• Title/Summary/Keyword: caspase 8

Search Result 569, Processing Time 0.026 seconds

Improvement Effect of Sprout of Coix lacryma-jobi var. mayuen Stapf Water Extract on DSS-Induced Ulcerative Colitis in Mice. (DSS로 궤양성 대장염 유발된 동물모델에서 의이아(薏苡芽) 열수 추출물의 개선 효과)

  • Kim, Min Ju;Shin, Mi-Rae;Lee, Jin A;Park, Soon-Ae;Park, Hae-Jin;Lee, Jeong Hoon;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.35 no.6
    • /
    • pp.21-28
    • /
    • 2020
  • Objectives : The objective of this study was to investigate the improvement effect of Sprout of Coix lacryma-jobi var. mayuen Stapf water extract (SC) on the dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Methods : The antioxidant activity of SC was measured through total polyphenol and total flavonoid content in vitro. The experiment was conducted with seven-week-old male Balb/c mice. After 1 week adaptation, acute colitis was induced by oral administration of 5% DSS dissolved in drinking water, for 7 days. And normal mice received drinking water without DSS throughout the entire experimental period. For each experiment, the mice were divided into 4 groups and 24 colitis mice were arbitrarily allocated into 3 groups (n = 8/group); Normal group, Control group, SC 100 mg/kg treated group (SCL), SC 200 mg/kg treated group (SCH). Serum and colon tissues were collected after one weeks of drug administration. Results : ROS levels, ONOO- levels, AST, and ALT in serum were decreased in SC treated groups compared to the control group. Western blotting measurements of Nrf2, HO-1, SOD, catalase, GPx-1/2, IL-4, IL-10, and Bcl2 showed that the SC treated groups was increased compared to the Control group. Also, western blot measurements of NF-κBp65, p-IκBα, COX-2, iNOS, TNF-α, IL-1β, Bax, and Caspase-3 showed that the SC treated groups was reduced compared to the Control group. Conclusion : Taken together, these results suggest that SC treatment can attenuate the DSS-induced colitis though inhibiting NF-κB pathway and enhancing Nrf2 pathway. Therefore, SC was the potential to be used as a natural therapeutic drug.

Astaxanthin Inhibits $H_2O_2$-Mediated Apoptotic Cell Death in Mouse Neural Progenitor Cells via Modulation of P38 and MEK Signaling Pathways

  • Kim, Jeong-Hwan;Choi, Woo-Bong;Lee, Jong-Hwan;Jeon, Sung-Jong;Choi, Yung-Hyun;Kim, Byung-Woo;Chang, Hyo-Ihl;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1355-1363
    • /
    • 2009
  • In the present study, the neuroprotective effects of astaxanthin on $H_2O_2$-mediated apoptotic cell death, using cultured mouse neural progenitor cells (mNPCs), were investigated. To cause apoptotic cell death, mNPCs were pretreated with astaxanthin for 8 h and followed by treatment of 0.3 mM $H_2O_2$. Pretreatment of mNPCs with astaxanthin significantly inhibited $H_2O_2$-mediated apoptosis and induced cell growth in a dose-dependent manner. In Western blot analysis, astaxanthin-pretreated cells showed the activation of p-Akt, p-MEK, p-ERK, and Bcl-2, and the reduction of p-P38, p-SAPK/JNK, Bax, p-GSK3b, cytochrome c, caspase-3, and PARP. Because $H_2O_2$ triggers caspases activation, this study examined whether astaxanthin can inhibit caspases activation in $H_2O_2$-treated mNPCs. After $H_2O_2$ treatment, caspases activities were prominently increased, but astaxanthin pretreatment significantly inhibited $H_2O_2$-mediated caspases activation. Astaxanthin pretreatment also significantly recovered the ATP production ability of $H_2O_2$-treated cells. These findings indicate that astaxanthin inhibits $H_2O_2$-mediated apoptotic features in mNPCs. Inhibition assays with SB203580 ($10\;{\mu}M$, a specific inhibitor of p38) and PD98059 ($10\;{\mu}M$, a specific inhibitor of MEK) clearly showed that astaxanthin can inhibit $H_2O_2$-mediated apoptotic death via modulation of p38 and MEK signaling pathways.

Effects of dietary spermine supplementation on cell cycle, apoptosis, and amino acid transporters of the thymus and spleen in piglets

  • Cao, Wei;Wu, Xianjian;Jia, Gang;Zhao, Hua;Chen, Xiaoling;Wu, Caimei;Cai, Jingyi;Wang, Jing;Liu, Guangmang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1325-1335
    • /
    • 2018
  • Objective: This study investigated whether spermine supplementation could regulate cell cycle, apoptosis, and amino acid transporter-related genes expression in the thymus and spleen of early weaned piglets. Methods: Eighty female piglets were randomly distributed to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight/24 h) or to be provided with restricted nourishment supplemented with normal saline for 7 h or 3, 6, or 9 d in pairs. Results: Regardless of administration time, spermine supplementation significantly up-regulated cyclin A2 gene expression but down-regulated p21 and cyclin D3 mRNA levels in the thymus and spleen and reduced cyclin E2 gene expression in the thymus of piglets (p<0.05). Irrespective of the treatment period, the reduced Bax and caspase-3 gene expressions and improved Bcl-2 mRNA level were observed in the thymus and spleen of spermine-administrated piglets (p<0.05). Regardless of supplementation time, spermine intake significantly enhanced the expressions of amino acid transporter-related genes (SLC1A1, SLC1A5, SLC7A1, SLC7A7, and SLC15A1) in both thymus and spleen, as well as SLC7A9 in the spleen of piglets (p<0.05). In addition, extended spermine administration also markedly promoted cell proliferation, depressed apoptosis and modulated amino acid transport (p<0.05), and such effects were the greatest during prolonged spermine supplementation (6 d) compared to the other time periods (p<0.05). Conclusion: Spermine supplementation may regulate cell cycle during the G1/S phase, suppress apoptosis and modulate amino acid transport. A period of 6 d of spermine supplementation is required to produce the optimal effects on nutritional implications.

Bee Venom Enhanced Cytotoxic Effect of Natural Killer Cells on Human Lung Cancer Through Inducing Extrinsic Apoptosis

  • Kim, Jung Hyun;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives : I investigated whether Bee Venom can synergistically strengthen the cytotoxic effects of NK-92 cells, enhancing the inhibition of the growth of Lung Cancer Cells including A549 and NCI-H460 through induction of death receptor dependent extrinsic apoptosis and NO generation in the Nitro-oxide pathway. Methods : Bee Venom inhibited cell proliferation of A549 or NCI-H460 Human Lung Cancer Cells as well as NK-92 Cells. Moreover, when they were co-punctured with NK cells and concomitantly treated by 3 ${\mu}g/ml$ of Bee Venom, more influence was exerted on inhibition of proliferation of A549 or NCI-H460 Human Lung Cancer Cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2, DR3, DR6 in A549 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells and treatment of 3 ${\mu}g/ml$ of Bee Venom, compared to co-culture of NK-92 cells alone, whereas the expression of Fas, TNFR2, DR6 in NCI-H460 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells, representing no synergistic effects in the co-culture of NK-92 cell and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom. Coincidently, caspase-8, a expression of pro-apoptotic proteins in the extrinsic apoptosis pathway demonstrated same results as the above. Meanwhile, In NO generation, there is little change of NO generation in co-culture of NK-92 cells with A549 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, whereas increase of NO generation was shown in co-culture of NK-92 cells with NCI-H460 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, although synergistic effects by Bee Venom was not found. Conclusions : These present data provide that Bee Venom could be useful candidate compounds to enhance lung cancer growth inhibiting ability of NK-92 cells through DR expression and the related apoptosis.

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun;Xu, Yong-Nan;Heo, Young-Tae;Cui, Xiang-Shun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2013
  • Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway

  • Hwangbo, Hyun;Kim, So Young;Lee, Hyesook;Park, Shin-Hyung;Hong, Su Hyun;Park, Cheol;Kim, Gi-Young;Leem, Sun-Hee;Hyun, Jin Won;Cheong, Jaehun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.443-455
    • /
    • 2020
  • The thioredoxin (Trx) system plays critical roles in regulating intracellular redox levels and defending organisms against oxidative stress. Recent studies indicated that Trx reductase (TrxR) was overexpressed in various types of human cancer cells indicating that the Trx-TrxR system may be a potential target for anti-cancer drug development. This study investigated the synergistic effect of auranofin, a TrxR-specific inhibitor, on sulforaphane-mediated apoptotic cell death using Hep3B cells. The results showed that sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment. The synergistic effect of sulforaphane and auranofin on apoptosis was evidenced by an increased annexin-V-positive cells and Sub-G1 cells. The induction of apoptosis by the combined treatment caused the loss of mitochondrial membrane potential (ΔΨm) and upregulation of Bax. In addition, the proteolytic activities of caspases (-3, -8, and -9) and the degradation of poly (ADP-ribose) polymerase, a substrate protein of activated caspase-3, were also higher in the combined treatment. Moreover, combined treatment induced excessive generation of reactive oxygen species (ROS). However, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis. Thereby, these results deduce that ROS played a pivotal role in apoptosis induced by auranofin and sulforaphane. Furthermore, apoptosis induced by auranofin and sulforaphane was significantly increased through inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Taken together, the present study demonstrated that down-regulation of TrxR activity contributed to the synergistic effect of auranofin and sulforaphane on apoptosis through ROS production and inhibition of PI3K/Akt signaling pathway.

Radiographic, MRI and Histopathologic Assessment to Standardize Canine Spinal Cord Injury Model (척수손상 모델 견 표준화를 위한 방사선, 자기공명영상 및 조직 병리 평가)

  • Seong, Yun-Sang;Yun, Sung-Ho;Park, Jai-Soon;Kim, Hee-Kyung;Chang, Yong-Min;Ku, Sae-Kwang;Park, Hyun-Jeong;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.5
    • /
    • pp.546-552
    • /
    • 2010
  • Previous studies could not offer available guideline to decide size of balloon and grade of injury before induction of spinal cord injury (SCI) because grade of SCI was assessed after inserting a catheter and each experimental animal were different in body size and weight as well as in species. This study was performed to provide guideline for standardized SCI model. Eight healthy adult beagle dogs that had 8 mm of spinal canal height were assigned to four groups according to the diameter of balloon and compression time: 4 mm/3hrs, 4 mm/6hrs, 4 mm/12hrs and 6 mm/3hrs group. Radiography was performed to standardize between experimental animal and balloon before selecting balloon diameter to induce SCI. Behaviors outcomes, somatosensory evoked potentials (SEPs), magnetic resonance imaging (MRI) and histopathological examination were evaluated. Behaviors outcomes and SEPs were not available to assess grade of SCI and those only indicate SCI. The damaged area was revealed clear hyperintensity on STIR image and T2WI after induction of SCI. The hyperintense area on MRI was cranially and caudally expanded with increasing of the diameter of balloon or the compression time. Well corresponded to expanding of hyperintense area on MRI, the damaged region and the numbers of caspase-3 and PARP immunoreactive cells were increased on histopathological findings. Therefore, these results will be considered fundamental data to induce standardized SCI model in experimental animal that has various weight and size.

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells (미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도)

  • Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.376-386
    • /
    • 2016
  • Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.

Repetition of Apoptosis Induced by Amiloride Derivatives in Human Umbilical Vein Endothelial Cells (제대정맥 내피세포에서 Amiloride 유도체에 의한 Apoptosis 반복)

  • Park, Kyu Chang;Park, Kyu Sang;Moon, Soo Jee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.56-66
    • /
    • 2003
  • Purpose : Human umbilical vein endothelial cells(HUVECs) play an important role in regulating blood flow by releasing vasoactive substances. It has been reported that endothelial impairment and dysfunction might be a primary cause of placental vascular disease, which is manifested clinically as preeclampsia in mother and intrauterine growth restriction in fetus. Furthermore, the frequency of apoptotic changes is increased in umbilical and placental tissues from growth-restricted pregnancies. However, the various mechanisms of umbilical endothelial cell apoptosis have not been broadly proposed. We investigate the effects of amiloride derivatives on apoptotic death of HUVECs and identify their ionic mechanism. Methods : HUVECs were purchased from Clonetics, and cultured on endothelial cell growth medium. MTT assay and flow cytometry were used for assessing cytotoxic effect and confirming the apoptosis. Changes in intracellular ion concentrations were measured with specific fluorescent dyes and fluorescence imaging analysis system. Results : Amiloride derivatives elicited cytotoxic effects on HUVECs with dose-dependent manners and the rank order of potency is HMA($IC_{50}\;11.2{\mu}M$), MIA>EIPA>>amiloride. HMA-induced cytotoxicity is dependent on extra- and intracellular pH, that is, increase extra- and intracellular pH augmented the cytotoxic effects of HMA. HMA dose-dependently reduced intracellular major ions, such as $K^+$ and $Cl^-$. Interestingly, the depletion of intracellular ions induced by HMA was also significantly enhanced at alkaline extracellular pH. Conclusion : Amiloride derivatives induce apoptosis of HUVECs with dose and pH dependent manners. They reduce intracellular $K^+$ and $Cl^-$ concentration, which is also extracellular pH dependent.