DOI QR코드

DOI QR Code

Significance of N-moieties in regulating the electrochemical properties of nano-porous graphene: Toward highly capacitive energy storage devices

  • Khan, Firoz (Smart Textile Convergence Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Jae Hyun (Smart Textile Convergence Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2018.04.11
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

The effects of N doping concentration and dopant moieties on the electrochemical properties of nanoporous graphene and their dependence on annealing temperature are investigated. Four types of N moieties - amide, amine, graphitic-N, and oxidized-N - are obtained, which transformed into pyridinic-N and pyrrolic-N upon annealing. The diffusion coefficient (D') of the ions in the electrode is the maximum at $400^{\circ}C$ because of a high level of N doping, whereas the second highest D0 value is obtained at $700^{\circ}C$ owing to a high level of reduction and N doping. The highest specific capacitance is obtained for the sample annealed at $400^{\circ}C$.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning, Ministry of Science, ICT and Future Planning

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
  2. S. Sandoval, N. Kumar, J. Oro-Sole, A. Sundaresan, C.N.R. Rao, A. Fuertes, et al., Carbon 96 (2016) 594. https://doi.org/10.1016/j.carbon.2015.09.085
  3. A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., Nano Lett. 8 (2008) 902. https://doi.org/10.1021/nl0731872
  4. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, et al., Science 320 (2008) 1308. https://doi.org/10.1126/science.1156965
  5. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., Solid State Commun. 146 (2008) 351. https://doi.org/10.1016/j.ssc.2008.02.024
  6. E.J. Duplock, M. Scheffler, P.J.D. Lindan, Phys. Rev. Lett. 92 (2004) 225502. https://doi.org/10.1103/PhysRevLett.92.225502
  7. S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, et al., Nat. Nanotechnol. 5 (2010) 574. https://doi.org/10.1038/nnano.2010.132
  8. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, et al., Nano Lett. 12 (2012) 2745. https://doi.org/10.1021/nl204414u
  9. Y. Ye, L. Dai, J. Mater. Chem. 22 (2012) 24224. https://doi.org/10.1039/c2jm33809b
  10. C. Li, X.L. Sui, Z.B. Wang, Q. Wang, D.M. Gu, Chem. Eng. J. 326 (2017) 265. https://doi.org/10.1016/j.cej.2017.05.154
  11. T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, et al., ACS Nano 5 (2011) 436. https://doi.org/10.1021/nn101968p
  12. Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B 252 (2017) 1179. https://doi.org/10.1016/j.snb.2017.07.144
  13. H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
  14. J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42 (2017) 911. https://doi.org/10.1364/OL.42.000911
  15. M.P. McDonald, A. Eltom, F. Vietmeyer, J. Thapa, Y.V. Morozov, D.A. Sokolov, et al., Nano Lett. 13 (2013) 5777. https://doi.org/10.1021/nl402057j
  16. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, et al., Nature 442 (2006) 282. https://doi.org/10.1038/nature04969
  17. L. Jiang, Z. Fan, Nanoscale 6 (2014) 1922. https://doi.org/10.1039/C3NR04555B
  18. Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, et al., Carbon 50 (2012) 1699. https://doi.org/10.1016/j.carbon.2011.12.016
  19. J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, et al., Carbon 48 (2010) 1731. https://doi.org/10.1016/j.carbon.2010.01.014
  20. M. Li, Z. Tang, M. Leng, J. Xue, Adv. Funct. Mater. 24 (2014) 7495. https://doi.org/10.1002/adfm.201402442
  21. Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, et al., Adv. Mater. 22 (2010) 3723. https://doi.org/10.1002/adma.201001029
  22. Z.J. Fan, J. Yan, T. Wei, G.Q. Ning, L.J. Zhi, J.C. Liu, D.X. Cao, G.L. Wang, F. Wei, ACS Nano 5 (2011) 2787. https://doi.org/10.1021/nn200195k
  23. P. Wang, Y. Zhang, Y. Yin, L. Fan, N. Zhang, K. Sun, Chem. Eng. J. 334 (2018) 257. https://doi.org/10.1016/j.cej.2017.10.009
  24. S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, J. Mater. Chem. A 1 (2013) 9409. https://doi.org/10.1039/c3ta00133d
  25. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, et al., Carbon 48 (2010) 487. https://doi.org/10.1016/j.carbon.2009.09.066
  26. P. Russo, A. Hu, G. Compagnini, Nano-Micro Lett. 5 (2013) 260. https://doi.org/10.1007/BF03353757
  27. L. Ren, K.N. Hui, K.S. Hui, Y. Liu, X. Qi, J. Zhong, et al., Sci. Rep. 5 (2015) 14229. https://doi.org/10.1038/srep14229
  28. X.P. Tao, Y.J. Xiang, W.K. Sai, Z.Z. Zhen, S.P. Wen, Chin. Sci. Bull. 57 (2012) 2948.
  29. https://en.wikipedia.org/wiki/Porosity.
  30. https://en.wikipedia.org/wiki/Supercapacitor.
  31. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  32. Y. He, X. Han, Y. Du, B. Song, P. Xu, B. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 3601. https://doi.org/10.1021/acsami.5b07865
  33. Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, et al., Energy Environ. Sci. 5 (2012) 7950. https://doi.org/10.1039/c2ee21817h
  34. C. Ma, X. Shao, D. Cao, J. Mater. Chem. 22 (2012) 8911. https://doi.org/10.1039/c2jm00166g
  35. Z. Fan, J. Yan, G. Ning, T. Wei, L. Zhi, F. Wei, Carbon 60 (2013) 558. https://doi.org/10.1016/j.carbon.2013.04.053
  36. C. Uthaisar, V. Barone, Nano Lett. 10 (2010) 2838. https://doi.org/10.1021/nl100865a
  37. Z.Y. Sui, C. Wang, Q.S. Yang, K. Shu, Y.W. Liu, B.H. Han, et al., J. Mater. Chem. A 3 (2015) 18229. https://doi.org/10.1039/C5TA05759K
  38. C. Jiang, C. Yuan, P. Li, H.G. Wang, Y. Li, Q. Duan, J. Mater. Chem. A 4 (2016) 7251. https://doi.org/10.1039/C5TA10711C
  39. C. Zheng, X.F. Zhou, H.L. Cao, G.H. Wang, Z.P. Liu, RSC Adv. 5 (2015) 10739. https://doi.org/10.1039/C4RA13724H
  40. A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, P.M. Ajayan, Adv. Mater. 24 (2012) 5045. https://doi.org/10.1002/adma.201104502
  41. I. Lahiri, W. Choi, Crit. Rev. Solid State Mater. Sci. 38 (2013) 126.
  42. M. Srivastava, J. Singh, T. Kuila, R.K. Layek, N.H. Kim, J.H. Lee, Nanoscale 7 (2015) 4820. https://doi.org/10.1039/C4NR07068B
  43. A. Ambrosi, C.K. Chua, N.M. Latiff, A.H. Loo, C.H.A. Wong, A.Y.S. Eng, et al., Chem. Soc. Rev. 45 (2016) 2458. https://doi.org/10.1039/C6CS00136J
  44. P. Rani, V.K. Jindal, RSC Adv. 3 (2013) 802. https://doi.org/10.1039/C2RA22664B
  45. X. Fan, Z. Shen, A.Q. Liu, J.L. Kuo, Nanoscale 4 (2012) 2157. https://doi.org/10.1039/c2nr11728b
  46. F. Khan, S.H. Baek, J.H. Kim, Carbon 100 (2016) 608. https://doi.org/10.1016/j.carbon.2016.01.064
  47. Q. Tang, Z. Zhou, Z. Chen, Nanoscale 5 (2013) 4541. https://doi.org/10.1039/c3nr33218g
  48. O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, et al., Science 266 (1994) 1683. https://doi.org/10.1126/science.266.5191.1683
  49. X.R. Wang, X.L. Li, L. Zhang, Y.K. Yoon, P.K. Weber, H.L. Wang, et al., Science 324 (2009) 768. https://doi.org/10.1126/science.1170335
  50. X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 131 (2009) 15939. https://doi.org/10.1021/ja907098f
  51. M.D. Fischbein, M. Drndic, Appl. Phys. Lett. 93 (2008) 113107. https://doi.org/10.1063/1.2980518
  52. D. Fox, A. O'Neill, D. Zhou, M. Boese, J.N. Coleman, H.Z. Zhang, Appl. Phys. Lett. 98 (2011) 243117. https://doi.org/10.1063/1.3601467
  53. M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara, Y. Matsumoto, J. Phys. Chem. C 116 (2012) 19822. https://doi.org/10.1021/jp305403r
  54. T. Palaniselvam, M.O. Valappil, R. Illathvalappil, S. Kurungot, Energy Environ. Sci. 7 (2014) 1059. https://doi.org/10.1039/c3ee43648a
  55. X. Cai, M. Lin, S. Tan, W. Mai, Y. Zhang, Z. Liang, et al., Carbon 50 (2012) 3407. https://doi.org/10.1016/j.carbon.2012.02.002
  56. F. Liu, M.H. Jang, H.D. Ha, J.H. Kim, Y.H. Cho, T.S. Seo, Adv. Mater. 25 (2013) 3657. https://doi.org/10.1002/adma.201300233
  57. E.P. Barret, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373. https://doi.org/10.1021/ja01145a126
  58. M.F.D. Lange, T.J.H. Vlugt, J. Gascon, F. Kapteijn, Microporous Mesoporous Mater. 200 (2014) 199. https://doi.org/10.1016/j.micromeso.2014.08.048
  59. R. Lv, Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, et al., Sci. Rep. 2 (2012) 586. https://doi.org/10.1038/srep00586
  60. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1 (2010) 73. https://doi.org/10.1038/ncomms1067
  61. J.H. Li, Y. Wang, Y.Y. Shao, D.W. Matson, Y.H. Lin, ACS Nano 4 (2010) 1790. https://doi.org/10.1021/nn100315s
  62. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, Nat. Nanotechnol. 3 (2008) 210. https://doi.org/10.1038/nnano.2008.67
  63. S. Liu, J. Tian, L. Wang, X. Sun, Carbon 49 (2011) 3158. https://doi.org/10.1016/j.carbon.2011.03.036
  64. D.A. Shirley, Phys. Rev. B: Condens. Matter Mater. Phys. 5 (1972) 4709. https://doi.org/10.1103/PhysRevB.5.4709
  65. V.V. Nedelko, B.L. Korsunskit, F.I. Dubovitskit, G.L. Gromova, Vysokomol. Soyed. A17 (1975) 1477.
  66. J. Wang, X. Gao, Y. Wang, C. Gao, RSC Adv. 4 (2014) 57476. https://doi.org/10.1039/C4RA09995H
  67. K. Wang, L. Li, T. Zhang, Z. Liu, Energy 70 (2014) 612. https://doi.org/10.1016/j.energy.2014.04.034
  68. S. Indrawirawan, H. Sun, X. Duan, S. Wang, J. Mater. Chem. A 3 (2015) 3432. https://doi.org/10.1039/C4TA05940A
  69. J. Peng, J. Weng, Carbon 94 (2015) 568. https://doi.org/10.1016/j.carbon.2015.07.035
  70. F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, et al., Nanoscale 5 (2013) 7984. https://doi.org/10.1039/c3nr02710d
  71. Z. Lei, L. Lu, X.S. Zhao, Energy Environ. Sci. 5 (2012) 6391. https://doi.org/10.1039/C1EE02478G
  72. X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Sci. Rep. 5 (2015) 11225. https://doi.org/10.1038/srep11225
  73. Z.Y. Yang, L.J. Jin, G.Q. Lu, Q.Q. Xian, Y.X. Zhang, L. Jing, et al., Adv. Funct. Mater. 24 (2014) 3917. https://doi.org/10.1002/adfm.201304091
  74. H. Wang, D. Zhang, T. Yan, Z. Wen, J. Zhang, L. Shi, et al., J. Mater. Chem. A 1 (2013) 11778. https://doi.org/10.1039/c3ta11926b
  75. Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, et al., Adv. Mater. 24 (2012) 5610. https://doi.org/10.1002/adma.201201920
  76. J.W. Lee, J.M. Ko, J.D. Kim, Electrochim. Acta 85 (2012) 459. https://doi.org/10.1016/j.electacta.2012.08.070
  77. Y. Gong, D. Li, Q. Fu, C. Pan, Prog. Nat. Sci.: Mater. Int. 25 (2015) 379. https://doi.org/10.1016/j.pnsc.2015.10.004
  78. R. Wang, J. Lang, Y. Liu, Z. Lin, X. Yan, NPG Asia Mater. 7 (2015)e183. https://doi.org/10.1038/am.2015.42
  79. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48 (2010) 3825. https://doi.org/10.1016/j.carbon.2010.06.047
  80. Z. Wu, X.L. Huang, Z.L. Wang, J.J. Xu, H.G. Wang, X.B. Zhang, Sci. Rep. 4 (2014) 3669.
  81. L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao, W. Mai, Chem. Commun. 52 (2016) 6296. https://doi.org/10.1039/C6CC01139J
  82. S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S.V. Dommele, J.H. Bitter, et al., J. Phys. Chem. C 113 (2009) 14302.
  83. R. Yadav, C.K. Dixit, J. Sci.: Adv. Mater. Devices 2 (2017) 141. https://doi.org/10.1016/j.jsamd.2017.05.007
  84. T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J.-i. Ozaki, J. Phys. Chem. C 112 (2008) 14706. https://doi.org/10.1021/jp806084d