• Title/Summary/Keyword: capacitive electrode

Search Result 168, Processing Time 0.024 seconds

Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices

  • Khan, Firoz;Kim, Jae Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.129-139
    • /
    • 2018
  • The effects of N doping concentration and dopant moieties on the electrochemical properties of nanoporous graphene and their dependence on annealing temperature are investigated. Four types of N moieties - amide, amine, graphitic-N, and oxidized-N - are obtained, which transformed into pyridinic-N and pyrrolic-N upon annealing. The diffusion coefficient (D') of the ions in the electrode is the maximum at $400^{\circ}C$ because of a high level of N doping, whereas the second highest D0 value is obtained at $700^{\circ}C$ owing to a high level of reduction and N doping. The highest specific capacitance is obtained for the sample annealed at $400^{\circ}C$.

Development of Plastic Film Type Water Level Sensor for High Temperature (고온용 플라스틱 필름 수위 센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.124-128
    • /
    • 2019
  • In this paper, a high temperature plastic film type water level sensor was developed. The high temperature film type water level sensor was manufactured by attaching a copper film to a polyimide film which can be used for a long time at 250℃, by laminating process and patterning the electrode by etching process. For the performance evaluation of the developed film type water level sensor, the temperature dependence of the capacitance was measured, and the deformation was examined after standing for 8 hours in 150℃ air. The developed film type water level sensor can be used at up to 150℃, and can be applied to electric ports and steam devices.

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Development of Capacitive Micromachined Ultrasonic Transducer (I) - Analysis of the Membrane Behavior (미세가공 정전용량형 초음파 탐촉자 개발(I) - 진동 막 거동 분석)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.487-493
    • /
    • 2004
  • This study was conducted to develope a capacitive micromachined ultrasonic transducer (cMUT) which enable to high efficient non-contact transmit and receive the ultrasonic wave in air. Theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) of the cMUT were performed. The design parameters of the cMUT such as the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode were estimated. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was analyzed.

The Interdigitated-Type Capacitive Humidity Sensor Using the Thermoset Polyimide (열경화성 폴리이미드를 이용한 빗살전극형 정전용량형 습도센서)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • In this study, we fabricated a capacitive humidity sensor with interdigitated (IDT) electrodes using a thermosetting polyimide as a humidifying material. First, the number of electrodes, thickness, and spacing of the polyimide film were optimized, and a mask was designed and fabricated. The sensor was fabricated on a silicon substrate using semiconductor processing equipment. The area of the sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were each $3{\mu}m$. The number of electrodes was 166, and the length of an electrode was 1.294 mm for the sensitivity of the sensor. The sensor was then packaged on a PCB for measurement. The sensor was inserted into a chamber environment with a temperature of $25^{\circ}C$ and connected to an LCR meter to measure the change in capacitance at relative humidity (RH) of 20% to 90%, 1 V, and 20 kHz. The results showed a sensitivity of 26fF/%RH, linearity of < ${\pm}2%RH$, and hysteresis of < ${\pm}2.5%RH$.

Quantification of Rockwool Substrate Water Content using a Capacitive Water Sensor (정전용량 수분센서의 배지 함수량 정량화)

  • Baek, Jeong-Hyeon;Park, Ju-Sung;Lee, Ho-Jin;An, Jin-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.27-36
    • /
    • 2021
  • A capacitive water sensor was developed to measure the capacitance over a wide part of a substrate using an insulated electrode plate (30 cm × 10 cm) with copper and Teflon attached on either side of the substrate. This study aimed to convert the capacitance output obtained from the condenser-type capacitance sensor into the substrate water content. The quantification experiment was performed by measuring the changes in substrate water weight and capacitance while providing a nutrient solution and by subsequently comparing these values. The substrate water weight and capacitance were measured every 20 to 30 seconds using the sensor and load cell with a software developed specifically for this study. Using a curve-fitting program, the substrate water content was estimated from the output of the capacitance using the water weight and capacitance of the substrate as variables. When the amount of water supplied was increased, the capacitance tended to increase. Coefficient of variation (CV) in capacitance according to the water weight in substrate was greater with the 1.0 kg of water weight, compared with other weights. Thus, the fitting was performed with higher than 1.0 kg, from 1.7 to 6.0 kg of water weight. The correlation coefficient between the capacitance and water weight in substrate was 0.9696. The calibration equation estimated water content from the capacitance, and it was compared with the substrate water weight measured by the load cell.

Development of flexible energy storage device based on reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) composite (환원된 그래핀/단일벽 탄소나노튜브 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Yoo, Yeong Hwan;Cho, Jae Bong;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.593-598
    • /
    • 2016
  • We report on the preparation of reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes deposited onto flexible polyethylene terephthalate (PET) via spray coating technique. The highest capacitance value of the unbent rGO/SWNTs electrode was $82Fg^{-1}$ in 1 M $H_2SO_4$ at $100mVs^{-1}$, which decreased to $38Fg^{-1}$ after 500 bending cycle. Further characterization, including galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS), showed that the rGO/SWNTs electrode retained a well-defined capacitive response after repetitive bending cycle. Overall, the rGO/SWNTs composite electrode showed reasonable electrochemical properties even prolonged bending cycle. Approximately 50% of the initial capacitance for the rGO/SWNTs composite electrode is remained after 500 bending cycle, making the electrode a potential option for flexible energy storage applications.

Discharge Characteristics of the Cold Cathode and External Electrode Fluorescent Lamps (냉음극 및 외부전극 형광램프의 방전 특성)

  • Cho Guangsup;Lee Dae H.;Lee Joo Y.;Song Hyuck S.;Gill Doh H.;Koo Je H.;Choi Eun H.;Kim Sang B.;Kim Bong S.;Kang June G.;Cho Mee R.;Hwang Myung G.;Kim Young Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • The characteristics of current and voltage in a basic discharge experiment are investigated for a cold cathode fluorescent lamp with ballast capacitors attached at both ends of lamp and for a capacitive coupled external electrode fluorescent lamp. In the current-voltage characteristics for a cold cathode fluorescent lamp except ballast capacitors, it is shown that the typical glow discharge with the cathode fall follows after the dark current and Townsend firing discharge. However, in the characteristics for a cold cathode fluorescent lamp including ballast capacitors, the current increases as the voltage increases in the glow discharge region without representing a cathode fall since the most voltage is loaded at two capacitors. The characteristics for the external electrode fluorescent lamp shows the same as that of the cold cathode fluorescent lamp in the respect of glow discharge characters, and the external electrode itself roles the ballast capacitor.

Application of Capacitive Deionization for Desalination of Mining Water (광산수의 탈염을 위한 축전식 탈염기술의 적용)

  • Lee, Dong-Ju;Kang, Moon-Sung;Lee, Sang-Ho;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System (막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거)

  • Kim, Yu-Jin;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.474-479
    • /
    • 2012
  • Possibility of the selective removal of $Ca^{2+}$ ions from a mixed solution of $Na^{+}$ and $Ca^{2+}$ ions using membrane capacitive deionization (MCDI) was investigated. Adsorption equilibrium experiments were conducted to determine the selectivity of the CMX cation-exchange membrane toward $Ca^{2+}$ ions. In addition, desalination experiments for a mixed solution (5 meq/L NaCl + 2 meq/L $CaCl_{2}$) were performed using an MCDI cell. The adsorption equilibrium of CMX membrane showed that the equivalent fraction of $Ca^{2+}$ ions in the solution and the CMX membrane were 28.6 and 87.2%, respectively, which indicates the CMX membrane's high selectivity toward $Ca^{2+}$ ions. Desalination experiments were performed by applying a constant current to the MCDI cell until the cell potential reached 1.0 V. The amount of ions adsorbed did not significantly change as the applied current was changed. However, the equivalent fractions of $Ca^{2+}$ ions among the adsorbed ions were inversely proportional to the applied currents: 81.4, 78.4, 77.0, and 74.5% at 200, 300, 500, and $700\;A/m^{2}$ of applied current density, respectively. This result is attributed to the increased fraction of $Ca^{2+}$ ions adsorbed by the CMX membrane at lower applied current densities.