Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System

막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거

  • Kim, Yu-Jin (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
  • Published : 2012.10.10

Abstract

Possibility of the selective removal of $Ca^{2+}$ ions from a mixed solution of $Na^{+}$ and $Ca^{2+}$ ions using membrane capacitive deionization (MCDI) was investigated. Adsorption equilibrium experiments were conducted to determine the selectivity of the CMX cation-exchange membrane toward $Ca^{2+}$ ions. In addition, desalination experiments for a mixed solution (5 meq/L NaCl + 2 meq/L $CaCl_{2}$) were performed using an MCDI cell. The adsorption equilibrium of CMX membrane showed that the equivalent fraction of $Ca^{2+}$ ions in the solution and the CMX membrane were 28.6 and 87.2%, respectively, which indicates the CMX membrane's high selectivity toward $Ca^{2+}$ ions. Desalination experiments were performed by applying a constant current to the MCDI cell until the cell potential reached 1.0 V. The amount of ions adsorbed did not significantly change as the applied current was changed. However, the equivalent fractions of $Ca^{2+}$ ions among the adsorbed ions were inversely proportional to the applied currents: 81.4, 78.4, 77.0, and 74.5% at 200, 300, 500, and $700\;A/m^{2}$ of applied current density, respectively. This result is attributed to the increased fraction of $Ca^{2+}$ ions adsorbed by the CMX membrane at lower applied current densities.

막결합 축전식 탈염(MCDI) 기술을 이용하여 $Na^{+}$$Ca^{2+}$ 이온이 혼합된 용액에서 $Ca^{2+}$ 이온의 선택적 제거 가능성을 연구하였다. 양이온교환막인 CMX막에 대한 $Ca^{2+}$ 이온의 선택성을 확인하기 위해 흡착평형 실험을 실시하였다. 그리고 MCDI 셀을 이용해 혼합용액(5 meq/L NaCl + 2 meq/L $CaCl_{2}$)에 대한 탈염실험을 수행하였다. 흡착평형 실험결과 용액과 CMX막에서 $Ca^{2+}$ 이온의 당량분율은 각각 28.6, 87.2%를 보여 CMX막이 $Ca^{2+}$ 이온에 대해 높은 선택성을 갖는 것을 확인하였다. MCDI 셀에 일정한 전류를 인가하면서 셀 전위가 1.0 V에 도달할 때까지 탈염실험을 실시하였다. 그 결과 흡착된 이온의 총량은 인가한 전류밀도에 큰 영향을 받지 않고 일정하였다. 그러나 흡착된 이온 중 $Ca^{2+}$ 이온의 비율은 전류밀도에 반비례하였으며 200, 300, 500, $700\;A/m^{2}$의 전류밀도에서 각각 81.4, 78.4, 77.0, 74.5%로 나타났다. 이러한 결과는 낮은 전류밀도에서 CMX막에 흡착된 $Ca^{2+}$ 이온의 비율이 높았기 때문인 것으로 판단된다.

Keywords

References

  1. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  2. Y. Oren, Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  3. P. M. Biesheuvel, J. Colloid Interface Sci., 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018
  4. M. A. Anderson and A. L. Cudero, J. Palma, Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  5. L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  6. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. W. Park, H. Hojima, J. Y. Lee, and S. H. Moon, Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  7. M. W. Ryoo and G. Seo, Water. Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  8. B. H. Park, Y. J. Kim, J. S. Park, and J. H. Choi, J. Ind. Eng. Chem., 17, 717 (2011). https://doi.org/10.1016/j.jiec.2011.05.015
  9. C. J. Gabelich, T. D. Tran, and I. H. "MEL" Suffet, Environ. Sci. Technol., 36, 3010 (2002). https://doi.org/10.1021/es0112745
  10. M. W. Ryoo, J. H. Kim, and G. Seo, J. Colloid Interface Sci., 264, 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  11. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  12. H. Li, L. Zou, L. Pan, and Z. Sun, Environ. Sci. Technol., 44, 8692 (2010). https://doi.org/10.1021/es101888j
  13. M. D. Andelman, CA Patent 2444390 (2002).
  14. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  15. L. Z. Li, Desalination, 275, 62 (2011). https://doi.org/10.1016/j.desal.2011.02.027
  16. Y. J. Kim and J. H. Choi, Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  17. Y. J. Kim and J. H. Choi, Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  18. Y. J. Kim and J. H. Choi, J. Korean Ind. Eng. Chem., 21, 87 (2010).
  19. P. M. Biesheuvel, B. van Limpt, and A. van der Wal, J. Phys. Chem. C, 113, 5636 (2009). https://doi.org/10.1021/jp809644s
  20. R. Zhao, P. M. Biesheuvel, H. Miedema, H. Bruning, and A. van der Wal, J. Phys. Chem. Lett., 1, 205 (2010). https://doi.org/10.1021/jz900154h
  21. B. H. Park and J. H. Choi, Electrochim. Acta, 55, 2888 (2010). https://doi.org/10.1016/j.electacta.2009.12.084
  22. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).