DOI QR코드

DOI QR Code

Astaxanthin Inhibits $H_2O_2$-Mediated Apoptotic Cell Death in Mouse Neural Progenitor Cells via Modulation of P38 and MEK Signaling Pathways

  • Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Choi, Woo-Bong (Department of Biomaterial Control, Dong-Eui University) ;
  • Lee, Jong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Biomaterial Control, Dong-Eui University) ;
  • Choi, Yung-Hyun (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Byung-Woo (Department of Biomaterial Control, Dong-Eui University) ;
  • Chang, Hyo-Ihl (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University) ;
  • Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
  • Published : 2009.11.30

Abstract

In the present study, the neuroprotective effects of astaxanthin on $H_2O_2$-mediated apoptotic cell death, using cultured mouse neural progenitor cells (mNPCs), were investigated. To cause apoptotic cell death, mNPCs were pretreated with astaxanthin for 8 h and followed by treatment of 0.3 mM $H_2O_2$. Pretreatment of mNPCs with astaxanthin significantly inhibited $H_2O_2$-mediated apoptosis and induced cell growth in a dose-dependent manner. In Western blot analysis, astaxanthin-pretreated cells showed the activation of p-Akt, p-MEK, p-ERK, and Bcl-2, and the reduction of p-P38, p-SAPK/JNK, Bax, p-GSK3b, cytochrome c, caspase-3, and PARP. Because $H_2O_2$ triggers caspases activation, this study examined whether astaxanthin can inhibit caspases activation in $H_2O_2$-treated mNPCs. After $H_2O_2$ treatment, caspases activities were prominently increased, but astaxanthin pretreatment significantly inhibited $H_2O_2$-mediated caspases activation. Astaxanthin pretreatment also significantly recovered the ATP production ability of $H_2O_2$-treated cells. These findings indicate that astaxanthin inhibits $H_2O_2$-mediated apoptotic features in mNPCs. Inhibition assays with SB203580 ($10\;{\mu}M$, a specific inhibitor of p38) and PD98059 ($10\;{\mu}M$, a specific inhibitor of MEK) clearly showed that astaxanthin can inhibit $H_2O_2$-mediated apoptotic death via modulation of p38 and MEK signaling pathways.

Keywords

References

  1. Andrew, A. G., H. J. Phaff, and M. P. Starr. 1976. Carotenoids of Phaffia rhodozyma, a red pigmented fermenting yeast. Phytochemistry 15: 1003-1007 https://doi.org/10.1016/S0031-9422(00)84390-3
  2. Bellavite, P. 1988. The superoxide-forming enzymatic system of phagocytes. Free Radical Biol. Med. 4: 225-261 https://doi.org/10.1016/0891-5849(88)90044-5
  3. Bendich, A. and J. A. Olson. 1989. Biological actions of carotenoids. FASEB J. 3: 1927-1932
  4. Bruce-Keller, A. J., J. G. Begley, W. Fu, D. A. Butterfield, D. E. Bredesen, J. B. Hutchins, K. Hensley, and M. P. Mattson. 1998. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid B-peptide. J. Neurochem. 70: 31-39 https://doi.org/10.1046/j.1471-4159.1998.70010031.x
  5. Cornett, C. R., W. R. Markesbery, and W. D. Ehmann. 1998. Imbalances of the trace elements related to oxidative damage in Alzheimer disease brain. Neurotoxicology 19: 339-345
  6. Desagher, S. and J. C. Martinou. 2000. Mitochondria as the central control point of apoptosis, Trends Cell Biol. 10: 369-377 https://doi.org/10.1016/S0962-8924(00)01803-1
  7. Dexter, D. T., C. J. Carter, F. R. Wells, Y. Javoy-Agid, A. Lees, P. Jenner, and C. D. Marsden. 1989. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52: 381-389 https://doi.org/10.1111/j.1471-4159.1989.tb09133.x
  8. Facchinetti, F., V. L. Dawson, and T. M. Dawson. 1998. Free radicals as mediators of neuronal injury, Cell Mol. Neurobiol. 18: 667-682 https://doi.org/10.1023/A:1020221919154
  9. Giulian, D., K. Vaca, and M. Corpuz. 1993. Brain glia release factors with opposing actions upon neuronal survival. J. Neurosci. 13: 29-37
  10. Halliwell, B. and J. M. Gutteridge. 1992. Biologically relevant metal ion-dependent hydroxyl radical generation: An update. Fed Eur. Biochem. Soc. Lett. 307: 108-112 https://doi.org/10.1016/0014-5793(92)80911-Y
  11. Itoh, N. M., Y. Tsujimoto, and S. Nagata. 1993. Effect of Bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151: 621-627
  12. Johnson, E. A. and M. J. Lewis. 1979. Astaxanthin formation by the yeast Phcffiarhodozyma. J. Gen. Microbiol. 115: 173-183 https://doi.org/10.1099/00221287-115-1-173
  13. Jyonouchi, H., S. Sun, K. Lijima, and M. D. Gross. 2000. Antitumor activity of astaxanthin and its mode of action. Nutr. Cancer 36: 59-65 https://doi.org/10.1207/S15327914NC3601_9
  14. Jyonouchi, H., L. Zhang, M. Gross, and Y. Tomita. 1994. Immunomodulating actions of carotenoids: Enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr. Cancer 21: 47-58 https://doi.org/10.1080/01635589409514303
  15. Kluck, R. M., E. Bessy-Wetzel, D. R. Green, and D. D. Newmeywer. 1997. The release of cytochrome c from mitochodria: A primary site tor Bcl-2 regulation of apoptosis. Science 275: 1132-1136 https://doi.org/10.1126/science.275.5303.1132
  16. Krinsky, N. I. 1989. Antioxidant function of carotenoids. Free Radic. Biol. Med. 7: 617-635 https://doi.org/10.1016/0891-5849(89)90143-3
  17. Kurashige, M., E. Okimasu, M. Inoue, and K. Utsumi. 1990. Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol. Chem. Phys. Med. NMR 22: 27-38
  18. Lee, S. R., S. Bar-Noy, J. Kwon, R. L. Levine, T. C. Stadtman, and S. G Rhee. 2000. Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc. Natl. Acad. Sci. U.S.A. 97: 2521-2526 https://doi.org/10.1073/pnas.050579797
  19. Lim, B. P., A. Nagao, J. Terao, K. Tanaka, T. Suzuki, and K. Takama. 1992. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta 1126: 178-184 https://doi.org/10.1016/0005-2760(92)90288-7
  20. Liu, X., C. N. Kim, Y. Yang, R. Jemmerson, and X. Wang. 1996. Induction of apoptosis program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 145-157
  21. Mortensen, A., L. H. Skibsted, and T. G. Truscott. 2001. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 385: 13-19 https://doi.org/10.1006/abbi.2000.2172
  22. Murphy, M. P. and R. A. Smith. 2000. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv. Drug Deliv. Rev. 41: 235-250 https://doi.org/10.1016/S0169-409X(99)00069-1
  23. Naguib, Y. M. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 48: 1150-1154 https://doi.org/10.1021/jf991106k
  24. Nakajima, Y., Y. Inokuchi, M. Shimazawa, K. Otsubo, T. Ishibashi, and H. Hara. 2008. Astaxanthin, a dietary carotenoid, protects retinal cells against oxidative stress in-vitro and in mice in-vivo. J. Pharm. Pharmacol. 60: 1365-1374 https://doi.org/10.1211/jpp/60.10.0013
  25. Okai, Y. and K. Higashi-Okai. 1996. Possible immunomodulating activities of carotenoids in in vitro cell culture experiments. Int. J. Immunopharmacol. 8: 753-758
  26. Palozza, P. and N. I. Krinsky. 1992. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 297: 291-295 https://doi.org/10.1016/0003-9861(92)90675-M
  27. Ragusa, R. J., C. K. Chow, and J. D. Porter. 1997. Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul. Disord 7: 379-386 https://doi.org/10.1016/S0960-8966(97)00096-5
  28. Richter, C. and G. E. Kass. 1991. Oxidative stress in mitochondria: Its relationship to cellular $Ca^{2+}$ homeostasis, cell death, proliferation, and differentiation. Chem. Biol. Interact. 77: 1-23 https://doi.org/10.1016/0009-2797(91)90002-O
  29. Sagara, Y., S. Tan, P. Maher, and D. Schubert. 1998. Mechanisms of resistance to oxidative stress in Alzheimer's disease brain. Neurotoxicology 19: 339-345
  30. Smith, C. D., J. M. Carney, P. E. Starke-Reed, C. N. Oliver, E. R. Stadtrnan, R. A. Floyd, and W. R. Markesbery. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease. Proc. Natl. Acad Sci. U.S.A. 88: 10540-10543 https://doi.org/10.1073/pnas.88.23.10540
  31. Tan, S., M. Wood, and P. Maher. 1995. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71: 95-105 https://doi.org/10.1046/j.1471-4159.1998.71010095.x
  32. Tanaka, T., T. Kawamori, M. Ohnishi, H. Makita, H. Mori, K. Satoh, and A. Hara. 1995. Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during the postinitiation phase. Carcinogenesis 16: 2957-2963 https://doi.org/10.1093/carcin/16.12.2957
  33. Tanaka, T., H. Makita, M. Ohnishi, H. Mori, K. Satoh, and A. Hara. 1995. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res. 55: 4059-4064
  34. Tanaka, T., Y. Morishita, M. Suzuki, T. Kojima, A. Okumura, and H. Mori. 1994. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15: 15-19 https://doi.org/10.1093/carcin/15.1.15
  35. Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162

Cited by

  1. Antioxidants in combination with omega-3 fatty acids protect rat neonatal cardiomyocytes against H2O2-induced oxidative stress vol.12, pp.3, 2009, https://doi.org/10.1007/s13749-013-0034-6
  2. Antioxidants in combination with omega-3 fatty acids protect rat neonatal cardiomyocytes against H2O2-induced oxidative stress vol.12, pp.3, 2009, https://doi.org/10.1007/s13749-013-0034-6
  3. Drug Repurposing for Gastrointestinal Stromal Tumor vol.12, pp.7, 2009, https://doi.org/10.1158/1535-7163.mct-12-0968
  4. Microalgal carotenoids: beneficial effects and potential in human health vol.5, pp.3, 2009, https://doi.org/10.1039/c3fo60607d
  5. Activation of Type 4 Metabotropic Glutamate Receptor Attenuates Oxidative Stress-Induced Death of Neural Stem Cells with Inhibition of JNK and p38 MAPK Signaling vol.24, pp.22, 2009, https://doi.org/10.1089/scd.2015.0067
  6. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases vol.13, pp.9, 2009, https://doi.org/10.3390/md13095750
  7. Nutraceuticals against Neurodegeneration: A Mechanistic Insight vol.14, pp.6, 2009, https://doi.org/10.2174/1570159x14666160104142223
  8. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration vol.39, pp.1, 2009, https://doi.org/10.1007/s11357-017-9958-x
  9. Astaxanthin enhances erlotinib-induced cytotoxicity by p38 MAPK mediated xeroderma pigmentosum complementation group C (XPC) down-regulation in human lung cancer cells vol.7, pp.6, 2018, https://doi.org/10.1039/c7tx00292k
  10. Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model vol.16, pp.4, 2009, https://doi.org/10.3390/md16040126
  11. On the Neuroprotective Role of Astaxanthin: New Perspectives? vol.16, pp.8, 2009, https://doi.org/10.3390/md16080247
  12. Protective effects of honokiol against oxidative stress-induced apoptotic signaling in mouse podocytes treated with H2O2 vol.16, pp.2, 2018, https://doi.org/10.3892/etm.2018.6313
  13. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review vol.10, pp.9, 2009, https://doi.org/10.3390/nu10091137
  14. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss vol.13, pp.None, 2019, https://doi.org/10.2147/dddt.s212313
  15. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations vol.26, pp.1, 2009, https://doi.org/10.1080/10717544.2019.1682718
  16. Dibromoacetic Acid Induced Hepatotoxicity in Mice through Oxidative Stress and Toll-Like Receptor 4 Signaling Pathway Activation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5637235
  17. Astaxanthin Modulation of Signaling Pathways That Regulate Autophagy vol.17, pp.10, 2009, https://doi.org/10.3390/md17100546
  18. Docosahexaenoic acid-acylated astaxanthin ester exhibits superior performance over non-esterified astaxanthin in preventing behavioral deficits coupled with apoptosis in MPTP-induced mice with Parkins vol.11, pp.9, 2009, https://doi.org/10.1039/d0fo01176b
  19. Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient vol.8, pp.10, 2009, https://doi.org/10.3390/jmse8100789
  20. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications vol.145, pp.None, 2009, https://doi.org/10.1016/j.fct.2020.111714
  21. Histopathological and Biochemical Assessment of Neuroprotective Effects of Sodium Valproate and Lutein on the Pilocarpine Albino Rat Model of Epilepsy vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5549638
  22. Astaxanthin-Loaded Stealth Lipid Nanoparticles (AST-SSLN) as Potential Carriers for the Treatment of Alzheimer’s Disease: Formulation Development and Optimization vol.11, pp.2, 2009, https://doi.org/10.3390/nano11020391
  23. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084045
  24. Molecular Mechanisms of Astaxanthin as a Potential Neurotherapeutic Agent vol.19, pp.4, 2021, https://doi.org/10.3390/md19040201
  25. Retrospecting the Antioxidant Activity of Japanese Matcha Green Tea-Lack of Enthusiasm? vol.11, pp.11, 2009, https://doi.org/10.3390/app11115087
  26. Astaxanthin Inhibits Autophagic Cell Death Induced by Bisphenol A in Human Dermal Fibroblasts vol.10, pp.8, 2021, https://doi.org/10.3390/antiox10081273
  27. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens vol.11, pp.12, 2009, https://doi.org/10.3390/ani11123482