Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.3.376

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells  

Jun, Do Youn (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Kim, Young Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.3, 2016 , pp. 376-386 More about this Journal
Abstract
Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.
Keywords
Apoptotic cell death; endoreduplication; microtubule-damaging agents; polyploid Formation; prometaphase arrest;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abraham, R. T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-2196.   DOI
2 Adams, R. L. and Lindsay, J. G. 1967. Hydroxyurea: reversal of inhibition and use as a cell synchronizing agent. J. Biol. Chem. 242, 1314-1317.
3 Amaravadi, R. K. and Thompson, C. B. 2007. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin. Cancer Res. 13, 7271-7279.   DOI
4 Andreassen, P. R., Lohez, O. D., Lacroix, F. B. and Margolis, R. L. 2001. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12, 1315-1328.   DOI
5 Aylon, Y., Michael, D., Shmueli, A., Yabuta, N., Nojima, H. and Oren, M. 2006. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 20, 2687-2700.   DOI
6 Blagosklommy, M. V., Schulte, T., Nguyen, P., Trepel, J. and Neckers, L. M. 1996. Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res. 56, 1851-1854.
7 Brito, D. A. and Rieder, C. L. 2006. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194-1200.   DOI
8 Burke, D. J. and Stukenberg, P. T. 2008. Linking kinetochoremicrotubule binding to the spindle checkpoint. Developmental Cell 14, 474-479.   DOI
9 Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P., Pequignot, M. O., Casares, N., Valent, A., Mouhamad, S., Schmitt, E., Modjtahedi, N., Vainchenker, W., Zitvogel, L., Lazar, V., Garrido, C. and Kroemer, G. 2006. Apoptosis regulation in tetraploid cancer cells. EMBO J. 25, 2584-2595.   DOI
10 Cavenee, W. K. and White, R. L. 1995. The genetic basis of cancer. Sci. Am. 272, 72-79.
11 Chipuk, J. E. and Green, D. R. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164.   DOI
12 Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. 2010. The BCL-2 family reunion. Mol. Cell 37, 299-310.   DOI
13 Chu, R., Terrano, D. T. and Chambers, T. C. 2010. Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis by phosphorylation of Mcl-1, promoting its degradation and freeing Bak from sequestration. Biochem. Pharmacol. 83, 199-206.
14 Contreras, A., Hale, T. K., Stenoien, D. L., Rosen, J. M., Mancini, M. A. and Herrera, R. E. 2003. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol. Cell. Biol. 23, 8626-8636.   DOI
15 Czabotar, P. E., Colman, P. M. and Huang, D. C. 2009. Bax activation by Bim? Cell Death Differ. 16, 1187-1191.   DOI
16 Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677.   DOI
17 De Chiara, G., Marcocci, M. E., Torcia, M., Lucibello, M., Rosini, P., Bonini, P., Higashimoto, Y., Damonte, G., Armirotti, A., Amodei, S., Palamara, A. T., Russo, T., Garaci, E. and Cozzolino, F. 2006. Bcl-2 phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J. Biol. Chem. 281, 21353-21361.   DOI
18 Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D. A. and Jin, S. 2006. White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64.   DOI
19 Desagher, S. and Martinou, J. C. 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369-377.   DOI
20 Etienne-Manneville, S. 2010. From signaling pathways to microtubule dynamics: the key players. Curr. Opin. Cell Biol. 22, 104-111.   DOI
21 Fesquet, D., Labbe, J. C., Derancourt, J., Capony, J. P., Galas, S., Girard, F., Lorca, T., Shuttleworth, J., Doree, M. and Cavadore, J. C. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12, 3111-3121.
22 Furukawa, Y., Iwase, S., Kikuchi, J., Terui, Y., Nakamura, M., Yamada, H., Kano, Y. and Matsuda, M. 2000. Phosphorylation of Bcl-2 protein by CDC2 kinase during G2/M phases and its role in cell cycle regulation. J. Biol. Chem. 275, 21661-21667.   DOI
23 Gabrielli, B., Brooks, K. and Pavey, S. 2012. Defective cell cycle checkpoints as targets for anti-cancer therapies. Front. Pharmacol. 3, 9.
24 Han, C. R., Jun, D. Y., Kim, Y. H., Lee, J. Y. and Kim, Y. H. 2013. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells. Biochim. Biophys. Acta 1833, 2220-2232.   DOI
25 Gadde, S. and Heald, R. 2004. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14, R797-805.   DOI
26 Goshima, G. and Scholey, J. M. 2010. Control of mitotic spindle length. Annu. Rev. Cell Dev. Biol. 26, 21-57.   DOI
27 Hainaut, P. and Hollstein, M. 2000. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res. 77, 81-137.
28 Han, C. R., Jun, D. Y., Lee, J. Y. and Kim, Y. H. 2014. Prometaphase arrest-dependent phosphorylation of Bcl-2 and Bim reduces the association of Bcl-2 with Bak or Bim, provoking Bak activation and mitochondrial apoptosis in nocodazole-treated Jurkat T cells. Apoptosis 19, 224-240.   DOI
29 Hanahan, D. and Weinberg, R. A. 2000. The hallmarks of cancer. Cell 100, 57-70.   DOI
30 Hannun, Y. A. 1997. Apoptosis and dilemma of cancer chemotheraphy. Blood 89, 1845-1853.
31 Harley, M. E., Allan, L. A., Sanderson, H. S. and Clarke, P. R. 2010. Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J. 29, 2407-2420.   DOI
32 Hartwell, L. H. and Weinert, T. A. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634.   DOI
33 Hochegger, H., Takeda, S. and Hunt, T. 2008. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat. Rev. Mol. Cell Biol. 9, 910-916.
34 Ibrado, A. M., Kim, C. N. and Bhalla, K. 1998. Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome c and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia 12, 1930-1936.   DOI
35 Holloway, S. L., Glotzer, M., King, R. W. and Murray, A. W. 1993. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393-1402.   DOI
36 Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R. and Harris, C. C. 1994. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551-3555.
37 Huang, J. and Klionsky, D. J. 2007. Autophagy and human disease. Cell Cycle 6, 1837-1849.   DOI
38 Jordan, M. A. and Wilson, L. 2004. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253-265.   DOI
39 Kastan, M. B. and Bartek, J. 2004. Cell-cycle checkpoints and cancer. Nature 432, 316-323.   DOI
40 Kaufman, S. H. and Earnshaw, W. C. 2000. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 256, 42-49.   DOI
41 Kim, Y. H., Proust, J. J., Buchholz, M. J., Chrest, F. J. and Nordin, A. A. 1992. Expression of the murine homologue of the cell cycle control protein p34cdc2 in T lymphocytes. J. Immunol. 149, 17-23.
42 Krokan, H., Wist, E. and Krokan, R. H. 1981. Aphidicolin inhibits DNA synthesis by DNA polymerase alpha and isolated nuclei by a similar mechanism. Nucleic Acids Res. 9, 4709-4719.   DOI
43 Kuntz, K. and O'Connell, M. J. 2009. The G2 DNA damage checkpoint: could this ancient regulator be the Achilles heel of cancer? Cancer Biol. Ther. 8, 1433-1439.
44 Mansilla, S., Llovera, L. and Portugal, J. 2012. Chemotherapeutic targeting of cell death pathways. Anticancer Agents Med. Chem. 12, 226-238.   DOI
45 Lapenna, S. and Giordano, A. 2009. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov. 8, 547-566.   DOI
46 Lee, S. T., Lee, J. Y., Han, C. R., Kim, Y. H., Jun, D. Y., Taub, D. and Kim, Y. H. 2015. Dependency of 2-methoxyestradiol-induced mitochondrial apoptosis on mitotic spindle network impairment and prometaphase arrest in human Jurkat T cells. Biochem. Pharmacol. 94, 257-269.   DOI
47 Li, Y. M. and Broome, J. 1999. Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells, Cancer Res. 59, 776-780.
48 Margolis, R. L. 2005. Tetraploidy and tumor development. Cancer Cell 8, 353-354.   DOI
49 Mathias, S. and Holger, B. 2007. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist. Update 10, 162-181.   DOI
50 Maton, G., Thibier, C., Castro, A., Lorca, T., Prigent, C. and Jessus, C. 2003. Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes. J. Biol. Chem. 278, 21439-21449.   DOI
51 McGrogan, B. T., Gilmartin, B., Carney, D. N. and McCann, A. 2008. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta. 1785, 96-132.
52 Mollinedo, F. and Gajate, C. 2003. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8, 413-450.   DOI
53 Morgan, G., Wardy, R. and Bartonz, M. 2004. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin. Oncol. 16, 549-560.   DOI
54 Ogden, A., Rida, P. C., Knudsen, B. S., Kucuk, O. and Aneja, R. 2015. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367, 89-92.   DOI
55 Murray, A. 1994. Cell cycle checkpoints. Curr. Opin. Cell Biol. 6, 872-876.   DOI
56 Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A. and Yuan, J. 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.   DOI
57 Nitta, M., Tsuiki, H., Arima, Y., Harada, K., Nishizaki, T., Sasaki, K., Mimori, T., Ushio, Y. and Saya, H. 2002. Hyperploidy induced by drugs that inhibit formation of microtubule promotes chromosome instability. Genes Cells 7, 151-162.   DOI
58 Ohi, R. and Gould, K. L. 1999. Regulating the onset of mitosis. Curr. Opin. Cell Biol. 11, 267-273.   DOI
59 Pathan, N., Aime-Sempe, C., Kitada, S., Haldar, S. and Reed, J. C. 2001. Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1. Neoplasia 3, 70-79.   DOI
60 Rathinasamy, K. and Panda, D. 2006. Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. FEBS J. 273, 4114-4128.   DOI
61 Ricci, M. S. and Zong, W. X. 2006. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11, 342-357.   DOI
62 Robles, A., Linke, S. P. and Harris, C. C. 2002. The p53 network in lung carcinogenesis. Oncogene 21, 6898-6907.   DOI
63 Sherr, C. J. 1996. Cancer cell cycles. Science 274, 1672-1677.   DOI
64 Takahashi, Y., Ogra, Y. and Suzuki, K. T. 2004. Synchronized generation of reactive oxygen species with the cell cycle. Life Sci. 75, 301-311.   DOI
65 Singh, P., Rathinasamy, K., Mohan, R. and Panda, D. 2008. Microtubule assembly dynamic: An attractive target for anticancer drugs. IUBMB Life 60, 368-375.   DOI
66 Srivastava, R. K., Srivastava, A. R., Korsmeyer, S. J., Nesterova, M., Cho-Chung, Y. S. and Longo, D. L. 1998. Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol. Cell Biol. 18, 3509-3517.   DOI
67 Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., Maar, S. and Gerlich, D. W. 2009. Aurora Bmediated abscission checkpoint protects against tetraploidization. Cell 136, 473-484.   DOI
68 Terrano, D. T., Upreti, M. and Chambers, T. C. 2010. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol. Cell Biol. 30, 640-656.   DOI
69 Tighe, A., Johnson, V. L. and Taylor, S. S. 2004. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J. Cell Sci. 117, 6339-6353.   DOI
70 Uetake, Y. and Sluder, G. 2004. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a tetraploidy checkpoint. J Cell Biol 165, 609-615.   DOI
71 van der Vaart, B., Akhmanova, A. and Straube, A. 2009. Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007-10013.   DOI
72 Vogel, C., Kienitz, A., Hofmann, I., Muller, R. and Bastians, H. 2004. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23, 6845-6853.   DOI
73 Wittmann, T., Hyman, A. and Desai, A. 2001. The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol. 3, E28-34.   DOI
74 Waldman, T., Lengauer, C., Kinzler, K. W. and Vogelstein, B. 1996. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713-716.   DOI
75 Wallach, D., Boldin, M., Varfolomeev, E., Beyaert, R., Vandenabeele, P. and Fiers, W. 1997. Cell death induction by receptors of the THF family: towards a molecular understanding. FEBS Lett. 410, 96-106.   DOI
76 Watanabe, N., Broome, M. and Hunter, T. 1995. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J. 14, 1878-1891.
77 Wong, C. and Stearns, T. 2005. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol. 6, 6.   DOI
78 Woods, C. M., Zhu, J., McQuenet, P. A., Bollag, D. and Lazarides, E. 1995. Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol. Med. 1, 506-526.
79 World Health Organization. World cancer report, 2014. In: WHO, eds. WHO Report. Geneva: WHO; 2014.
80 Yamamoto, K., Ichijo, H. and Korsmeyer, S. J. 1999. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol. Cell Biol. 19, 8469-8478.   DOI