DOI QR코드

DOI QR Code

Development of flexible energy storage device based on reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) composite

환원된 그래핀/단일벽 탄소나노튜브 복합체를 이용한 플렉시블 에너지 저장 매체의 개발

  • 유영환 (대진대학교 화학공학과) ;
  • 조재봉 (대진대학교 화학공학과) ;
  • 김용렬 (대진대학교 화학공학과) ;
  • 정현택 (대진대학교 화학공학과)
  • Received : 2016.07.27
  • Accepted : 2016.09.29
  • Published : 2016.09.30

Abstract

We report on the preparation of reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes deposited onto flexible polyethylene terephthalate (PET) via spray coating technique. The highest capacitance value of the unbent rGO/SWNTs electrode was $82Fg^{-1}$ in 1 M $H_2SO_4$ at $100mVs^{-1}$, which decreased to $38Fg^{-1}$ after 500 bending cycle. Further characterization, including galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS), showed that the rGO/SWNTs electrode retained a well-defined capacitive response after repetitive bending cycle. Overall, the rGO/SWNTs composite electrode showed reasonable electrochemical properties even prolonged bending cycle. Approximately 50% of the initial capacitance for the rGO/SWNTs composite electrode is remained after 500 bending cycle, making the electrode a potential option for flexible energy storage applications.

본 연구에서는 유연성을 갖는 전극 제조를 위해 환원된 그래핀 옥사이드/단일벽 탄소나노튜브 복합체를 금이 코팅된 PET 기판 위에 스프레이 코팅하였다. 제조된 플렉시블한 전극의 전기 용량 값은 1 M의 황산 전해질과 $100mVs^{-1}$ 의 주사속도에서 $82Fg^{-1}$ 으로 측정 되었으며, 이 용량 값은 500 번의 굽힘 시험 후에 $38Fg^{-1}$ 로 감소되는 현상을 확인 하였다. 또한, 이러한 결과는 정전류 충방전과 전기화학 임피던스법을 포함한 전기화학적 분석 결과와도 부합하는 결과를 나타내었다. 유연성을 갖는 환원된 그래핀 옥사이드/단일벽 탄소나노튜브 복합체 전극은 500회의 반복적인 굽힘 시험 후에도 대략 50%의 초기 전기 용량 값을 유지 할 수 있었으며, 이러한 여러 가지 전기화학적 특성을 고려하여 볼 때 미래 개발 가능한 플렉시블한 에너지 저장 매체로써의 적용이 가능 하다는 점을 확인 할 수 있었다.

Keywords

References

  1. Shim BS, Chen W, Doty C, et al. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett., 8, 4151 (2008). https://doi.org/10.1021/nl801495p
  2. Gwon H, Kim H-S, Lee KU, et al. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 4, 1277 (2011). https://doi.org/10.1039/c0ee00640h
  3. Jeong HT, Kim BC, Higgins MJ, et al. Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. Electrochim. Acta. 163, 149 (2015). https://doi.org/10.1016/j.electacta.2015.02.022
  4. G. Subramarian and M. J. Andrews, Preparation of SWNT-reinforced composites by a continuous mixing process, Nanotechnol. 16, 836 (2005). https://doi.org/10.1088/0957-4484/16/6/037
  5. S. G. Kazarian, Polymer processing with supercritical fluids. Polym. Sci. Ser. C. 42, 78 (2000).
  6. Q, Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and Lu-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys, 13, 17615 (2011). https://doi.org/10.1039/c1cp21910c
  7. D.T Pham, T.H Lee, D.H Loung, F. Yao, A.G Ghosh, V.T Le, T.H Kim, B. Li, J. Chang and Y.H Lee, ACS Nano, 9, 2018 (2015). https://doi.org/10.1021/nn507079x
  8. Y. Zhang, M. R. Park, H. Y. Kim, S. J. Park, In-situ synthesis of graphene oxide/BiOCl heterostructured nanofibers for visible-light photocatalytic investigation, Alloys and Compounds, 686, 25 (2016)
  9. Daniela C. Marcano, V Dmitry. Kostnkin, Improved Synthesis of Graphene Oxide, ACS Nano, 4, 8 (2010)
  10. Leila Shahriary, Anjalia, Athawale, Graphene Oxide Synthesized by using Modified Hummers Approach, Renewable Energy and Environmental Engineering, 2, 1 (2014)