DOI QR코드

DOI QR Code

Effects of Trichostatin A and 5-aza-2'deoxycytidine on Nuclear Reprogramming in Pig Cloned Embryos

  • Lee, Sung Hyun (Department of Animal Sciences, Chungbuk National University) ;
  • Xu, Yong-Nan (Department of Animal Sciences, Chungbuk National University) ;
  • Heo, Young-Tae (Department of Animal Sciences, Chungbuk National University) ;
  • Cui, Xiang-Shun (Department of Animal Sciences, Chungbuk National University) ;
  • Kim, Nam-Hyung (Department of Animal Sciences, Chungbuk National University)
  • Received : 2013.12.13
  • Accepted : 2013.12.18
  • Published : 2013.12.31

Abstract

Low efficiency of somatic cell nuclear transfer (SCNT) is attributed to incomplete reprogramming of transfered nuclei into oocytes. Trichostatin A (TSA), histone deacetylase inhibitor and 5-aza-2'deoxycytidine (5-aza-dC), DNA methylation inhibitor has been used to enhance nuclear reprogramming following SCNT. However, it was not known molecular mechanism by which TSA and 5-aza-dC improve preimplantation embryo and fetal development following SCNT. The present study investigates embryo viability and gene expression of cloned porcine preimplantation embryos in the presence and absence of TSA and 5-aza-dC as compared to embryos produced by parthenogenetic activation. Our results indicated that TSA treatment significantly improved development. However 5-aza-dC did not improve development. Presence of TSA and 5-aza-dC significantly improved total cell number, and also decreased the apoptotic and autophagic index. Three apoptotic-related genes, Bak, Bcl-xL, and Caspase 3 (Casp3), and three autophagic-related genes, ATG6, ATG8, and lysosomal-associated membrane protein 2 (LAMP2), were measured by real time RT-PCR. TSA and 5-aza-dC treatment resulted in high expression of anti-apoptotic gene Bcl-xL and low pro-apoptotic gene Bak expression compared to untreated NT embryos or parthenotes. Furthermore, LC3 protein expression was lower in NT-TSA and NT-5-aza-dC embryos than those of NT and parthenotes. In addition, TSA and 5-aza-dC treated embryos displayed a global acetylated histone H3 at lysine 9 and methylated DNA H3 at lysine 9 profile similar to the parthenogenetic blastocysts. Finally, we determined that several DNA methyltransferase genes Dnmt1, Dnmt3a and Dnmt3b. NT blastocysts showed higher levels Dnmt1 than those of the TSA and 5-aza-dC blastocysts. Dnmt3a is lower in 5-aza-dC than NT, NTTSA and parthenotes. However, Dnmt3b is higher in 5-aza-dC than NT and NTTSA. These results suggest that TSA and 5-aza-dC positively regulates nuclear reprogramming which result in modulation of apoptosis and autophagy related gene expression and then reduce apoptosis and autophagy. In addition, TSA and 5-aza-dC affects the acetylated and methylated status of the H3K9.

Keywords

References

  1. Baehrecke EH (2005): Autophagy: dual roles in life and death. Nat Rev Mol Cell Biol 6(6):505-510. Review. https://doi.org/10.1038/nrm1666
  2. Cervera RP, Martí-Gutiérrez N, Escorihuela E, Moreno R, Stojkovic M (2009): Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology 7:1097-1110.
  3. Cheong HT, Park KW, Im GS, Lai L, Sun QY, Day BN, Prather RS (2002): Effect of elevated Ca(2+) concentration in fusion/ctivation medium on the fusion and development of porcine fetal fibroblast nuclear transfer embryos. Mol Reprod Dev 61:488-492. https://doi.org/10.1002/mrd.10110
  4. Ding X, Wang Y, Zhang D, Wang Y, Guo Z, Zhang Y (2008): Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2'-deoxycytidine and trichostatin A. Theriogenology 70:622-630. https://doi.org/10.1016/j.theriogenology.2008.04.042
  5. Du Y, Kragh PM, Zhang Y, Li J, Schmidt M, Bogh IB, Zhang X, Purup S, Jorgensen AL, Pedersen AM, Villemoes K, Yang H, Bolund L, Vajta G (2007): Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology 68:1104-1110. https://doi.org/10.1016/j.theriogenology.2007.07.021
  6. Enright BP, Sung LY, Chang CC, Yang X, Tian XC (2005): Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol Reprod 72:944-948. https://doi.org/10.1095/biolreprod.104.033225
  7. Enright BP, Kubota C, Yang X, Tian XC (2003): Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza2'-deoxycytidine. Biol Reprod 69:896-901. https://doi.org/10.1095/biolreprod.103.017954
  8. Fortunato F, Bürgers H, Bergmann F, Rieger P, Buchler MW, Kroemer G, Werner J (2009): Impaired autolysosome formation correlates with Lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 137(1):350-360. https://doi.org/10.1053/j.gastro.2009.04.003
  9. Gozuacik D, Kimchi A (2004): Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16): 2891-2906. Review. https://doi.org/10.1038/sj.onc.1207521
  10. Grunstein M (1997): Histone acetylation in chromatin structure and transcription. Nature 389: 349-352. https://doi.org/10.1038/38664
  11. Hao Y, Lai L, Mao J, Im GS, Bonk A, Prather RS (2003): Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol Reprod 69:501-507. https://doi.org/10.1095/biolreprod.103.016170
  12. Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K (2004): Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279: 17063-17069. https://doi.org/10.1074/jbc.M309002200
  13. Juriscova A, Latham KE, Casper RF, Casper RF, Varmuza SL (1998): Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol Reprod Dev 51:243-253. https://doi.org/10.1002/(SICI)1098-2795(199811)51:3<243::AID-MRD3>3.0.CO;2-P
  14. Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, Han YM (2001): Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173-177. https://doi.org/10.1038/88903
  15. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001): Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152 (3):519-530. https://doi.org/10.1083/jcb.152.3.519
  16. Kishigami S, Mizutani E, Ohta H, Hikichi T, Van Thuan N, Wakayama S (2006): Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183-189. https://doi.org/10.1016/j.bbrc.2005.11.164
  17. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, TakaoT, Noda T, Ohsumi Y (2000): The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151(2):263-276. https://doi.org/10.1083/jcb.151.2.263
  18. Kishigami S, Van Thuan N, Hikichi T, Ohta H, Wakayama S, Mizutani E, Wakayama T (2006): Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids. Dev Biol 289:195-205. https://doi.org/10.1016/j.ydbio.2005.10.026
  19. Koo OJ, Kang JT, Kwon DK, Park HJ, Lee B (2009): Influence of ovulation status, seasonality and embryo transfer method on development of cloned porcine embryos. Reprod Domest Anim Doi: 10.1111/ j.1439-0531. 2009.01346.x.
  20. Koo OJ, Jang G, Kwon DK, Kang JT, Kwon OS, Park HJ, Kang SK, Lee BC (2008): Electrical activation induces reactive oxygen species in porcine embryos. Theriogenology 70:1111-1118. https://doi.org/10.1016/j.theriogenology.2008.06.031
  21. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002): Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092. https://doi.org/10.1126/science.1068228
  22. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993): A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73-84. https://doi.org/10.1016/0092-8674(93)90051-Q
  23. Lee E, Lee SH, Kim S, Jeong YW, Kim JH, Koo OJ, Park SM, Hashem MA, Hossein MS, Son HY, Lee CK, Hwang WS, Kang SK, Lee BC (2006): Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes. Biochem Biophys Res Commun 348:1419-1428. https://doi.org/10.1016/j.bbrc.2006.08.004
  24. Li E (2002): Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662-673. https://doi.org/10.1038/nrg887
  25. Li J, Svarcova O, Villemoes K, Kragh PM, Schmidt M, Bogh IB, Zhang Y, Du Y, Lin L, Purup S, Xue Q, Bolund L, Yang H, Maddox-Hyttel P, Vajta G (2008): High in vitro development after somatic cell nuclear transfer and trichostatin A of reconstructed porcine embryos. Theriogenology 70:800-808. https://doi.org/10.1016/j.theriogenology.2008.05.046
  26. Miyoshi K, Saeki K, Sato E (2000): Improvement in development of porcine embryos reconstituted with cells from blastocyst-derived cell lines and enucleated oocytes by optimization of reconstruction methods. Cloning 2:175-184. https://doi.org/10.1089/152045500454735
  27. Nervi C, Borello U, Fazi F, Buffa V, Pelicci PG, Cossu G (2001): Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis with-out apparent toxicity. Cancer Res 61:1247-1249.
  28. Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ (2000): Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148(3):465-480. https://doi.org/10.1083/jcb.148.3.465
  29. Ohgane J, Wakayama T, Senda S, Yamazaki Y, Inoue K, Ogura A, Marh J, Tanaka S, Yanagimachi R, Shiota K (2004): The Sall3 locus is an epigenetic hotspot of abrrant DNA methylation associated with placentomegaly of cloned mice. Genes Cells 9: 253-260. https://doi.org/10.1111/j.1356-9597.2004.00720.x
  30. Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J (2000): Active demethylation of the parental genome in the mouse zygote. Curr Biol 10:475-478. https://doi.org/10.1016/S0960-9822(00)00448-6
  31. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005): Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122 (6):927-939. https://doi.org/10.1016/j.cell.2005.07.002
  32. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000): Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992-998. https://doi.org/10.1074/jbc.275.2.992
  33. Rideout WM 3rd, Eggan K, Jaenisch R (2001): Nuclear cloning and epigenetic reprogramming of the genome. Science 293:1093-1098. https://doi.org/10.1126/science.1063206
  34. Rybouchkin A, Kato Y, Tsunoda Y (2006): Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod 74:1083-1089. https://doi.org/10.1095/biolreprod.105.047456
  35. Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W (2003): Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13:1116-1121. https://doi.org/10.1016/S0960-9822(03)00419-6
  36. Shen XH, Jin YX, Ko YG, Chung HJ, Cui XS, Kim NH (2006): High mobility group box 1 (HMGB1) enhances porcine parthenotes developing in vitro in the absence of BSA. Theriogenology 66(9):2077-2083. https://doi.org/10.1016/j.theriogenology.2006.05.019
  37. Shi LH, Miao YL, Ouyang YC, Huang JC, Lei ZL, Yang JW, Han ZM, Song XF, Sun QY, Chen DY (2008): Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev Dyn 237:640-648. https://doi.org/10.1002/dvdy.21450
  38. Shi W, Zakhartchenko V, Wolf E (2003): Epigenetic reprogramming in mammalian nuclear transfer. Differentiation 71:91-113. https://doi.org/10.1046/j.1432-0436.2003.710201.x
  39. Suzuki K, Ohsumi Y (2007): Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581(11):2156-2161. https://doi.org/10.1016/j.febslet.2007.01.096
  40. Turner BM (2002): Cellular memory and the histone code. Cell 111:285-291. https://doi.org/10.1016/S0092-8674(02)01080-2
  41. Vajta G, Zhang Y, Machaty Z (2007): Somatic cell nuclear transfer in pigs: recent achievements and futurepossibilities. Reprod Fertil Dev 19:403-423. https://doi.org/10.1071/RD06089
  42. Wade PA, Kikyo N (2002): Chromatin remodeling in nuclear cloning. Eur J Biochem 269:2284-2287. https://doi.org/10.1046/j.1432-1033.2002.02887.x
  43. Warner CM, Exley GE, McElhinny AS, Tang C (1998): Genetic regulation of preimplantation mouse embryo survival. J Exp Zool 282:272-279. https://doi.org/10.1002/(SICI)1097-010X(199809/10)282:1/2<272::AID-JEZ29>3.0.CO;2-U
  44. Wee G, Koo DB, Song BS, Kim JS, Kang MJ, Moon SJ, Han YM (2006): Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J Biol Chem 281:6048-6057. https://doi.org/10.1074/jbc.M511340200
  45. Wee G, Shim JJ, Koo DB, Chae JI, Lee KK, Han YM (2007): Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134:781-787. https://doi.org/10.1530/REP-07-0338
  46. Woo M, Hakem R, Soenas MS, Duncan GS, Shahinian A, Kagi D, Hakem A, McCurrach M, Khoo W, Kaufman SA, Senaldi G, Howard T, Lowe SW, Mak TW (1998): Essential contribution ofcaspase 3/ CPP- 32 to apoptosis and its associated nuclear changes. Genes Dev 12:806-819. https://doi.org/10.1101/gad.12.6.806
  47. Xiang J, Chao DT, Korsmeyer SJ (1996): BAX-induced cell death may not require interleukin-1b-converting enzyme-like proteases. Proc Natl Acad Sci 93:14559-14563. https://doi.org/10.1073/pnas.93.25.14559
  48. Xie Z, Klionsky DJ (2007): Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102-1109. https://doi.org/10.1038/ncb1007-1102
  49. Yang X, Smith SL, Tian XC, Lewin HA, Renard JP, Wakayama T (2007): Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295-302. https://doi.org/10.1038/ng1973
  50. Yoshida M, Kijima M, Akita M, Beppu T (1990): Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174-17179.
  51. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004): Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500-1502. https://doi.org/10.1126/science.1096645
  52. Zhang Y, Li J, Villemoes K, Pedersen AM, Purup S, Vajta G (2007): An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning Stem Cells 9:357-363. https://doi.org/10.1089/clo.2006.0090
  53. Zhu J, Telfer EE, Fletcher J, Springbett A, Dobrinsky JR, De Sousa PA, Wilmut I (2002): Improvement of an electrical activation protocol for porcine oocytes. Biol Reprod 66:635-641. https://doi.org/10.1095/biolreprod66.3.635
  54. Ziecik AJ, Biallowicz M, Kaczmarek M, Demianowicz W, Rioperez J, Wasielak M, Bogacki M (2005): Influence of estrus synchronization of prepubertal gilts on embryo quality. J Reprod Dev 51:379-384. https://doi.org/10.1262/jrd.17008