, I. 2020. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem. 89, 208-219.   DOI
75 Li, G. R., Xu, H., Lu, X. F., Feng, J. X., Tong, Y. X. and Su, C. Y. 2013. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5, 4056-4069.   DOI
76 Saif Hasan, S., Singh, S., Parikh, R. Y., Dharne, M. S., Patole, M. S., Prasad, B. L. V. and Shouche, Y. S., 2008. Bacterial synthesis of copper/copper oxide nanoparticles. J. Nanosci. Nanotechnol. 8, 3191-3196.   DOI
77 Saravanan, M., Barik, S. K., MubarakAli, D., Prakash, P. and Pugazhendhi, A. 2018. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 116, 221-226.   DOI
78 Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W. and Grobelny, J. 2013. Detection limit of DLS and VU-vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 313081.
79 Pitchumani, K. M. and Annadurai, G. 2019. Biosynthesis of nanoceria from Bacillus subtilis: characterization and antioxidant potential. Res. J. Life Sci. 5, 644.
80 Rad, S. S., Sani, A. M. and Mohseni, S. 2019. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239-245.   DOI
81 Choi, J. S., Jung, H. C., Baek, Y. J., Kim, B. Y., Lee, M. W., Kim, H. D. and Kim, S. W. 2021. Antibacterial activity of green-synthesized silver nanoparticles using Areca catechu extract against antibiotic-resistant bacteria. Nanomaterials 11, 205.   DOI
82 Rambabu, K., Bharath, G., Banat, F. and Show, P. L. 2021. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 402, 123560.   DOI
83 Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C. and Punnoose, A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902.   DOI
84 Srivastava, S., Usmani, Z., Atanasov, A. G., Singh, V. K., Singh, N. P., Abdel-Azeem, A. M., Prasad, R., Gupta, G., Sharma, M. and Bhargava, A. 2021. Biological nanofactories: using living forms for metal nanoparticle synthesis. MiniRev. Med. Chem. 21, 245-265.   DOI
85 Tripathi, R. M. and Chung, S. J. 2019. Biogenic nanomaterials: synthesis, characterization, and biomedical applications. J. Microbiol. Methods 157, 65-80.   DOI
86 Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A. and Banin, E. 2012. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8, 3326-3337.   DOI
87 Arumugam, A., Karthikeyan, C., Haja Hameed, A. S., Gopinath, K., Gowri, S. and Karthika, V. 2015. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C. 49, 408-415.   DOI
88 Awad, M. A., Eisa, N. E., Virk, P., Hendi, A. A., Ortashi, K. M., Mahgoub, A. S., Elobeid, M. A. and Eissa, F. Z. 2019. Green synthesis of gold nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater. Lett. 256, 126608.   DOI
89 Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J. and Ahmadian, G. 2021. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 19, 86.   DOI
90 Castro, L., Blazquez, M. L., Gonzalez, F., Munoz, J. A. and Ballester, A. 2015. Biosynthesis of silver and platinum nanoparticles using orange peel extract: characterisation and applications. IET Nanobiotechnol. 9, 252-258.   DOI
91 Kannan, S. K. and Sundrarajan, M. 2014. A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int. J. Nanosci. 13, 1450018.   DOI
92 Ananda Murthy, H. C., Desalegn, T., Kassa, M., Abebe, B. and Assefa, T. 2020. Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: antimicrobial properties. J. Nanomater. 2020, 3924081.
93 Iravani, S., Korbekandi, H., Mirmohammadi, S. V. and Zolfaghari, B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385.
94 Jayabalan, J., Mani, G., Krishnan, N., Pernabas, J., Devadoss, J. M. and Jang, H. T. 2019. Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its In vitro antibacterial and anti-biofilm activity. Biocatal. Agric. Biotechnol. 21, 101327.   DOI
95 Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Givindh, B., Reddy, V. and Murthy, Y. L. N. 2019. Review on nanomaterials: synthesis and applications. Mater. Today: Proc. 18, 2182-2190.   DOI
96 Lee, S. Y., Krishnamurthy, S., Cho, C. W. and Yun, Y. S. 2016. Biosynthesis of gold nanoparticles using Oscimum sanctum extracts with different polarity. ACS Sustain. CHem. Eng. 4, 2651-2659.
97 Mali, S. C., Dhaka, A., Githala, C. K. and Trivedi, R. 2020. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and anti-fungal properties. Biotechnol. Rep. (Amst) 27, e00518.   DOI
98 Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, F. and Jan, T. 2016. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int. J. Nanomed. 11, 5015.   DOI
99 Patil, M. P., Bayaraa, E., Subedi, P., Piad, L. L. A., Tarte, N. H. and Kim, G. D. 2019. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J. Drug Deliv. Sci. Technol. 51, 83-90.   DOI
100 Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E. and Margel, S. 2011. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A 374, 1-8.   DOI
101 Ahmad, T., Iqbal, J., Bustam, M. A., Zulfiqar, M., Muhammad, N., Al Hajeri, B. M., Irfan, M., Asghar, H. M. A. and Ullah, S. 2020. Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J. Mol. Struct. 1217, 128292.   DOI
102 Al-Radadi, N. S. 2019. Green synthesis of platinum nanoparticles using Saudi's dates extract and their sage on the cancer cell treatment. Arabian J. Chem. 12, 330-349.   DOI
103 Alsamhary, K. I. 2020. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27, 2185-2191.   DOI
104 Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F. and Al-Hamoud, G. A. 2020. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, AgAu bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials 10, 2453.   DOI
105 Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S. and Liu, G. Y. 2000. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16, 2789- 2796.   DOI