References
- Andrew, A. G., H. J. Phaff, and M. P. Starr. 1976. Carotenoids of Phaffia rhodozyma, a red pigmented fermenting yeast. Phytochemistry 15: 1003-1007 https://doi.org/10.1016/S0031-9422(00)84390-3
- Bellavite, P. 1988. The superoxide-forming enzymatic system of phagocytes. Free Radical Biol. Med. 4: 225-261 https://doi.org/10.1016/0891-5849(88)90044-5
- Bendich, A. and J. A. Olson. 1989. Biological actions of carotenoids. FASEB J. 3: 1927-1932
- Bruce-Keller, A. J., J. G. Begley, W. Fu, D. A. Butterfield, D. E. Bredesen, J. B. Hutchins, K. Hensley, and M. P. Mattson. 1998. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid B-peptide. J. Neurochem. 70: 31-39 https://doi.org/10.1046/j.1471-4159.1998.70010031.x
- Cornett, C. R., W. R. Markesbery, and W. D. Ehmann. 1998. Imbalances of the trace elements related to oxidative damage in Alzheimer disease brain. Neurotoxicology 19: 339-345
- Desagher, S. and J. C. Martinou. 2000. Mitochondria as the central control point of apoptosis, Trends Cell Biol. 10: 369-377 https://doi.org/10.1016/S0962-8924(00)01803-1
- Dexter, D. T., C. J. Carter, F. R. Wells, Y. Javoy-Agid, A. Lees, P. Jenner, and C. D. Marsden. 1989. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52: 381-389 https://doi.org/10.1111/j.1471-4159.1989.tb09133.x
- Facchinetti, F., V. L. Dawson, and T. M. Dawson. 1998. Free radicals as mediators of neuronal injury, Cell Mol. Neurobiol. 18: 667-682 https://doi.org/10.1023/A:1020221919154
- Giulian, D., K. Vaca, and M. Corpuz. 1993. Brain glia release factors with opposing actions upon neuronal survival. J. Neurosci. 13: 29-37
- Halliwell, B. and J. M. Gutteridge. 1992. Biologically relevant metal ion-dependent hydroxyl radical generation: An update. Fed Eur. Biochem. Soc. Lett. 307: 108-112 https://doi.org/10.1016/0014-5793(92)80911-Y
- Itoh, N. M., Y. Tsujimoto, and S. Nagata. 1993. Effect of Bcl-2 on Fas antigen-mediated cell death. J. Immunol. 151: 621-627
- Johnson, E. A. and M. J. Lewis. 1979. Astaxanthin formation by the yeast Phcffiarhodozyma. J. Gen. Microbiol. 115: 173-183 https://doi.org/10.1099/00221287-115-1-173
- Jyonouchi, H., S. Sun, K. Lijima, and M. D. Gross. 2000. Antitumor activity of astaxanthin and its mode of action. Nutr. Cancer 36: 59-65 https://doi.org/10.1207/S15327914NC3601_9
- Jyonouchi, H., L. Zhang, M. Gross, and Y. Tomita. 1994. Immunomodulating actions of carotenoids: Enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr. Cancer 21: 47-58 https://doi.org/10.1080/01635589409514303
- Kluck, R. M., E. Bessy-Wetzel, D. R. Green, and D. D. Newmeywer. 1997. The release of cytochrome c from mitochodria: A primary site tor Bcl-2 regulation of apoptosis. Science 275: 1132-1136 https://doi.org/10.1126/science.275.5303.1132
- Krinsky, N. I. 1989. Antioxidant function of carotenoids. Free Radic. Biol. Med. 7: 617-635 https://doi.org/10.1016/0891-5849(89)90143-3
- Kurashige, M., E. Okimasu, M. Inoue, and K. Utsumi. 1990. Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol. Chem. Phys. Med. NMR 22: 27-38
- Lee, S. R., S. Bar-Noy, J. Kwon, R. L. Levine, T. C. Stadtman, and S. G Rhee. 2000. Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc. Natl. Acad. Sci. U.S.A. 97: 2521-2526 https://doi.org/10.1073/pnas.050579797
- Lim, B. P., A. Nagao, J. Terao, K. Tanaka, T. Suzuki, and K. Takama. 1992. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta 1126: 178-184 https://doi.org/10.1016/0005-2760(92)90288-7
- Liu, X., C. N. Kim, Y. Yang, R. Jemmerson, and X. Wang. 1996. Induction of apoptosis program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 145-157
- Mortensen, A., L. H. Skibsted, and T. G. Truscott. 2001. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 385: 13-19 https://doi.org/10.1006/abbi.2000.2172
- Murphy, M. P. and R. A. Smith. 2000. Drug delivery to mitochondria: The key to mitochondrial medicine. Adv. Drug Deliv. Rev. 41: 235-250 https://doi.org/10.1016/S0169-409X(99)00069-1
- Naguib, Y. M. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 48: 1150-1154 https://doi.org/10.1021/jf991106k
- Nakajima, Y., Y. Inokuchi, M. Shimazawa, K. Otsubo, T. Ishibashi, and H. Hara. 2008. Astaxanthin, a dietary carotenoid, protects retinal cells against oxidative stress in-vitro and in mice in-vivo. J. Pharm. Pharmacol. 60: 1365-1374 https://doi.org/10.1211/jpp/60.10.0013
- Okai, Y. and K. Higashi-Okai. 1996. Possible immunomodulating activities of carotenoids in in vitro cell culture experiments. Int. J. Immunopharmacol. 8: 753-758
- Palozza, P. and N. I. Krinsky. 1992. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 297: 291-295 https://doi.org/10.1016/0003-9861(92)90675-M
- Ragusa, R. J., C. K. Chow, and J. D. Porter. 1997. Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul. Disord 7: 379-386 https://doi.org/10.1016/S0960-8966(97)00096-5
-
Richter, C. and G. E. Kass. 1991. Oxidative stress in mitochondria: Its relationship to cellular
$Ca^{2+}$ homeostasis, cell death, proliferation, and differentiation. Chem. Biol. Interact. 77: 1-23 https://doi.org/10.1016/0009-2797(91)90002-O - Sagara, Y., S. Tan, P. Maher, and D. Schubert. 1998. Mechanisms of resistance to oxidative stress in Alzheimer's disease brain. Neurotoxicology 19: 339-345
- Smith, C. D., J. M. Carney, P. E. Starke-Reed, C. N. Oliver, E. R. Stadtrnan, R. A. Floyd, and W. R. Markesbery. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and Alzheimer disease. Proc. Natl. Acad Sci. U.S.A. 88: 10540-10543 https://doi.org/10.1073/pnas.88.23.10540
- Tan, S., M. Wood, and P. Maher. 1995. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71: 95-105 https://doi.org/10.1046/j.1471-4159.1998.71010095.x
- Tanaka, T., T. Kawamori, M. Ohnishi, H. Makita, H. Mori, K. Satoh, and A. Hara. 1995. Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during the postinitiation phase. Carcinogenesis 16: 2957-2963 https://doi.org/10.1093/carcin/16.12.2957
- Tanaka, T., H. Makita, M. Ohnishi, H. Mori, K. Satoh, and A. Hara. 1995. Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res. 55: 4059-4064
- Tanaka, T., Y. Morishita, M. Suzuki, T. Kojima, A. Okumura, and H. Mori. 1994. Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15: 15-19 https://doi.org/10.1093/carcin/15.1.15
- Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162
Cited by
- Antioxidants in combination with omega-3 fatty acids protect rat neonatal cardiomyocytes against H2O2-induced oxidative stress vol.12, pp.3, 2009, https://doi.org/10.1007/s13749-013-0034-6
- Antioxidants in combination with omega-3 fatty acids protect rat neonatal cardiomyocytes against H2O2-induced oxidative stress vol.12, pp.3, 2009, https://doi.org/10.1007/s13749-013-0034-6
- Drug Repurposing for Gastrointestinal Stromal Tumor vol.12, pp.7, 2009, https://doi.org/10.1158/1535-7163.mct-12-0968
- Microalgal carotenoids: beneficial effects and potential in human health vol.5, pp.3, 2009, https://doi.org/10.1039/c3fo60607d
- Activation of Type 4 Metabotropic Glutamate Receptor Attenuates Oxidative Stress-Induced Death of Neural Stem Cells with Inhibition of JNK and p38 MAPK Signaling vol.24, pp.22, 2009, https://doi.org/10.1089/scd.2015.0067
- Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases vol.13, pp.9, 2009, https://doi.org/10.3390/md13095750
- Nutraceuticals against Neurodegeneration: A Mechanistic Insight vol.14, pp.6, 2009, https://doi.org/10.2174/1570159x14666160104142223
- Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration vol.39, pp.1, 2009, https://doi.org/10.1007/s11357-017-9958-x
- Astaxanthin enhances erlotinib-induced cytotoxicity by p38 MAPK mediated xeroderma pigmentosum complementation group C (XPC) down-regulation in human lung cancer cells vol.7, pp.6, 2018, https://doi.org/10.1039/c7tx00292k
- Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model vol.16, pp.4, 2009, https://doi.org/10.3390/md16040126
- On the Neuroprotective Role of Astaxanthin: New Perspectives? vol.16, pp.8, 2009, https://doi.org/10.3390/md16080247
- Protective effects of honokiol against oxidative stress-induced apoptotic signaling in mouse podocytes treated with H2O2 vol.16, pp.2, 2018, https://doi.org/10.3892/etm.2018.6313
- Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review vol.10, pp.9, 2009, https://doi.org/10.3390/nu10091137
- The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss vol.13, pp.None, 2019, https://doi.org/10.2147/dddt.s212313
- Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations vol.26, pp.1, 2009, https://doi.org/10.1080/10717544.2019.1682718
- Dibromoacetic Acid Induced Hepatotoxicity in Mice through Oxidative Stress and Toll-Like Receptor 4 Signaling Pathway Activation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5637235
- Astaxanthin Modulation of Signaling Pathways That Regulate Autophagy vol.17, pp.10, 2009, https://doi.org/10.3390/md17100546
- Docosahexaenoic acid-acylated astaxanthin ester exhibits superior performance over non-esterified astaxanthin in preventing behavioral deficits coupled with apoptosis in MPTP-induced mice with Parkins vol.11, pp.9, 2009, https://doi.org/10.1039/d0fo01176b
- Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient vol.8, pp.10, 2009, https://doi.org/10.3390/jmse8100789
- Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications vol.145, pp.None, 2009, https://doi.org/10.1016/j.fct.2020.111714
- Histopathological and Biochemical Assessment of Neuroprotective Effects of Sodium Valproate and Lutein on the Pilocarpine Albino Rat Model of Epilepsy vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5549638
- Astaxanthin-Loaded Stealth Lipid Nanoparticles (AST-SSLN) as Potential Carriers for the Treatment of Alzheimer’s Disease: Formulation Development and Optimization vol.11, pp.2, 2009, https://doi.org/10.3390/nano11020391
- Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084045
- Molecular Mechanisms of Astaxanthin as a Potential Neurotherapeutic Agent vol.19, pp.4, 2021, https://doi.org/10.3390/md19040201
- Retrospecting the Antioxidant Activity of Japanese Matcha Green Tea-Lack of Enthusiasm? vol.11, pp.11, 2009, https://doi.org/10.3390/app11115087
- Astaxanthin Inhibits Autophagic Cell Death Induced by Bisphenol A in Human Dermal Fibroblasts vol.10, pp.8, 2021, https://doi.org/10.3390/antiox10081273
- Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens vol.11, pp.12, 2009, https://doi.org/10.3390/ani11123482